A Dissertation Entitled Discovery of a New Dendritic Cell Subset Derived

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Discovery of a New Dendritic Cell Subset Derived A Dissertation entitled Discovery of a New Dendritic Cell Subset Derived from Immature Granulocytes By Shuo Geng Submitted to the Graduate Fculty as partial fulfillment of the requirement for the Doctor of Philosophy in Biomedical Sciences _______________________________________ Dr. Akira Takashima, Committee Chair _______________________________________ Dr. Kevin Pan, Committee Member _______________________________________ Dr. Stanislaw Stepkowski, Committee Member _______________________________________ Dr. Anthony Quinn, Committee Member _______________________________________ Dr. Randall Worth, Committee Member _______________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo June 2011 Copyright 2011, Shuo Geng This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Discovery of a New Dendritic Cell Subset Derived from Immature Granulocytes By Shuo Geng Submitted to the Graduate Fculty as partial fulfillment of the requirement for the Doctor of Philosophy in Biomedical Sciences Compared to other leukocytes, dendritic cells (DCs) are extremely heterogeneous in terms of developmental pathways and immunological properties. More than 10 DC subsets have been identified in mouse, which are distinguishable from each other by surface phenotypes, functions, tissue distributions, and developmental origins. Here we describe a novel subset of DCs that are derived from immature granulocytes, known as band cells. Large numbers of band cells are rapidly recruited to inflammatory sites, where some of them differentiate into this DC subset termed “grDCs.” In addition to showing a typical DC-like morphology, grDCs express many DC markers (MHC class II, CD11c, and CD205) and efficiently present peptide antigens to both CD8 and CD4 T cells. Importantly, grDCs retain the surface expression of Ly6G, which is not detectable on any of the currently known DC subsets, as well as several unique features of granulocytes. GeneChip analyses have revealed a cluster of genes that are selectively expressed by Ly6G+ grDCs, but not Ly6G- conventional DCs – this cluster includes cathelicidin (CRAMP), MMP9 and CD62L. CRAMP-deficient grDC exhibited a diminished bacterial killing activity, indicating a functional contribution of grDC-associated CRAMP. In a peritoneal E. coli infection model, grDC were found to internalize bacteria efficiently and present bacterial antigens to CD4 T cells. Not only have our data unveiled a previously iii unrecognized DC subset and its functions, they also suggest a new concept that granulocytes can directly participate in the induction of adaptive immunity via differentiation into grDCs. iv DEDICATION This work is dedicated to my parents, Wu-qun Geng and You-jie Zhu, as well as my grandparents, Ling-guang Zhu and Jie li, for their endless love. They always have faith in me and encourage me to reach my dreams. This work is also dedicated to my beloved wife, Ran Lu, for her support, understanding and patience. She has been my wonderful cheerleader and makes my life delightful. v ACKNOWLEDGEMENT I would like to thank my major advisor, Dr Akira Takashima, for giving me the opportunity to work on this exciting project. I appreciate his expert training, sagacious guidance, and sustained encouragement during my doctoral education. His enthusiasm in scientific research has always inspired me. He leads me into the field of immunology and I have benefited a lot from him. I would like to thank me committee members: Dr. Kevin Pan, Dr. Stanislaw Stepkowski, Dr. Anthony Quinn and Dr. Randall Worth for their valuable time and constructive suggestions and criticisms during my PhD study. I am grateful to Dr. Robert Blumenthal and Dr. Kristen Williams for providing the E. coli strains used in this study and teaching me how to perform bacterial assays. I thank Dr. William Gunning III for helping us take the EM images. I thank Dr. Richard Gallo for providing anti-CRAMP antibody and BM cells from CRAMP KO mice. I thank Sean Linkes for his service of FACS analysis and sorting. I thank all the current and former members in Takashima’s lab: Dr. Hironori Matsushima, Dr. Ram Veerapaneni, Dr. Claudio Cortes, Dr. Masaaki Miyazawa, Dr. Nobuyasu Mayuzumi, Dr. Taehyung Lee, Ran Lu, Yi Yao, David Leggat, Benjamin Chojnacki, Rachel Mohr, Alan Rupp and Colleen Krout. It is a great pleasure to work with them. vi I would like to thank all the administrative personnel of the Department of Medical Microbiology and Immunology: Diane Ammons, Tamra Chamberlin, Traci McDaniel and Suzanne Payne, who are always ready to help and solve problems. I acknowledge all the faculty, staff and students in the Department of Medical Microbiology and Immunology and the Track of Infection, Immunity and transplantation. They create a very professional and friendly environment. vii Contents ABSTRACT…………………………………………………………….......iii DEDICATION……………………………………………………...