Female Gametophyte Development in Sinopodophyllum Hexandrum (Berberidaceae) and Its Evolutionary Significance

Total Page:16

File Type:pdf, Size:1020Kb

Female Gametophyte Development in Sinopodophyllum Hexandrum (Berberidaceae) and Its Evolutionary Significance Ann. Bot. Fennici 49: 55–63 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 26 April 2012 © Finnish Zoological and Botanical Publishing Board 2012 Female gametophyte development in Sinopodophyllum hexandrum (Berberidaceae) and its evolutionary significance Heng-Yu Huang & Li Li* Key Laboratory of Plant Resources Conservation and Utilization (Jishou University), College of Hunan Province, Jishou, Hunan, 416000, China (*corresponding author’s e-mail: [email protected]) Received 11 Mar. 2011, final version received 30 Mar. 2011, accepted 19 Apr. 2011 Huang, H. Y. & Li, L. 2012: Female gametophyte development in Sinopodophyllum hexandrum (Berberidaceae) and its evolutionary significance. — Ann. Bot. Fennici 49: 55–63. Female gametophyte development of Sinopodophyllum hexandrum (Berberidaceae) was studied on materials from different altitudes. The plant displays diversity in the megagametogenesis, and two categories of four female-gametophyte development models are observed, including the monosporous Polygonum-type, a new Sinopodo- phyllum type (and its two variants), which is intermediate between the monosporic and bisporic types. The results suggest that the Polygonum type is more primitive than the other types, and that the Sinopodophyllum type is intermediate between the Poly- gonum type and the Allium type. The diversity in the female gametophyte develop- ment in S. hexandrum reveals megagametogenesis may be influenced by altitude and be of great significance to its adaptability and evolution. In the Podophyllum group, Sinopodophyllum is more advanced than Diphylleia and Dysosma, where the female gametophyte development conforms to the Polygonum type. In addition, the results of this study directly provide evidence that the disporous Allium-type is derived from the monosporous Polygonum-type. Introduction In families where some embryological variation occurs, genera are constant on the whole. Embryological information makes great contri- Megagametophyte development may be of butions to an understanding of the phylogenetic major importance in the determination of rela- relationships in plants, and embryological char- tionships within families and genera. Huang and acteristics are at present incorporated in many Sheridan (1994, 1996) stated that embryo forms publications for their value to angiosperm sys- are similar in all systematic groups, and embryo- tematics (Cronquist 1981, 1988). However, the genesis can not provide information of prime systematic value of embryological characteristics importance to the main groups of plant families. has long been persuasively argued (Maheshwari However, they considered that at the generic and 1950, Palser 1975, Heo & Tobe 1995). Palser specific levels, embryogeny is of some system- (1975) concluded that embryological character- atic value. Few investigations have dealt with istics are relatively constant at the family level. variation in embryological characteristics within 56 Huang & Li • ANN. BOT. FENNICI Vol. 49 species. In this study on the female gameto- at three localities: Bi-ta-hai (alt. 3200 m), Zang- phyte development in the Himalayan mayapple ba (alt. 3750 m) and Tian-e-hu (alt. 4200 m), in Sinopodophyllum hexandrum (Berberidaceae) the Xiang-ge-li-la county, Yunnan province, PR we demonstrate that embryological characteris- China. Both entire and partial flower buds and tics are not constant within the species, but vary flowers at different development stages were with different altitudes. collected and fixed in modified FAA (50% alco- Sinopodophyllum hexandrum is a self- hol–glacial acetic acid–formaldehyde = 89:6:5). pollinating perennial herb, found at altitudes The fixed materials were stained in Ehrfich’s from 1500 to 4300 m in the eastern Himalayan hematoxyfin after being washed with water. The regions. There are various habitats in this area materials were embedded in paraffin after being and the environment is harsh in some regions, dehydrated in ten grades of alcohol (mixtures but the Himalayan Mayapple shows great tol- of alcohol and water), cleared with five grades erance and phenotypic plasticity (Ma & Hu of xylene (mixtures of xylene and alcohol), and 1996). Traditionally, the Himalayan mayapple serially sectioned at the thickness of 5–8 µm by and its closely related genera, Diphylleia, Dys- Microm. The sections were mounted on slides in osma and Podophyllum, are members of Berberi- Neutral balsam, and observed and photographed daceae, but in some classification systems, they with the compound microscope Leica DM2000. are treated in a separate family, Podophyllaceae. There is some dispute about their classification and the relationships among these four genera. Results Information from an investigation of female gametophyte development may provide some Under natural conditions, S. hexandrum repro- clues toward settling their phylogenic relations. duces mainly through seeds. There is an interval Sinopodophyllum hexandrum and its relative of about five or six years from seed germination Podophyllum peltatum are the major sources of to flower development. The plant forms flower podophyllotoxin, an effective medicine used to buds in autumn when the vegetative growth is treat genital warts (condyloma acuminatum). It complete. At this time, the morphological devel- is also used as the precursor in the manufacture opment of all flower parts is well underway, of the semi-synthetic derivatives etoposide (VP- but the mega- and microsporocytes have not 16), teniposide, and