Geospatial Mapping of RET NWFP Species and Capacit Community Based Conservati Patial Mapping of RET and Other Important FP Speci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rise of Traditional Chinese Medicine and Its Materia Medica A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Bath Research Portal Citation for published version: Williamson, EM, Lorenc, A, Booker, A & Robinson, N 2013, 'The rise of traditional Chinese medicine and its materia medica: a comparison of the frequency and safety of materials and species used in Europe and China', Journal of Ethnopharmacology, vol. 149, no. 2, pp. 453-62. https://doi.org/10.1016/j.jep.2013.06.050 DOI: 10.1016/j.jep.2013.06.050 Publication date: 2013 Document Version Early version, also known as pre-print Link to publication University of Bath General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 13. May. 2019 Journal of Ethnopharmacology 149 (2013) 453–462 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep The rise of traditional Chinese medicine and its materia medica: A comparison of the frequency and safety of materials and species used in Europe and China Elizabeth M. Williamson a,n, Ava Lorenc b,nn, Anthony Booker c, Nicola Robinson b a University of Reading School -
One for All - Artemisia Absinthium (Afsanteen) “A Potent Unani Drug”
Review article One for All - Artemisia absinthium (Afsanteen) “A Potent Unani Drug” Ayshah Hashimi1, Mantasha Binth Siraj2, Yasmeen Ahmed3, Md. Akhtar Siddiqui4, Umar Jahangir5* 1,2,3 M.D. Scholar, 4 Professor, 5 Assistant Professor Department of Moalajat, School of Unani Medical Education and Research Jamia Hamdard, New Delhi, India ABSTRACT The therapeutic use of the wormwood plant Artemisia absinthium L. dates back to at least Roman times. There are more than 200 plants in the genus Artemisia- including southern wormwood, petite wormwood and Grande wormwood and encompasses about 500 species. The best-known species of wormwood is Artemisia absinthium, native to temperate Eurasia and North Africa and is branded for its extreme bitterness. It is a magical greens booze used as carminative to support healthy appetite, balances healthy flora, cleanse the digestive tract of parasite and toxins. It possesses anti-inflammatory, immunomodulatory, hepatoprotective, anti-helminthic and anti-depressant activity. Thujone excites nervous system when taken in small amount. Due to contrary history of wormwood, its application in individuals should be preceded by a thorough and cautious risk-benefit analysis. In this appraisal an attempt is done to validate scientifically, mentioned therapeutic potential of Artemisia absinthium in classical Unani literature using PubMed, Science Direct researches. Keywords Afsanteen, Wormwood, Thujone, Unani, Hepatoprotective INTRODUCTION largest and highly advanced family with approximately 1528 (Mukherjee, 2006), (TYROCITY, 2018) or 1620 (Petruzzello, Healing with medicinal plants is as old as mankind itself. 2018), (Panero, et al., 2012) genera and 22750 or 23600 Since prehistoric times, in quest for rescue for their disease, the species of herbs, shrubs and trees. -
IJPSR (2009), Issue 1
Ehiabhi and Modupeoluwa, IJP, 2020; Vol. 7(10): 248-256. E- ISSN: 2348-3962, P-ISSN: 2394-5583 IJP (2019), Vol. 7, Issue 10 (Research Article) Received on 06 May 2020; received in revised form, 22 September 2020; accepted, 24 September 2020; published 01 October 2020 COMPARATIVE ESSENTIAL OIL COMPOSITION OF LAURUS NOBILIS, SYZYGIUM GUINEENSE AND SYZYGIUM EUCALYPTOIDES IN SEARCH FOR NIGERIAN BAY LEAF - PART I Okhale Samuel Ehiabhi * 1 and Ogunfowokan Ifeoluwapo Modupeoluwa 2 Department of Medicinal Plant Research and Traditional Medicine 1, National Institute for Pharmaceutical Research and Development (NIPRD), P. M. B. 21, Garki, Abuja, Nigeria. Department of Biochemistry 2, Bingham University, P. M. B 005, KM 26 Abuja-Keffi Expressway Kodope, Karu, Nasarawa State, Nigeria. Keywords: ABSTRACT: Bay leaf is an aromatic leaf commonly used in cooking for its Nigerian bay leaf, distinctive flavor and fragrance. The bay leaf sold in Nigerian markets being Laurus nobilis, Syzygium guineense, Laurus nobilis (L. nobilis) is imported. The leaf of Syzygium guineense (S. Syzygium eucalyptoides, Essential oil guineense) and Syzygium eucalyptoides (S. eucalyptoides) have a long Correspondence to Author: history of use as vegetables and spices in Nigeria. In this study, leaf of S. Dr. Okhale Samuel Ehiabhi guineense, S. eucalyptoides, and a commercial sample of L. nobilis being the Department of Medicinal Plant gold standard for bay leaf, were evaluated for comparative essential oil Research and Traditional Medicine, composition in search of Nigerian bay leaf. The essential oil was obtained by National Institute for Pharmaceutical hydrodistillation using a Clevenger-type apparatus. The essential oils were Research and Development (NIPRD), analyzed by gas chromatography-mass spectrometry (GC-MS). -