……….v ACKNOWLEDGEMENT…………………………….…….……..…....….vi CONTENTS……………………................……………….…………....…viii LIST OF ABBREVIATIONS…………………………………………...….ix INTRODUCTION…………………………………………………………...1 LITERATURE REVIEW……………………………………………………5 MATERIALS AND METHODS…………………………………………..34 RESULTS…………………………………………………………………..46 DISCUSSION…..………………………………………………………….79 SUMMARY………………………………………………………………..90 REFERENCES……………………………………………………………..91 viii LIST OF ABBREVIATIONS APC antigen presenting cell BM bone marrow BMDC bone marrow-derived dendritic cell cDC conventional dendritic cell CDP common Dendritic cell precursor CFU colony forming unit CHS contact hypersensitivity CLP common lymphoid precursor CMP common myeloid precursor CRAMP cathelicidin CTL cytotoxic T lymphocyte DC dendritic cell DT diphtheria toxin EM electron microscopy Ep-CAM epithelial cell adhesion molecule ER endoplasmic reticulum FDC follicular cendritic cell Flt3 fms-related tyrosin kinase 3 GC germinal center GCDC germinal center dendritic cell G-CSF granulocyte colony-stimulating factor GM-CSF granulocyte macrophage colony-stimulating factor grDC granulocyte-derived dendritic cell IFN interferon IKDC interferon-producing killer dendritic cell i.p. intraperitoneal i.v. intravenous KO knock out LC Langerhans cell LN lymph node M-CSF macrophage colony-stimulating factor MFI mean fluorescence intensity MHC major histocompatibility complex MMR macrophage mannose receptor NK natural killer moDC monocyte-derived dendritic cell OVA ovalbumin OX oxazolone pDC plasmacytoid dendritic cell ix PEC peritoneal exudate cell PMNp precursor of polymorphonuclear granulocyte RA rheumatoid arthritis ROS reactive oxygen species SP spleen SR scavenger receptor TG transgenic Tip-DC TNF-α/iNOS producing dendritic cell TLR toll like receptor UV ultraviolet WT wild type x INTRODUCTION Dendritic cells (DCs) are specialized antigen presenting cells (APCs), which initiate and modulate the immune response as well as maintain the immune tolerance to self-antigens. Although Langerhans cells (LCs), a DC subset, were observed as early as 1868, the characterization of DC only began about 25 years ago (Banchereau & Steinman, 1998; Paul, 2007). Immature DCs, abundant in the body surface, have a potent capacity to uptake antigens and subsequently migrate to lymphoid tissues, where they mature. Then the processed antigen peptides will be loaded onto major histocompatibility complex (MHC) molecules and presented to CD4 or CD8 T cells, resulting in a dramatic expansion of T cells. Activated CD8 cytotoxic T cells migrate back to the inflamed sites to eliminate the infected cells, while CD4 helper T cells secret cytokines to facilitate the activation of macrophages, natural killer (NK) cells and eosinophils or the antibody production of B cells. B cells also can be activated by direct contact with DCs, and produce neutralizing antibodies to the initial pathogen (Banchereau et al., 2000). Compared to other bone marrow (BM) derived leukocytes, DC represent a highly heterogeneous population, since various DC subsets have been reported in the literature. Generally speaking, DC can be divided into two families. One is conventional DC (cDC), which has a dendritic morphology and potent antigen processing and presentation capacity. The other one is plasmacytoid DC (pDC), which is a round, non-dendritic shape, and relatively long-lived cell (Facchetti & Vergoni, 2000; Liu 2005). There are at least 1 seven cDC subsets identified in mouse. Recently, a novel DC subset, interferon- producing killer DC (IKDC), was identified from mouse spleen (Bonmort et al., 2008). Although they share many common features, different DC subsets have been demonstrated to have distinct phenotype, tissue distribution and biological functions. The diversity of DCs permits the immune system to mount various types of responses to different pathogens and stimulus (Shortman & Liu, 2002; Merad & Manz, 2009). Most of these DC subsets have a short lifespan, based on the evidence that only less than 5% of DCs are dividing and the half-life is 1.5-7 days in the steady state. DCs must be renewed continually, perhaps by the cells originating from hematopoietic stem cells or BM or some tissue resident precursor cells. The differentiation of DC is crucial not only to the establishment of DC network, but also to the dynamic response against pathogens, self-antigens or tumor cells. The research on DC differentiation and identification of DC precursors is also important to DC-based immunotherapy, which
Recommended publications
  • Educational Commentary – Blood Cell Id: Peripheral Blood Findings in a Case of Pelger Huët Anomaly
