<<

(19) TZZ_¥_T

(11) EP 1 638 748 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: (2006.01) (2006.01) of the grant of the patent: C08J 5/18 C08L 67/02 17.07.2013 Bulletin 2013/29 (86) International application number: PCT/US2004/019133 (21) Application number: 04755356.5 (87) International publication number: (22) Date of filing: 15.06.2004 WO 2004/113043 (29.12.2004 Gazette 2004/53)

(54) PROPANE -BASED RESIN AND SHRINK FILM POLYESTERHARZ AUF PROPANDIOLBASIS UND SCHRUMPFFOLIE RESINE DE POLYESTER A BASE DE PROPANE DIOL ET FILM THERMORETRACTABLE

(84) Designated Contracting States: • POSEY, Robert, Giles AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Duncan, SC 29334 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • GARNER, Gary, Ralph Greer, SC 29651 (US) (30) Priority: 17.06.2003 US 479037 P • FOXHALL, Russell, Scott 14.06.2004 US 866897 Lyman, SC 29365 (US)

(43) Date of publication of application: (74) Representative: Schweitzer, Klaus et al 29.03.2006 Bulletin 2006/13 Plate Schweitzer Zounek Patentanwälte (73) Proprietor: Mitsubishi Polyester Film, Inc. Rheingaustrasse 196 Greer SC 29650 (US) 65203 Wiesbaden (DE)

(72) Inventors: (56) References cited: • MARLOW, Chadwick, Edward EP-A- 1 227 119 GB-A- 2 095 267 Kingsport, TN 37664 (US) US-A1- 2005 163 986 • CARLSON, Charles, David, Jr. Columbus, NC 28722 (US)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 638 748 B1

Printed by Jouve, 75001 PARIS (FR) EP 1 638 748 B1

Description

BACKGROUND OF THE INVENTION

5 1. FIELD OF THE INVENTION

[0001] The present invention relates generally to a 2- methyl-1,3-propanediol-based polyester film having substantial shrink properties, and the polyester resin from which the film is formed. More specifically, it is related to a modified polyethylene terephthalate in which 2-methyl-1,3-propanediol is partially substituted for . The degree of 10 shrinkage and the degree of crystallinity in the resulting film can be varied and controlled by varying the relative amounts of 2-methyl-1,3-propanediol in the resin and film.

2. DESCRIPTION OF RELATED ART

15 [0002] Shrink films are known in the art. Such films are useful for many applications, including shrink-to-fit labels for bottles and other dimensional items. Polyester-based shrink films are particularly advantageous for use on polyester containers, as they facilitate the recycling process by allowing polyester containers to be reclaimed along with their polyester labels without introducing incompatible resins into the recycling stream. [0003] When shrink films are used in labeling applications, they are typically printed with text, images and the like. 20 Thus, it is preferred that shrink films be printable, either directly, or through compatibility with print adhesion promoting coatings or treatments. For many applications, the shrink film is preferably clear or transparent. It is preferably durable under normal packaging, transport and storage conditions. The film should optimally be cost effective to manufacture, and should minimize the use of organic solvents or other potentially environmentally hazardous compounds in its man- ufacture and use, to the extent possible. Films adapted for in- line coating application are also desirable. A film providing 25 a combination of these benefits is desirable. [0004] Known shrink films include films based on PVC (poly(vinyl chloride)), oriented polystyrene, as well as more environmentally sensitive modified copolyesters such as PETG (1,4-cyclohexanedimethanol modified poly(ethylene terephthalate)). These films provide excellent shrink properties and provide good strength and consistent appearance. However, more cost-effective alternatives to PETG-based and other known shrink film resins are desirable. In addition, 30 shrink film resins that are more conducive to recycling, and that can be processed with fewer modifications on conventional PET film manufacturing equipment are also desired. [0005] Certain diol-based polyester resins have been suggested for use in shrink films. See, e.g., U.S. Patent No. 4,996,291 to Yoshinaka et al. However, the numerous propanediols disclosed in the Yoshinaka et al. patent do not include the structurally simpler 2-methyl-1,3-propanediol, and instead are all more highly branched propanediol-con- 35 taining copolymers using monomers such as 2-methyl, 2-ethyl-1,3-propanediol and 2-methyl-2-propyl-1,3-propanediol. The utility of 2-methyl-1,3-propanediol was clearly not appreciated, and in fact expressly discounted through omission by Yoshinaka et al. from an otherwise extensive list of propanediols. Moreover, no commercial film embodying the teachings of the Yoshinaka et al. patent is known to be available, suggesting technical limitations and other difficulties in utilizing the listed therein to create desirable shrink films. 40 BRIEF SUMMARY OF THE INVENTION