etopophos. Since 1995, CPH undergone meiosis. In late autumn, the vegeta- 82, a semi-synthetic derivative of podophyllo-podophyllo- tive shoot withers; the flower buds cease devel- toxin, is in its third phase of clinical trials for opment, become dormant, and are enveloped by the treatment of rheumatoid arthritis (Lerndal & two succulent bracts. In the following late spring Svensson 2000). Although many pharmaceuti- or early summer, when the temperature rises cal and biological studies on S. hexandrum have to a threshold, the dormant flower buds rejuve- been reported, the embryological information is nate again. The Himalayan mayapple grows at insufficient. ground level. The flowers and leaves of mature plants develop through growth at the base of the plant. When the flower buds just emerge from Material and methods the ground, the microsporocytes initiate meiosis. There is an interval of about five or six days Sinopodophyllum hexandrum is a short-day plant. from the emergence of flowers to the completion The flower buds begin to form in the autumn and of pollination. remain dormant through the winter and early The flowering phenology depends on tem- spring. In late spring and early summer, the perature, but not much on precipitation. The flower buds resume activity and undergo anthe- earlier the temperature increases, the earlier the sis. Materials for embryological studies should flowering occurs. At the altitude of 3200 m, be collected from the middle of May to the the Himalayan mayapple usually flowers in the beginning of June. In the present study, the mate- middle of May. The higher the altitude, the later rials were collected in June 2007 and May 2008 the flowering takes place. Generally, when the ANN. BOT. FENNICI Vol. 49 • Female gametophyte development in Sinopodophyllum hexandrum 57 Fig. 1. Female game- tophyte development in Sinopodophyllum hexan- drum: Polygonum-type. — A: Female arche- sporium (arrow). — B: Megaspore mother cell. — C: Megasporocyte at prophase of meiosis. — D: Megasporocyte at telophase of meiosis. — E: Megaspore dyad, note similar shape and size. — F: Linear tetrad of megaspores (1–4). — G and H: A functional megaspore at chalazal end (F) and three degen- erated megaspores at micropylar end (2–4). — I: A functional megaspore at chalazal end (F) and traces of three degen- erated megaspores at micropylar end (arrow). — J: Uninucleate female gametophyte and traces of three degenerated megaspores at micro- pylar end (arrow). — K: Late stage of uninucleate female gametophyte and traces of three degen- erated megaspores at micropylar end (arrow). — L: Two-nucleate female gametophyte just formed. Scale bars: 10 µm. altitude increases by 100 m, the blossoming time locule develop asynchronously. When the carpel will delay by three to five days. margins coalesce, the cytoplast of the cells in The flower is solitary in a terminal position the basal part of the ovary thickens and grows on the aerial stem. It is composed of six sepals rapidly toward the locule to form a conic ovule in two whorls of three each, six petals in two primordial. Each primordium further develops, whorls of three each, six stamens, and a single and its apex forms the nucellus above the funicu- terminal pistil. The three outer sepals are vari- lus. Beneath the epidermis at the apex of the able in size and shape. The three inner sepals are nucellus, an archesporial cell differentiates. The elliptic and with a well-developed venation. The cell contains dense cytoplasm and an enlarged six petals are obovate, membranous and have a nucleus with a large nucleolus (Fig. 1A). The well developed venation. The carpel has a long archesporial cell does not divide, but enlarges style, and it enlarges to assume a sac-like shape. and directly becomes a megasporocyte. The Many ovules grow on the enlarged marginal megasporocyte is much larger than any of the placenta of the ocular ovary. Ovules in the same surrounding nucellar cells, and it contains dense 58 Huang & Li • ANN. BOT. FENNICI Vol. 49 At this time, the
Recommended publications
  • Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China
    Article Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China WenQing Li 1, MingMing Shi 1, Yuan Huang 2, KaiYun Chen 1, Hang Sun 1 and JiaHui Chen 1,* 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; [email protected] (W.L.); [email protected] (M.S.); [email protected] (K.C.); [email protected] (H.S.) 2 School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650092, China; [email protected] * Correspondence: [email protected] (J.C.) Received: 18 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Salicaceae is a family of temperate woody plants in the Northern Hemisphere that are highly valued, both ecologically and economically. China contains the highest species diversity of these plants. Despite their widespread human use, how the species diversity patterns of Salicaceae plants formed remains mostly unknown, and these may be significantly affected by global climate warming. Using past, present, and future environmental data and 2673 georeferenced specimen records, we first simulated the dynamic changes in suitable habitats and population structures of Salicaceae. Based on this, we next identified those areas at high risk of habitat loss and population declines under different climate change scenarios/years. We also mapped the patterns of species diversity by constructing niche models for 215 Salicaceae species, and assessed the driving factors affecting their current diversity patterns. The niche models showed Salicaceae family underwent extensive population expansion during the Last Inter Glacial period but retreated to lower latitudes during and since the period of the Last Glacial Maximum.