    EDUCATIONAL COMMENTARY – BLOOD CELL ID: PERIPHERAL BLOOD FINDINGS IN A CASE OF PELGER HUËT ANOMALY Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits, click on Earn CE Credits under Continuing Education on the left side of the screen. To view the blood cell images in more detail, click on the sample identification numbers underlined in the paragraphs below. This will open a virtual image of the selected cell and the surrounding fields. If the image opens in the same window as the commentary, saving the commentary PDF and opening it outside your browser will allow you to switch between the commentary and the images more easily. Click on this link for the API ImageViewerTM Instructions. Learning Outcomes On completion of this exercise, the participant should be able to • discuss the morphologic features of normal peripheral blood leukocytes; • describe characteristic morphologic findings in Pelger-Huët cells; and • differentiate Pelger-Huët cells from other neutrophils in a peripheral blood smear. Case History: A 30 year old female had a routine CBC performed as part of a physical examination. Her CBC results are as follows: WBC=5.9 x 109/L, RBC=4.53 x 1012/L, Hgb=13.6 g/dL, Hct=40%, MCV=88.3 fL, MCH=29.7 pg, MCHC=32.9 g/dL, Platelet=184 x 109/L. Introduction The images presented in this testing event represent normal white blood cells as well as several types of neutrophils that may be seen in the peripheral blood when a patient has the Pelger-Huët anomaly.
    [Show full text]
  • Correlation of Blood Culture and Band Cell Ratio in Neonatal Septicaemia
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 13, Issue 3 Ver. VI. (Mar. 2014), PP 55-58 www.iosrjournals.org Correlation of blood culture and band cell ratio in neonatal septicaemia. Nautiyal S1., *Kataria V. K1., Pahuja V. K1., Jauhari S1., Roy R. C.,1 Aggarwal B.2 1Department of Microbiology, SGRRIM&HS and SMIH, Dehradun, Uttarakhand, India. 2Department of Paediatrics, SGRRIM&HS and SMIH, Dehradun, Uttarakhand, India. Abstract: Background: Neonatal sepsis is a clinical syndrome characterized by signs and symptoms of infection with or without accompanying bacteraemia in the first month of life. Incidence differs among hospitals depending on variety of factors. Blood culture is considered gold standard for the diagnosis, but does not give a rapid result. Hence, there is a need to look for a surrogate marker for diagnosing neonatal septicaemia. Material & Methods: 335 neonates were studied for clinically suspected septicaemia over a period of one year. Blood was cultured and organism identified biochemically. Parameters of subjects like EOS, LOS and Band cell counts were recorded. Results analysed statistically. Results: Male preponderance was observed. Majority of the cases had a normal vaginal delivery. 47.46% cases had early onset septicaemia. Meconium stained liquor was the predominant risk factor .Culture positivity was found to be 32.24% and 87.96% of them also had band cells percentage ranging from 0 to >25. Conclusion: Band cell count can be used as a surrogate marker for neonatal septicaemia. An upsurge of Candida species as a causative agent in Neonatal septicaemia has been observed.
    [Show full text]
  • BLOOD CELL IDENTIFICATION Educational Commentary Is
    EDUCATIONAL COMMENTARY – BLOOD CELL IDENTIFICATION Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click on Continuing Education on the left side of the screen. Learning Outcomes After completion of this exercise, the participant will be able to: • identify morphologic features of normal peripheral blood leukocytes and platelets. • describe characteristic morphologic findings associated with reactive lymphocytes. • compare morphologic features of normal lymphocytes, reactive lymphocytes, and monocytes. Photograph BCI-01 shows a reactive lymphocyte. The term “variant” is also used to describe these cells that display morphologic characteristics different from what is considered normal lymphocyte appearance. Reactive lymphocytes demonstrate a wide variety of morphologic features. They are most often associated with viral illnesses, so it is expected that some of these cells would be present in the peripheral blood of this patient. This patient had infectious mononucleosis that was confirmed with a positive mononucleosis screening test. An increased number of reactive lymphocytes is a morphologic hallmark of infectious mononucleosis. Some generalizations regarding the morphology of reactive lymphocytes can be made. These cells are often large with abundant cytoplasm. Cytoplasmic vacuoles and/or azurophilic granules may also be present. Reactive lymphocytes have an increased amount of RNA in the cytoplasm, which is reflected by an associated increase in cytoplasmic basophilia. The cytoplasm may stain gray, pale-blue, or a very deep blue and appear patchy. The cytoplasmic margins may be indented by surrounding red blood cells and appear a darker blue than the rest of the cytoplasm. Likewise, the nuclei in reactive lymphocytes are variably shaped and may be round, oval, indented, or lobulated.