[0006] Accordingly, it is an object of the present invention to provide a polyester shrink film that has excellent shrink properties. 45 [0007] It is a further object of the present invention to provide a shrink film with readily adjustable shrink properties. [0008] It is another object of the present invention to provide a shrink film that is economical to manufacture. [0009] It is yet another object of the present invention to provide a shrink film that, depending on processing conditions, can also be used for conventional film end uses. [0010] It is another object of the present invention to provide a shrink film that crystallizes slowly. 50 [0011] The present invention provides a modified polyethylene terephthalate in which methyl-2- 1,3-propanediol is partially substituted for ethylene glycol. The degree of shrinkage and the degree of crystallinity in the resulting film can be varied and controlled by varying the relative amounts of 2- methyl-1,3-propanediol in the resin and film.

DETAILED DESCRIPTION OF THE INVENTION 55 [0012] 1,3-propane diol-modified are typically known to crystallize easily. Similarly, 1,3-propane diol-mod- ified polymers can act to accelerate crystallization in compounds to which they are added. This would seem to suggest they would not function in any way as shrink enhancing agents. However, a substitution on the middle carbon can act

2 EP 1 638 748 B1

to retard crystallization. Thus, propanediols with such substitutions have been suggested to have potential as shrink enhancing agents. [0013] The present inventors have surprisingly found that excellent shrink film properties are provided by a polyester resin in which 2-methyl-1,3-propanediol is substituted in part for ethylene glycol. Given the fact that 2-methyl-1,3-pro- 5 panediol-based copolyesters are less branched than known propanediol- based copolyesters suggested for use in shrink films, it would be believed that it would not have sufficient shrink properties. Nonetheless, it has been found that 2- methyl-1,3-propanediol modified polyesters have excellent, and in some cases superior, shrink properties, when com- pared to known shrink films. It can also be noted that conventional shrink additives are typically based on benzene- ring structures. However, the present 2-methyl-1,3-propanediol is a straight chain with a methyl group. 10 [0014] The propanediol preferred for use in the present invention is methyl- 2- 1,3-propanediol, a preferred single substitution propanediol. A preferred 2-methyl-1,3-propanediol is commercially available from Lyondell Chemical Com- pany under the tradename MP Diol. 2-methyl-1,3-propanediol-modified polyester has a viable glass transition temper-

ature (Tg) for film manufacture. Modified polyesters having a T g that is too low can be sticky at room temperature, which is undesirable for most film applications. More highly branched diols can result in such lower Tg. Such polyesters may 15 be hard to polymerize, resulting in a sticky, unusable or less effective product of polymerization. Such polyesters can also be vulnerable to unintended shrinkage during high temperatures encountered during storage or transportation, thus rendering such films untenable for many end uses and customers. Low amounts of such diols may be used to minimize