Ethnoveterinary Plants of Uttaranchal — a Review
Indian Journal of Traditional Knowledge Vol. 6(3), July 2007, pp. 444-458 Ethnoveterinary plants of Uttaranchal — A review PC Pande1*, Lalit Tiwari1 & HC Pande2 1Department of Botany, Kumaon University, SSJ Campus, Almora 263 601, Uttaranchal 2Botanical Survey of India (NC), Dehradun, Uttaranchal E-mail: [email protected] Received 21 December 2004; revised 7 February 2007 The study reveals that the people of the Uttaranchal state use 364 plants species in ethnoveterinary practices. Bhotiyas, Boxas, Tharus, Jaunsaris and Rhajis are the tribal groups inhabiting in Uttaranchal. Analysis of data indicates that information on 163 plants is significant as it provides some new information of the ethnoveterinary uses. The study is expected to provide basic data for further studies aimed at conservation of traditional medicine and economic welfare of rural people at the study area. Keywords: Ethnoveterinary practices, Medicinal plants, Uttaranchal, Review IPC Int. Cl.8: A61K36/00, A61P1/00, A61P1/02, A61P1/04, A61P1/10, A61P1/16, A61P17/00, A61P19/00, A61P25/00, A61P27/00, A61P39/02 Uttaranchal state lies between 28°42′ to 31°28′N; medicinal knowledge of the state. Keeping this in 77°35′ to 81°05′E and comprise of 13 districts of the view, an attempt has been made to explore and Central Himalayas. The major part of this region is compile the exhaustive knowledge of plants used in mountainous. The region covers about 38,000 sq km veterinary practices. In all, 364 plant species were and comprises of 3 border districts, namely recorded from the Uttaranchal, which are used by the Pithoragarh, Chamoli and Uttarkashi; 7 inner districts: people for various veterinary diseases and disorders. -
(Tejpat) Essential
Natural Product Radiance, Vol. 8(2), 2009, pp.106-116 Research Paper Chemistry, antimicrobial and antioxidant potentials of Cinnamomum tamala Nees & Eberm. (Tejpat) essential oil and oleoresins† I P S Kapoor1, Bandana Singh1, Gurdip Singh1*, Valery Isidorov2 and Lech Szczepaniak2 1Chemistry Department, DDU Gorakhpur University, Gorakhpur- 273 009, Uttar Pradesh, India 2Institute of Chemistry, Bialystok University, UI. Hurtowa 1, 15-399, Bialystok, Poland *Correspondent author, E-mail: [email protected]; Phone: +91-551-2200745 (R), 2202856 (O); Fax: +91-551-2340459 Received 6 November 2007; Accepted 26 November 2008 †Part 63 Abstract Gas chromatography-mass spectrometery (GC-MS) analysis of essential oil and oleoresins of Cinnamomum tamala Nees & Eberm. (Tejpat) revealed eugenol as major component of essential oil and oleoresins. The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, p-anisidine, thiobarbituric acid and total carbonyl value method. In addition, their inhibitory action by FTC method, scavenging capacity by DPPH (2, 2′-diphenyl- 1-picrylhydrazyl radical) method was also studied. The antimicrobial potentials of essential oil and oleoresins were tested against various food born fungi and bacteria. Results showed that both the volatile oil and oleoresins have effective antioxidant and antimicrobial activities. Thus, they could be evaluated as natural food preservatives, however, essential oil is better than oleoresins. Keywords: Antimicrobial activity, Antioxidant activity, Cinnamomum tamala, Essential oil, Indian Cassia lignea, Oleoresins, Tejpat. IPC code; Int. cl.8 — A61K 36/54, A61P 31/00, A61P 39/06 Introduction of spices have been reported by few Antioxidants are being workers4-6. commonly used to prevent the fat rancidity Indian Cassia lignea, because these are substances that when Cinnamomum tamala Nees & Tejpat leaves added to food products, especially lipids Eberm. -
Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China