    [Show full text]
  • Heterogeneity of Polymorphonuclear Neutrophils in HIV-1 Infection. Study of SIV-Infected Cynomolgus Macaque Model
    Heterogeneity of polymorphonuclear neutrophils in HIV-1 infection. Study of SIV-infected cynomolgus macaque model. Julien Lemaitre To cite this version: Julien Lemaitre. Heterogeneity of polymorphonuclear neutrophils in HIV-1 infection. Study of SIV- infected cynomolgus macaque model.. Innate immunity. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLS267. tel-02955513 HAL Id: tel-02955513 https://tel.archives-ouvertes.fr/tel-02955513 Submitted on 2 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Heterogeneity of polymorphonuclear neutrophils in HIV-1 infection Study of SIV-infected cynomolgus 2019SACLS267 macaque model : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l’Université Paris-Sud École doctorale n°569 Innovation thérapeutique : du fondamental à l’appliqué (ITFA) Spécialité : Immunologie Thèse présentée et soutenue à Fontenay-aux-Roses, le 13 septembre 2019, par Monsieur Julien Lemaitre Composition du Jury : Sylvie Chollet-Martin Professeur–Praticien hospitalier, GHPNVS-INSERM (UMR-996) Présidente Véronique
    [Show full text]
  • Blood Cells and Hemopoiesis IUSM – 2016
    Lab 8 – Blood Cells and Hemopoiesis IUSM – 2016 I. Introduction Blood Cells and Hemopoiesis II. Learning Objectives III. Keywords IV. Slides A. Blood Cells 1. Erythrocytes (Red Blood Cells) 2. Leukocytes (White Blood Cells) a. Granulocytes (PMNs) i. Neutrophils ii. Eosinophils iii. Basophils b. Agranulocytes (Mononuclear) i. Lymphocytes ii. Monocytes 3. Thrombocytes (Platelets) B. Bone Marrow 1. General structure 2. Cells a. Megakaryocytes b. Hemopoietic cells i. Erythroid precursors ii. Myeloid precursors V. Summary SEM of a neutrophil (purple) ingesting S. aureus bacteria (yellow). NIAID. Lab 8 – Blood Cells and Hemopoiesis IUSM – 2016 Blood I. Introduction II. Learning Objectives 1. Blood is a specialized type of fluid connective III. Keywords tissue that provides the body’s tissues with IV. Slides nutrition, oxygen, and waste removal and serves A. Blood Cells as a means of transportation for the activity of 1. Erythrocytes (Red Blood Cells) other body systems (e.g., carrying hormones 2. Leukocytes (White Blood Cells) from source to target for the endocrine system). a. Granulocytes (PMNs) 2. It consists of plasma (liquid ECM of blood) and i. Neutrophils formed elements (cells and platelets). ii. Eosinophils iii. Basophils 3. The “formed elements” of blood derive from b. Agranulocytes (Mononuclear) hematopoietic stem cells located in the red bone i. Lymphocytes marrow of flat bones in adults. ii. Monocytes 4. Blood cells can be classified as red blood cells 3. Thrombocytes (Platelets) (about 45% of blood) and white blood cells B. Bone Marrow (about 1% of blood) based upon their gross 1. General structure appearance upon centrifugation. 2. Cells a. Megakaryocytes 5.
    [Show full text]
  • Blood and Immunity
    Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood.