these problems and maintain a higher T g. However, in such cases the levels that are viable may be insufficient to produce desired shrink properties. Preferred T g ranges are from 50 to 72 degrees Celsius, alternately 55 to 65 degrees Celsius, 20 further 60 to 63 degrees Celsius. [0015] 2-methyl-1,3-propanediol-modified polyesters havebeen found tohave high enough T gs toavoid such problems, even at higher relative concentrations of 2-methyl-1,3-propanediol. At target concentrations of approximately 35 mol% 2-methyl-1,3-propanediol, the 2-methyl-1,3-propanediol-modified polyester is essentially non-crystallizable, and fully amorphous. More highly branched diols may also result in fully amorphous polyesters at such concentrations, but are 25 likely to result in unusable or less effective polyesters, as discussed above. [0016] 2-methyl-1,3-propanediol-modified polyesters have also been found to exhibit surprising heat seal properties, sealing effectively to themselves and various other surfaces at conventional heat seal temperatures. When the heat seal is formed, preferably heat of 90 to 170 degrees Celsius is applied, for a duration of 0.5 to 10 seconds (90 degrees Celsius applied for 5 seconds with a pressure of 40 pounds per square inch [276 mPa] is a reference application used for testing 30 purposes). Pressure of 20 to 60 psi [138 to 414 mPa] (typically 40 psi [276 mPa]) can be applied during this period, either along with or instead of the heat. Seal testing is typically performed on self-seals - wherein the coated film is sealed to itself. The force necessary to separate the film faces along the seam, or the force at which the film around the seal fails, is then measured and quantified. Typically, a 3 mil film is used for such bond testing. A force of about 4 pounds per square inch [28 mPa] is then applied. 35 [0017] The 2-methyl-1,3-propanediol is preferably incorporated into a polyester resin as a partial substitution for eth- ylene glycol during polymerization. A typical polyester resin is formulated employing 100 mol percent ethylene glycol. According to the present invention, high shrink properties are obtained at a surprisingly low concentration of 2-methyl- 1,3-propanediol, relative to known concentrations of shrink additives. 2- methyl-1,3-propanediol is preferably present at 5 to 50 mol%, alternately at 10 to 35 mol%, of the resulting modified polyester resin, with 20 to 30 mol% being preferred. 40 Ethylene glycol, other glycols (as discussed below) or combinations thereof are typically used to make up the remaining glycol. [0018] Thus, when 2-methyl-1,3-propanediol is substituted for ethylene glycol at greater than about 10 mol%, the resulting films typically become increasingly amorphous and exhibit high shrinkage upon reheating. High shrinkage is defined as shrinkage of more than about 50% shrinkage in the main shrinking direction. Shrinkage is determined herein 45 (except where noted) utilizing a hot water bath at 80 degrees Celsius (also at 99 degrees Celsius where noted). The sample is measured in all dimensions and submerged in the bath for ten seconds. Final dimensions are then measured, and the degree of shrinkage is quantified from the measurements. [0019] Higher relative mol percents of 2-methyl-1,3-propanediol can be used, up to and including 100 mol percent. It has been noted that under conventional polymerization conditions, a reactivity issue can occur at 44-45 mol% 2- methyl- 50 1,3-propanediol, which renders it very difficult to achieve a usable molecular weight. It has been noted that 2-methyl- 1,3-propanediol-modified polyesters are less sensitive to the relative amount of diol than more highly branched diol- based polyesters. Such more highly branched diol- based polyesters are limited to low diol concentrations, as discussed above. Their shrink properties change more dramatically with small changes in diol concentration, rendering them more difficult to formulate, process and control. 2- methyl-1,3-propanediol-modified polyesters, on the other hand, have shrink 55 properties that change more gradually with adjusting diol concentration, and thus give more flexibility in formulating and processing. [0020] A preferred process for forming a base film is set forth in U.S. Patent Number 5,350,601 to Culbertson et al.. Polycondensation of the diol and/or glycol with a dicarboxylic (or its equivalents) such as ,