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • In PDF Format
    LiuBot. et Bull. al. —Acad. Species Sin. (2002) pairs of 43: the 147-154 Podophyllum group 147 Molecular evidence for the sister relationship of the eastern Asia-North American intercontinental species pair in the Podophyllum group (Berberidaceae) Jianquan Liu1,2,*, Zhiduan Chen2, and Anming Lu2 1Northwest Plateau Institute of Biology, the Chinese Academy of Sciences, Qinghai 810001, P.R. China 2Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P.R. China (Received December 30, 2000; Accepted November 22, 2001) Abstract. The presumed pair relationships of intercontinental vicariad species in the Podophyllum group (Sinopodophyllum hexandrum vs. Podophyllum pelatum and Diphylleia grayi vs. D. cymosa) were recently consid- ered to be paraphyletic. In the present paper, the trnL-F and ITS gene sequences of the representatives were used to examine the sister relationships of these two vicariad species. A heuristic parsimony analysis based on the trnL- F data identified Diphylleia as the basal clade of the other three genera, but provided poor resolution of their interrelationships. High sequence divergence was found in the ITS data. ITS1 region, more variable but parsimony- uninformative, has no phylogenetic value. Sequence divergence of the ITS2 region provided abundant, phylogeneti- cally informative variable characters. Analysis of ITS2 sequences confirmeda sister relationship between the presumable vicariad species, in spite of a low bootstrap support for Sinopodophyllum hexandrum vs. Podophyllum pelatum. The combined ITS2 and trnL-F data enforced a sister relationship between Sinopodophyllum hexandrum and Podophyl- lum pelatum with an elevated bootstrap support of 100%. Based on molecular phylogeny, the morphological evo- lution of this group was discussed.
    [Show full text]
  • Check List Lists of Species Check List 12(1): 1824, 6 January 2016 Doi: ISSN 1809-127X © 2016 Check List and Authors
    12 1 1824 the journal of biodiversity data 6 January 2016 Check List LISTS OF SPECIES Check List 12(1): 1824, 6 January 2016 doi: http://dx.doi.org/10.15560/12.1.1824 ISSN 1809-127X © 2016 Check List and Authors Flora of Niti Valley: a cold arid region of Nanda Devi Biosphere Reserve, Western Himalaya, India Amit Kumar, Monideepa Mitra, Bhupendra S. Adhikari* and Gopal S. Rawat Department of Habitat Ecology, Wildlife Institute of India, Post Box #18, Chandrabani, Dehradun 248001, Uttarakhand, India * Corresponding author. E-mail: [email protected] Abstract: Located in the extended buffer zone of region and characterized by extreme climatic conditions, Nanda Devi Biosphere Reserve in Western Himalaya, such as diurnal fluctuations in temperatures, scanty and Niti valley represents a cold arid region. The reserve has erratic rainfall, heavy winds and snowfall. been extensively surveyed in terms of floral diversity by The Indian Trans-Himalaya (ITH) usually described as various workers, albeit highly confined to the core zones. ‘High Altitude Cold Desert Zone’ (Zone 1) spreads into The current survey recorded 495 species belonging to three biogeographic provinces: 1A, Ladakh mountains: 267 genera and 73 families of vascular plants through Kargil, Nubra and Zanskar in Jammu and Kashmir systematic collection in the years 2011, 2012 and 2014. and Lahul and Spiti in Himachal Pradesh); 1B, Tibetan Of the recorded species, 383 were dicots, 93 monocots, plateau: Changthang region of Ladakh and northern 9 pteridophytes and 10 gymnosperms. Asteraceae was parts of the states of Uttarakhand; and 1C, Sikkim most diverse family (32 genera with 58 species), followed Plateau (Rodgers et al.