    [Show full text]
  • Neutrophils Versus Pathogenic Fungi Through the Magnifying Glass of Nutritional Immunity
    Neutrophils versus Pathogenic Fungi through the magnifying glass of nutritional immunity Maria Joanna Niemiec Doctoral thesis Department of Molecular Biology Molecular Infection Medicine Sweden (MIMS) Umeå University Umeå, 2015 Responsible publisher under Swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-261-1 ISSN: 0346-6612 Elektronisk version tillgänglig på http://umu.diva-portal.org/ Printed by: Print & Media Umeå, Sweden 2015 To all those who were always convinced this moment would come. Table of Contents Table of Contents i Publications included in this thesis iii Publications not included in this thesis iv Abstract v Clarifications vii Introduction & Background 1 1. Neutrophils 1 1.1 The innate immune system - overview 1 1.2 Professional phagocytes 3 1.3 Neutrophils – from bone marrow to the site of infection 5 1.4 NETosis – neutrophil functionality post mortem 10 1.5 Neutrophil disorders 12 2. Human fungal pathogens 14 2.1 The fungal threat 14 2.2 The yeast Candida albicans and other Candida ssp. 15 2.3 The mold Aspergillus nidulans and other Aspergillus ssp. 16 2.4 Fungal defense strategies against neutrophil killing 17 2.5 Impact of fungal morphology during pathogenesis 19 3. Nutritional immunity 22 3.1 The third branch of the human immune system – major concepts 22 3.2 Zinc during fungal infections 23 3.3 Iron, copper, and manganese during fungal infections 25 Methodological remarks 28 Neutrophil isolation 28 Fungal strains 28 Metal consistency 28 Synchrotron radiation X-ray fluorescence 29 In vitro infections for RNA-sequencing 29 Aims 31 Results & Discussion 33 Paper I 33 NET calprotectin is an effector during A.
    [Show full text]
  • Blood & Bone Marrow
    Blood & Bone Marrow Introduction The slides for this lab are located in the “Blood and Hematopoiesis” folders on the Virtual Microscope. Blood is a specialized connective tissue in which three cell types (erythrocytes, leukocytes and platelets) are suspended in an extracellular fluid called plasma. Plasma contains many proteins that serve to maintain osmotic pressure and homeostasis. Blood distributes oxygen, carbon dioxide, metabolites, hormones and other substances all throughout the cardiovascular system. The cells in blood have a relatively short life span and need to be replenished with new cells. These cells and their precursors are formed and mature in the bone marrow. Blood cell formation is called hematopoiesis. Learning objectives and activities Using the Virtual Microscope: A Identify the different cellular components of a peripheral blood smear o Erythrocyte o Neutrophil o Eosinophil o Basophil o Lymphocyte o Monocyte o Thrombocyte B Examine the major sites of hematopoiesis and differentiate between red and yellow marrow C Identify the different myeloid stem cell derived blood cell precursors in an active marrow smear D Complete the self-quiz to test your understanding and master your learning. Identify the different cellular components of a blood smear Examine Slide 1 (33) and find examples of the different types of blood cell This slide contains a normal blood smear. Not all parts of a blood smear are good for observation. Find an area where the cells are spread out (not overlapping) and appear as symmetrical discs. i. Leukocytes At low power the leukocyte nuclei can be seen sparsely scattered throughout the smear. The large and sometimes irregularly shaped nuclei are strongly basophilic making them a prominent feature of a blood smear.
    [Show full text]
  • Modulation of Neutrophil Degranulation by Hypoxia
    Modulation of neutrophil degranulation by hypoxia Kim Hoenderdos Submitted towards the degree of Doctor of Philosophy UNIVERSITY OF CAMBRIDGE Hughes Hall Department of Medicine 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This thesis was composed on the basis of work carried out under the supervision of Professor Edwin Chilvers and Dr. Alison Condliffe in the Division of Respiratory Medicine, Department of Medicine, University of Cambridge. This thesis (excluding figures, tables, appendices and bibliography) does not exceed the word limit imposed by the Clinical Medicine and Clinical Veterinary Medicine degree committee. Kim Hoenderdos September 2014, Cambridge i | Acknowledgements First and foremost I would like to thank my supervisors Alison Condliffe and Edwin Chilvers for giving a crazy Dutch girl a chance to come and study in Cambridge and for their support and enthusiasm throughout the course of my Ph.D. studies. Their doors were always open if I needed advice and I could not have asked for better supervisors! Next I would like to thanks my colleagues from the Morrell and Chilvers group and especially my “office mates” for their help along the way! Your enthusiasm, scientific discussions and banter made the lab a joy to work in! A special thanks to Linsey, Ross and Jatinder for all their help and to Jo for all our fun coffee breaks and chats. During my Ph.D. I supervised 2 students; Charlotte and Cheng and I would like to thank both of them for all the hard work they put in.