3 EP 1 638 748 B1

, sebacic acid, malonic, adipic, azelaic, glutaric, suberic, succinic and the like, of mixtures of two or more of the foregoing, are preferred for use in the present invention. Suitable glycols include ethylene glycol, diethylene glycol, polyethylene glycol, and polyols such as butanediol and the like. Mixtures of two or more of the foregoing are also suitable. 5 [0021] Films having shrinkage of less than 50% can be used in some of the same markets as other low shrink, specialty polyester films. Films having shrinkage of more than 50% are preferred for traditional shrink film markets, including markets for shrinkable packaging labels. Preferred shrinkages ranges in a main direction for such embodiments range from""’" 50 to 80% (considered full return), alternately 60 to 80%, alternately 70 to 80%, alternately 75% to 80%. [0022] Preferred resins according to the present invention have advantageous properties. For example, 2- methyl-1,3- 10 propanediol-based resins are less viscous than commercially available shrink- film resins, including PETG- based resins. Consequently, 2-methyl-1,3-propanediol-based resins can be run more easily and with fewer adjustments on standard polyester film resin processing equipment. In addition, the reduced viscosity results in additional benefits such as less shear heating, longer filter life, and less streaking. [0023] Conventional additives that are known in the art can be included in the films of the present invention. For 15 example, pigments, other colorants, stabilizers (including but not limited to UV stabilizers), antistatic agents, adhesion promoters, antioxidants, delusterants, fillers, plasticizers, slip agents, and the like can be included in the films of the present invention. [0024] Shrink properties of the films of the present invention vary depending on the relative amounts of 2- methyl-1,3- propanediol used in the resin. For example, a high shrinkage film having shrinkage in the main shrinking direction of 20 about 78% or greater at 80 degrees Celsius can be formed. Conventional films with minimal shrink can also be formulated using resins of the present invention. Such formulating flexibility is valuable in developing compatible product lines. For preferred films of the present invention, maximum shrink is typically reached at less than 80 degrees Celsius, making it easier to run the film faster or at lower temperatures during the shrinking process. At 0 mol% 2- methyl-1,3-propanediol (conventional PET), the resulting film has essentially no shrink properties. At 35 mol%, a resulting film has approximately 25 100% recovery, thus signifying that it will return on heating to essentially the same dimensions as the film had prior to transverse direction stretch. [0025] Preferred films of the present invention are believed to have good impact resistance properties, due to increased elongation-to-break properties resulting from high amorphousness. Preferred films of the present invention are also less costly than known shrink films. The 2-methyl-1,3-propanediol is less expensive than available propanediols. Moreover, 30 the excellent shrink properties of the present invention can be achieved at relatively low amounts ofmethyl- 2- 1,3- propanediol, thus rendering the resulting film less expensive than films requiring higher relative amounts of diol or other shrink-inducing components. [0026] Thus, a preferred polyester is the condensation product of the following monomers or their polyester forming equivalent: terephthalic acid, 2-methyl-1,3-propanediol, and equivalent mol percents of ethylene glycol. An optimal 35 copolyester is made up of about 100 mol percent terephthalic acid, varying mol percent of 2-methyl-1,3-propanediol, depending on desired shrink properties, and the remainder ethylene glycol. [0027] The polyester shrink resin of the present invention is preferably used as the sole or primary polyester resin used in forming the polyester film. In an alternate preferred embodiment, a blend with polyester and/or non-polyester resins is possible. Blends allow the easy adjustment of a base resin to achieve desired 2- methyl-1,3-propanediol levels 40 (transesterification during the melt would result in a reduction of the effective 2- methyl-1,3-propanediol level (e.g. a blend of half 35 mol%-modified polyester and half unmodified polyester would be equivalent to a resin of 17.5 mol%- modified polyester)). Blends with PETG, PEN, polystyrene, and various other resins are possible to adjust properties of the resulting film. [0028] The resulting films have excellent clarity and freedom from streaking. This is important for many packaging 45 applications in which the enclosed product or another packaging element is visible through the film. [0029] Conventional coatings can be used on the films of the present invention, including but not limited to adhesion promoting coatings, surface modifiers, print adhesion enhancers, antistatic and antiblock coatings, matte finish coatings, heat seal and barrier coatings. It is preferred that any coatings used be aqueous, to avoid plasticizing the surface (as solvent coatings can do) and for environmental and processing safety reasons. 50 [0030] Film thickness can vary depending on application. Preferred film thicknesses for labeling and various other end uses are 10 microns to 200 microns, alternatively 25 microns to 100 microns. [0031] The reclaim (no excessive yellowing or deterioration in physical properties when coated film scrap is mixed with fresh polymer and re-extruded) and recycling characteristics of a polymer film are important. The ability to reuse scrap film, instead of disposing of it, reduces material and waste disposal costs and minimizes unnecessary waste. It 55 has been found that the preferred films of the present invention have excellent reclaim characteristics. [0032] In addition, the polymer film may be a polymer laminate. Such laminates include polymer-polymer laminates like polyester-polyolefin or polyester-adhesive-polyolefin, polymer-metallic laminates such as polyester-aluminum, or polymer-paper or polymer-adhesive-paper laminates. Coated polymer films or film laminates can also be used. Primer

4 EP 1 638 748 B1

coatings used to enhance wet-out or coating adhesion are preferred examples of such coatings. [0033] The films may be produced by any well known technique in the art. For example, polyester is typically melted and extruded as an amorphous sheet onto a polished revolving casting drum to form a cast sheet of the polymer. The sheet is quickly cooled and then stretch oriented in one or more directions to impart strength, toughness and the desired 5 shrink properties to the film. The sheet is typically stretched from two to ten times, alternately four to seven times the original cast sheet dimension, in one or both directions. Monoaxial orientation is most preferred, with biaxial orientation being less preferred. Orientation in the transverse direction is preferred. [0034] Generally, stretching occurs in a temperature range from about the second order transition temperature of the polymer to below the temperature at which the polymer softens and melts. Where necessary, the film is heat treated 10 after stretching to "lock-in" the properties by annealing the film to a degree, typically for semicrystalline lower 2- methyl- 1,3-propanediol content films or where 2- methyl-1,3-propanediol is added as a property modifier. This step, when used, tends to impart dimensional stability and good tensile properties to the film. Such heat treatment for polyester film is generally conducted at 190°C to 240°C. Such temperatures are preferred for higher 2- methyl-1,3-propanediol concen- tration films. Lower temperatures of 80 to 100 degrees Celsius are preferred for low concentration 2- methyl-1,3-propan- 15 ediol films. For typical high shrink films according to the present invention, however, such heat treatment will not be used. [0035] While surface modification of the polymer film is not required, it has been found that better results are obtained if the surface or surfaces of the polymer film are modified before application of any coatings that may be desired. Conventional surface modification techniques include corona treatment, which is the most common and most preferred procedure for modifying the surface of the polymer base film to enhance coating adhesion. The corona treatment or 20 other surface modification should be sufficient to permit wetting out of the coating. Corona treatment of about 1.0 watt per square foot per minute is typically sufficient to achieve the desired results. In addition, primer or other intermediate layers can optionally be used between the polymer film and a coating layer.