    [Show full text]
  • Short Botanical List of Non-Bulbous Plant Families and Genera
    SHORT BOTANICAL LIST OF NON-BULBOUS PLANT FAMILIES AND GENERA Apiaceae ​(was ​Umbelliferae​): Aciphylla, Astrantia, Azorella, Bolax, Hacquetia, etc. Asparagaceae​: Anthericum, Arthropodium, Disporopsis, Hosta, Maianthemum, Ophiopogon, Polygonatum, Speirantha, etc Berberidaceae​: Berberis, Bongardia, Dysosma, Epimedium, Gymnospermium, Jeffersonia, Leontice, Mahonia, Podophyllum, Ranzania, Sinopodophyllum, Vancouveria, etc. Boraginaceae: ​Alkanna, Anchusa, Eritrichium, Hesperochiron, Lithodora, Mertensia, Moltkia, Myosotis, Omphalodes, Onosma, Phacelia, Pulmonaria, Romanzoffia, etc Brassicaceae: ​Aethionema, Alyssum, Arabis, Aubrieta, Cardamine, Chorispora, Clausia, Degenia, Draba, Erysimum, Fibigia, Iberis, Matthiola, Morisia, Notothlaspi, Petrocallis, Thlaspi, Xerodraba, etc Cactaceae​: Echinocereus, Lobivia, Maihuenia, Mammilaria, Opuntia, Pediocactus, Rebutia, Sclerocactus, etc Calceolariaceae​: Calceolaria , Jovellana Campanulaceae​: Adenophora, Asyneuma, Campanula ( inc. Diosphaera), Codonopsis, Cyananthus, Edraianthus, Favratia, Isotoma, Lobelia (inc. Hypsella and Pratia), Physoplexis, Phyteuma, Platycodon,Trachelium, Wahlenbergia, etc. Caryophyllaceae​: Arenaria, Cerastium, Dianthus, Gypsophila, Lychnis, Minuartia, Petrorhagia (was Tunica), Saponaria, Silene, Vaccaria (was Melandrium) etc. Celastraceae: ​Euonymus, Parnassia Colchicaceae:​ Disporum, Uvularia Commelinaceae​: Weldenia. Compositae ​(was ​Asteraceae​): Achillea, Anacyclus, Anaphalis, Antennaria, Anthemis, Artemisia, Aster, Brachyclados, Brachyglottis, Carduncellus, Celmisia,
    [Show full text]
  • Sinopodophyllum (PDF)
    Fl. China 19: 783. 2011. 4. SINOPODOPHYLLUM T. S. Ying, Acta Phytotax. Sin. 17(1): 15. 1979. 桃儿七属 tao er qi shu Ying Junsheng (应俊生 Ying Tsun-shen); David E. Boufford, Anthony R. Brach Herbs, perennial. Rhizomes stout, shortly nodose; aerial stems erect, with large brown scales at base. Leaves 2, simple, petio- lulate; base cordate, apex 3–5-dissected, usually to ca. midway or more, sometimes partitions 2- or 3-lobed. Inflorescence terminal. Flowers appearing before leaves, bisexual, solitary, pink, large. Sepals 6, caducous. Petals 6, open. Anthers basifixed, dehiscing longitudinally. Pistils 1; ovary ellipsoid, 1-loculed, with numerous ovules. Fruit a berry. Seeds numerous, without fleshy arils. Pollen grains in tetrads. 2n = 12*, 14*. One species: E Afghanistan, Bhutan, China, N India, Kashmir, Nepal, and Pakistan. Sinopodophyllum was included within Podophyllum by Shaw (in Stearn, Gen. Epimedium, 258. 2002). 1. Sinopodophyllum hexandrum (Royle) T. S. Ying in C. Y. Wu, Fl. Xizang. 2: 119. 1985. 桃儿七 tao er qi Podophyllum hexandrum Royle, Ill. Bot. Himal. Mts. 1: 64. 1834; P. emodi Falconer ex Royle; P. emodi var. chinense Sprague; Sinopodophyllum emodi (Falconer ex Royle) T. S. Ying. Plants 20–50 cm tall. Stems solitary, angulate, glabrous. Leaf petiole 10–25 cm; leaf blade orbicular, not peltate, 11–20 × 18–30 cm, thinly papery, abaxially pubescent, adaxially gla- brous, base cordate, 3–5-dissected to ca. midway or more, often partitions 2- or 3-lobed, apex of lobes acute or acuminate, mar- gin entire or coarsely dentate, teeth apiculate. Petals obovate or obovate-oblong, 2.5–3.5 × 1.5–1.8 cm, apex slightly sinuolate.