    [Show full text]
  • Educational Commentary – Morphologic Abnormalities in Leukocytes
    EDUCATIONAL COMMENTARY – MORPHOLOGIC ABNORMALITIES IN LEUKOCYTES Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click on Continuing Education on the left side of the screen. Learning Outcomes Upon completion of this exercise, participants will be able to: • identify the morphologic characteristics of normal peripheral blood leukocytes. • describe two types of cytoplasmic inclusions that represent morphologic changes in leukocytes. The images provided in this testing event represent several normal cells as well as immature granulocytes and morphologic changes in leukocytes that suggest the patient has an infection. Image BCI-08 shows a normal monocyte. Monocytes are large cells. A monocyte is the largest normal cell seen in the peripheral blood. While size is important when identifying any cell, cytoplasmic characteristics and nuclear features should be considered as well. The cytoplasm in monocytes is typically blue-gray in color and frequently contains vacuoles. The cytoplasm may also appear rough or uneven. Cytoplasmic projections are often seen. Sometimes, fine pink or lilac (azurophilic) granules are present. Nuclear features are important to evaluate in monocytes. Monocyte nuclei vary in shape and may be round, oval, lobulated, or kidney-like. The chromatin stains a light pink or purple and is usually fine with minimal clumping. Image BCI-09 shows a band (stab) neutrophil. This cell is the earliest precursor of neutrophil maturation that can normally be seen in the peripheral blood. The band in this image with a nucleus shaped like the letter C is a classic example. The chromatin is characteristically dense and clumped.
    [Show full text]
  • A Specific Low-Density Neutrophil Population Correlates with Hypercoagulation and Disease Severity in Hospitalized COVID-19 Patients
    A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients Samantha M. Morrissey, … , Jiapeng Huang, Jun Yan JCI Insight. 2021;6(9):e148435. https://doi.org/10.1172/jci.insight.148435. Research Article COVID-19 Immunology Graphical abstract Find the latest version: https://jci.me/148435/pdf RESEARCH ARTICLE A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients Samantha M. Morrissey,1,2 Anne E. Geller,1,2 Xiaoling Hu,2 David Tieri,3 Chuanlin Ding,2 Christopher K. Klaes,4 Elizabeth A. Cooke,5 Matthew R. Woeste,1,2 Zachary C. Martin,5 Oscar Chen,5 Sarah E. Bush,5 Huang-ge Zhang,1 Rodrigo Cavallazzi,6 Sean P. Clifford,5 James Chen,5 Smita Ghare,7 Shirish S. Barve,7 Lu Cai,8 Maiying Kong,9 Eric C. Rouchka,10 Kenneth R. McLeish,11 Silvia M. Uriarte,4 Corey T. Watson,3 Jiapeng Huang,5 and Jun Yan1,2 1Department of Microbiology and Immunology, 2Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, 3Department of Biochemistry and Molecular Genetics, 4Department of Oral Immunology and Infectious Diseases, School of Dentistry, 5Department of Anesthesiology and Perioperative Medicine, 6Division of Pulmonary, Critical Care and Sleep Disorders, Department of Medicine,7University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology, 8Pediatric Research Institute, Department of Pediatrics, 9Department of Bioinformatics and Biostatistics, 10Department of Computer Science and Engineering, and 11Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
    [Show full text]
  • S13054-015-0778-Z.Pdf
    Mare et al. Critical Care (2015) 19:57 DOI 10.1186/s13054-015-0778-z RESEARCH Open Access The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation Tracey Anne Mare1,2, David Floyd Treacher1,2, Manu Shankar-Hari1,2, Richard Beale1,2, Sion Marc Lewis1,2,4, David John Chambers3 and Kenneth Alun Brown1,2,4* Abstract Introduction: In this cohort study, we investigated whether monitoring blood levels of immature neutrophils (myelocytes, metamyelocytes and band cells) differentiated patients with sepsis from those with the non-infectious (N-I) systemic inflammatory response syndrome (SIRS). We also ascertained if the appearance of circulating immature neutrophils was related to adverse outcome. Methods: Blood samples were routinely taken from 136 critically ill patients within 48 hours of ICU entry and from 20 healthy control subjects. Clinical and laboratory staff were blinded to each other’s results, and patients were retrospectively characterised into those with SIRS (n = 122) and those without SIRS (n = 14). The patients with SIRS were further subdivided into categories of definite sepsis (n = 51), possible sepsis (n = 32) and N-I SIRS (n = 39). Two established criteria were used for monitoring immature white blood cells (WBCs): one where band cells >10% WBCs and the other where >10% of all forms of immature neutrophils were included but with a normal WBC count. Immature neutrophils in blood smears were identified according to nuclear morphology and cytoplasmic staining. Results: With the first criterion, band cells were present in most patients with SIRS (mean = 66%) when compared with no SIRS (mean = 29%; P <0.01) and with healthy subjects (0%).
    [Show full text]