Article Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China WenQing Li 1, MingMing Shi 1, Yuan Huang 2, KaiYun Chen 1, Hang Sun 1 and JiaHui Chen 1,* 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; [email protected] (W.L.); [email protected] (M.S.); [email protected] (K.C.); [email protected] (H.S.) 2 School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650092, China; [email protected] * Correspondence: [email protected] (J.C.) Received: 18 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Salicaceae is a family of temperate woody plants in the Northern Hemisphere that are highly valued, both ecologically and economically. China contains the highest species diversity of these plants. Despite their widespread human use, how the species diversity patterns of Salicaceae plants formed remains mostly unknown, and these may be significantly affected by global climate warming. Using past, present, and future environmental data and 2673 georeferenced specimen records, we first simulated the dynamic changes in suitable habitats and population structures of Salicaceae. Based on this, we next identified those areas at high risk of habitat loss and population declines under different climate change scenarios/years. We also mapped the patterns of species diversity by constructing niche models for 215 Salicaceae species, and assessed the driving factors affecting their current diversity patterns. The niche models showed Salicaceae family underwent extensive population expansion during the Last Inter Glacial period but retreated to lower latitudes during and since the period of the Last Glacial Maximum. -
A Review on Chemistry and Biological Activities of Laurus Nobilis L
Journal of Pharmacognosy and Phytochemistry 2017; 6(4): 1153-1161 E-ISSN: 2278-4136 P-ISSN: 2349-8234 A review on chemistry and biological activities of Laurus JPP 2017; 6(4): 1153-1161 Received: 18-05-2017 nobilis L. essential oil Accepted: 19-06-2017 KK Chahal KK Chahal, Mandeep Kaur, Urvashi Bhardwaj, Nancy Singla and Department of Chemistry, Punjab Agricultural University, Amandeep Kaur Ludhiana, Punjab, India Abstract Dhirendra Kumar Singh Laurus nobilis L. commonly known as bay belonging to the family Lauraceae is one of the most useful Department of Chemistry, essential oil and is an industrial plant used in foods, drugs and cosmetics. Bay is cultivated throughout Punjab Agricultural University, Ludhiana, Punjab, India the world mainly in tropical and sub-tropical Asia, Australia, Pacific region and South Asia. Bay essential oil can be extracted from various parts of plant and chiefly consisted of 1, 8 Cineole, sabinene, Ankit Panchbhaiya α-pinene and p-Cymene. Due to presence of various chemical constituents in bay, various biological and Department of Chemistry, pharmacological properties have been reported such as antibacterial, antifungal, antioxidant, insecticidal Punjab Agricultural University, and nematicidal activities. This review highlighted chemical composition and biological activities of Ludhiana, Punjab, India Laurus nobilis which will be useful to the researcher for further study. Neeraj Singh Keywords: Laurus nobilis (L.), essential oil, chemical composition, biological activity Department of Chemistry, Punjab Agricultural University, 1. Introduction Ludhiana, Punjab, India The natural plant products are chemical compounds extracted from plants which are synthesized by following pathways of primary or secondary metabolism. The study of natural products involves isolation of these compounds in a pure form by hydro-distillation, soxhlet extraction and chromatographic methods and analysis of their structure, formation, use, purpose, etc. -
Cinnamomum Tamala (Buch.-Ham.) T.Nees & Eberm
Indian Journal of Traditional Knowledge Vol. 13 (4), October 2014, pp. 691-697 Anti-cholinesterase potential of Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm. leaves Manoj K Dalai1, Santanu Bhadra1, Sushil K Chaudhary1, Arun Bandyopadhyay2 & Pulok K Mukherjee1* 1School of Natural Product Studies, Jadavpur University, Kolkata 700 032, India; 2CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India E-mail: [email protected] Received 07.10.13, revised 25.11.13 Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm. (Lauraceae) leaves are well known as bay leaves which are popular for its aroma. A part from its extensive culinary uses, this spice has several uses in traditional practice for treatment of rheumatism, immunomodulation and also used as brain tonic. The cinnamon oil locally known as Tejpat oil obtained from the bay leaves used in alcoholic beverages and confectionaries. The present investigation was aimed to screen the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the extract of C. tamala. Standardization of the cinnamon oil of bay leaves was performed by HPLC method using linalool as biomarker. In vitro evaluation of anticholinesterase activity of bay leaves extract and oil was performed by TLC bio-autography and 96 well micro titer plate methods. HPLC analysis was confirmed the presence of linalool as an important phytoconstituents and its retention time was found to be 5.314 min. The outcome of the study demonstrated that the cinnamon oil obtained from leave of C. tamala possess maximum inhibition against AChE (IC50: 94.54 ± 0.774 µg/ml) and BChE (IC50: 135.56 ± 0.912 µg/ml) than the methanol extract. -
Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects. -
Medicinal Plant Research
Journal of Medicinal Plant Research Volume 8 Number 2, 10 January, 2014 ISSN 2009-9723 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Submission of Manuscript Submit manuscripts as e-mail attachment to the Editorial Office at: [email protected]. A manuscript number will be mailed to the corresponding author shortly after submission. The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments. Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author. Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China. -
Periodic Table of Herbs 'N Spices
Periodic Table of Herbs 'N Spices 11HH 1 H 2 HeHe Element Proton Element Symbol Number Chaste Tree Chile (Vitex agnus-castus) (Capsicum frutescens et al.) Hemptree, Agnus Cayenne pepper, Chili castus, Abraham's balm 118Uuo Red pepper 33LiLi 44 Be 5 B B 66 C 7 N 7N 88O O 99 F 1010 Ne Ne Picture Bear’s Garlic Boldo leaves Ceylon Cinnamon Oregano Lime (Allium ursinum) (Peumus boldus) (Cinnamomum zeylanicum) Nutmeg Origanum vulgare Fenugreek Lemon (Citrus aurantifolia) Ramson, Wild garlic Boldina, Baldina Sri Lanka cinnamon (Myristica fragrans) Oregan, Wild marjoram (Trigonella foenum-graecum) (Citrus limon) 11 Na Na 1212 Mg Mg 1313 Al Al 1414 Si Si 1515 P P 16 S S 1717 Cl Cl 1818 Ar Ar Common Name Scientific Name Nasturtium Alternate name(s) Allspice Sichuan Pepper et al. Grains of Paradise (Tropaeolum majus) (Pimenta dioica) (Zanthoxylum spp.) Perilla (Aframomum melegueta) Common nasturtium, Jamaica pepper, Myrtle Anise pepper, Chinese (Perilla frutescens) Guinea grains, Garden nasturtium, Mugwort pepper, Pimento, pepper, Japanese Beefsteak plant, Chinese Savory Cloves Melegueta pepper, Indian cress, Nasturtium (Artemisia vulgaris) Newspice pepper, et al. Basil, Wild sesame (Satureja hortensis) (Syzygium aromaticum) Alligator pepper 1919 K K 20 Ca Ca 2121 Sc Sc 2222 Ti Ti 23 V V 24 Cr Cr 2525 Mn Mn 2626 Fe Fe 2727 Co Co 2828 Ni Ni 29 Cu Cu 3030 Zn Zn 31 Ga Ga 3232 Ge Ge 3333As As 34 Se Se 3535 Br Br 36 Kr Kr Cassia Paprika Caraway (Cinnamomum cassia) Asafetida Coriander Nigella Cumin Gale Borage Kaffir Lime (Capsicum annuum) (Carum carvi) -
IUCN Red Listed Medicinal Plants of Siddha
REVIEW ARTICLE IUCN Red Listed Medicinal Plants of Siddha Divya Kallingilkalathil Gopi, Rubeena Mattummal, Sunil Kumar Koppala Narayana*, Sathiyarajeshwaran Parameswaran Siddha Central Research Institute, (Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India), Arumbakkam, Chennai 600106, India. *Correspondence: E-mail: [email protected] ABSTRACT Introduction: Siddha system which aims at both curative and preventive aspects is a holistic treatment methodology using herbals, metals, minerals and animal products. Medicinal plant conservation is one of global concerns because the consequence is loss of many species useful in the primary healthcare of mankind. These natural resources are dwindling, as nearly 80 to 85% of raw drugs are sourced from the wild. International Union for Conservation of Nature (IUCN) is the global authority on the status of the natural world and the measures needed to safeguard it. IUCN congresses have produced several key international environmental agreements like the Convention on Biological Diversity (CBD), the Convention on International Trade in Endangered Species (CITES) etc. It is noted that raw drugs for making a good number of Siddha formulations are derived from plants falling under IUCN’s rare, endangered and threatened (RET) category. The current study is aimed at exploring the RET status of medicinal plants used in Siddha. Method: The data of medicinal plants used in various Siddha formulations and as single drugs were collected and the IUCN status of the plants was checked in the Red list. Result: Siddha medicinal plants like Aconitum heterophyllum, Aquilaria malaccensis, Adhatoda beddomei, Nardostachys jatamansi are some of the examples of critically endangered species of plants facing threat due to continuous exploitation from wild.