    [Show full text]
  • Genetic Diversity and Structure of Sinopodophyllum Hexandrum (Royle) Ying in the Qinling Mountains, China
    Genetic Diversity and Structure of Sinopodophyllum hexandrum (Royle) Ying in the Qinling Mountains, China Wei Liu, Dongxue Yin, Jianjun Liu*,NaLi College of Forestry, Northwest A & F University, Yangling, China Abstract Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within- population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S.
    [Show full text]
  • Ethnomedicinal Plants Used by Local Inhabitants of Jakholi Block, Rudraprayag District, Western Himalaya, India Ankit Singh1, Mohan C
    Singh et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:49 DOI 10.1186/s13002-017-0178-3 RESEARCH Open Access Ethnomedicinal plants used by local inhabitants of Jakholi block, Rudraprayag district, western Himalaya, India Ankit Singh1, Mohan C. Nautiyal1, Ripu M. Kunwar2* and Rainer W. Bussmann3 Abstract Background: Ethnomedicinal knowledge of the Indian Himalayas is very interesting because of the wide range of medicinal plants used in traditional medical practice. However, there is a danger of knowledge being lost because the knowledge sharing is very limited and passed on orally. The present study is the first ethnomedicinal study in Jakholi area of Rudraprayag district of Northwestern India. The aim of present study was to identify traditional medicinal plants used by the inhabitants to treat different ailments and document the associated knowledge of these medicinal plants. Methods: An ethnomedicinal survey was carried out in 72 of 133 villages and alpine pastures of Jakholi block (800–4000 m asl). Door to door surveys and group discussions, applying semi-structured questionnaires were conducted with traditional healers and villagers in local language (Garhwali). Informant Consensus Factor (ICF) was computed to analyse collected ethnomedicinal data. Results: A total of 78 species (Gymnosperms 3 species, Monocotyledons 12 and 63 Dicotyledons) belonging to 73 genera in 46 families were identified to treat 14 different ailments categories. Most dominant family is Asteraceae (5 species). In disease treated categories, Diseases of the skin (DE) have the highest proportion (29.55%) followed by Gastro- intestinal disorder (GA) (25.89%). The most life form of plants used was herb (56%) followed by tree (23%) while root was the most frequently used part of the plants and the traditional preparation was mainly applied in the form of paste (37%).
    [Show full text]
  • Considérations Sur L'histoire Naturelle Des Ranunculales
    Considérations sur l’histoire naturelle des Ranunculales Laetitia Carrive To cite this version: Laetitia Carrive. Considérations sur l’histoire naturelle des Ranunculales. Botanique. Université Paris-Saclay, 2019. Français. NNT : 2019SACLS177. tel-02276988 HAL Id: tel-02276988 https://tel.archives-ouvertes.fr/tel-02276988 Submitted on 3 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Considérations sur l’histoire naturelle des Ranunculales 2019SACLS177 Thèse de doctorat de l'Université Paris-Saclay : préparée à l’Université Paris-Sud NNT École doctorale n°567 : Sciences du végétal, du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Orsay, le 05 juillet 2019, par Laetitia Carrive Composition du Jury : Catherine Damerval Directrice de recherche, CNRS (– UMR 320 GQE) Présidente du jury Julien Bachelier Professeur, Freie Universität Berlin (– Institute of Biology) Rapporteur Thomas Haevermans Maître de conférences, MNHN (– UMR 7205 ISYEB) Rapporteur Jean-Yves Dubuisson Professeur, SU (–UMR 7205 ISYEB) Examinateur Sophie Nadot Professeure, U-PSud (– UMR 8079 ESE) Directrice de thèse « Le commencement sera d’admirer tout, même les choses les plus communes. Le milieu, d’écrire ce que l’on a bien vu et ce qui est d’utilité.
    [Show full text]
  • Paedomorphosis, Secondary Woodiness, and Insular Woodiness in Plants
    Paedomorphosis, Secondary Woodiness, and Insular Woodiness in Plants. By: Max W. Dulin and Bruce K. Kirchoff Dulin, M. W. and B. K. Kirchoff. 2010. Paedomorphosis, Secondary Woodiness, and Insular Woodiness in Plants. Botanical Review 76(4): 405-490. Made available courtesy of Springer Verlag. The original publication is available at http://link.springer.com/article/10.1007/s12229-010-9057-5/fulltext.html. ***Reprinted with permission. No further reproduction is authorized without written permission from Springer Verlag. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: The related concepts of paedomorphosis in the secondary xylem, insular woodiness, and secondary woodiness are reviewed and evaluated in order to clearly distinguish the phenomenon involved, and provide a firm foundation for future research in this area. The theory of paedomorphosis refers to the occurrence of certain juvenile xylem characteristics, such as scalariform perforation plates and lateral wall pitting, in the secondary xylem of shrubby, suffrutescent, pachycaulous, and lianoid growth forms. Paedomorphic characteristics are often found in insular woody species, a fact that has caused paedomorphosis to be associated with secondary woodiness. The anatomy of the secondary xylem in Xanthorhiza simplicissima (Ranunculaceae), Coreopsis gigantea (Asteraceae), and Mahonia bealei (Berberidaceae) is described in order to provide specific data for discussion. These species serve as test cases for the presence of paedomorphosis, and the evolution of secondary woodiness. The secondary xylem of all three species was found to have a degree of paedomorphosis, with Coreopsis having the greatest number of paedomorphic characteristics, Xanthorhiza having an intermediate number, and Mahonia possessing only a single characteristic.
    [Show full text]
  • Pollinator Scarcity Drives the Shift to Delayed Selfing
    Research Article Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae) Ying-Ze Xiong1, Qiang Fang2 and Shuang-Quan Huang1,3* 1 State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China 2 College of Agriculture, Henan University of Science and Technology, Luoyang, Henan 471003, China 3 College of Life Sciences, Central China Normal University, Wuhan 430079, China Received: 13 March 2013; Accepted: 6 August 2013; Published: 26 August 2013 Citation: Xiong Y-Z, Fang Q, Huang S-Q. 2013. Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB PLANTS 5: plt037; doi:10.1093/aobpla/plt037 Abstract. Recent molecular phylogenetics have indicated that American mayapple (mainly self-incompatible, SI) and Himalayan mayapple, which was considered to be self-compatible (SC), are sister species with disjunct distribution between eastern Asia and eastern North America. We test a hypothesis that the persistence of this earlyspring flowering herb in the Himalayan region is attributable to the transition from SI to SC, the capacity for selfing in an unpredictable pollination environment. Pollinator observations were conducted in an alpine meadow with hundreds of Himalayan mayapple (Podophyllum hexandrum Royle) individuals over 2 years. To examine autogamy, seed set under different pol- lination treatments was compared. Toclarify whetherautomatic self-pollination is achieved bymovement of the pistil as a previous study suggested, we measured incline angles of the pistil and observed flower movement during anthesis using video. Floral visitors to the nectarless flowers were very rare, but solitary bees and honeybees could be potential pollinators.
    [Show full text]
  • Cop14 Prop. 27
    CoP14 Prop. 27 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Fourteenth meeting of the Conference of the Parties The Hague (Netherlands), 3-15 June 2007 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Amendment of the annotations for the following taxa to read: Current Taxon Proposed annotation Annot. Adonis vernalis Designates all parts and derivatives except: a) seeds and #2 pollen; and b) finished products packaged and ready for retail trade. Guaiacum spp. Designates all parts and derivatives except: a) seeds and #2 pollen; and b) finished products packaged and ready for retail trade. Hydrastis canadensis Designates underground parts (i.e. roots, rhizomes): whole, #3 parts and powdered. Nardostachys grandiflora Designates all parts and derivatives except: a) seeds and #3 pollen; and b) finished products packaged and ready for retail trade. Panax ginseng, Designates whole and sliced roots and parts of roots. #3 Panax quinquefolius Picrorhiza kurrooa Designates all parts and derivatives except: a) seeds and #3 pollen; and b) finished products packaged and ready for retail trade. Podophyllum hexandrum Designates all parts and derivatives except: a) seeds and #2 pollen; and b) finished products packaged and ready for retail trade. Pterocarpus santalinus Designates logs, wood-chips, powder and extracts. #7 Rauvolfia serpentina Designates all parts and derivatives except: a) seeds and #2 pollen; and b) finished products packaged and ready for retail trade. Taxus chinensis, T. fuana, Designates all parts and derivatives except: a) seeds and #10 T. cuspidata, pollen; and b) finished products packaged and ready for T.
    [Show full text]