EXAMPLES 25 [0036] Modified PET samples were formed according to the chart below. Uniaxial orientation of the samples was performed, resulting in a draw ratio of approximately 5:1 in the tested portions. For these samples, heat was applied using a hot air gun. The surprisingly enhanced shrinkages at both temperatures, and particularly at 80 degrees Celsius, are shown for the MP Diol sample in comparison with other known diols. 30 Sample Modifier Mol% % Shrinkage 80 deg. C 99 deg. C 1MP-Diol 27.3 50.0 70.5 C2 Neopentyl glycol 21.6 8.8 16.0 35 C3 2,2-diethyl-1,3-propanediol 27.2 24.2 50.0 C4 2-butyl-2-ethyl-propanediol 23.6 18.5 54.8

40 Claims

1. A shrinkable polymer film comprising: a modified polyester resin which is a modified polyethylene terephthalate resin polymerized from monomers including a dicarboxylic acid and a glycol, wherein the glycol includes 2- methyl- 1,3-propanediol, and wherein the 2-methyl-1,3-propanediol is partially substituted for said glycol and wherein the

45 2-methyl-1,3-propanediol is present in the polyester resin in an amount of at least 5 mol percent and wherein the polymer film shrinks at least 50% in a main shrinkage direction after ten seconds in an 80 degree Celsius hot water bath.

2. A label including the polymer film of claim 1.

50 3. The polymer film of claim 1, wherein the polymer film is transparent.

4. The polymer film of claim 1, wherein the polyester resin has a glass transition temperature that is sufficiently high to render the polymer film resistant to shrinkage at temperatures normally experienced during shipping.

55 5. The polymer film of claim 1, wherein the 2-methyl-1,3-propanediol is present in the polyester resin at 5 to 50 mol percent.

5 EP 1 638 748 B1

6. The polymer film of claim 1, wherein the 2-methyl-1,3-propanediol is present in the polyester resin at 10 to 35 mol percent.

7. The polymer film of claim 1, wherein the 2-methyl-1,3-propanediol is present in the polyester resin at 20 to 30 mol 5 percent.

8. The polymer film of claim 1, wherein the 2- methyl-1,3-propanediol is present in the polyester resin at more than 10 mol percent.

10 9. The polymer film of claim 1, wherein the 2- methyl-1,3-propanediol is present in the polyester resin at 50 to 100 mol percent.

10. The polymer film of claim 1, wherein the polymer film has a shrinkage in a main shrinking direction of at least 50%.

15 11. The polymer film of claim 1, wherein the polymer film has a shrinkage in a main shrinking direction of 50% to 80%.

12. The polymer film of claim 1, wherein the polymer film has a shrinkage in a main shrinking direction of 70% to 80%.

13. The polymer film of claim 1, wherein the glycol includes ethylene glycol. 20 14. The polymer film of claim 1, wherein the glycol includes ethylene glycol and an additional glycol.

15. The polymer film of claim 1, wherein the dicarboxylic acid includes terephthalic acid.

25 16. The polymer film of claim 1, wherein the polymer film further includes an additional resin.

17. The polymer film of claim 16, wherein the additional resin is PETG.

18. The polymer film of claim 16, wherein the additional resin is polyethylene naphthalate. 30 19. The polymer film of claim 16, wherein the additional resin is polystyrene.

20. The polymer film of claim 1, further including a coating on the polymer film.

35 21. The polymer film of claim 20, wherein the coating is aqueous.

22. The polymer film of claim 1, wherein the polymer film has a thickness of 10 to 200 microns.

23. The polymer film of claim 1, wherein the polymer film has a thickness of 25 to 100 microns. 40 24. The polymer film of claim 1, wherein the polyester resin has a glass transition temperature of 50 to 72 degrees Celsius.

25. The polymer film of claim 1, wherein the polyester resin has a glass transition temperature of 55 to 65 degrees Celsius.

45 26. A method of forming a polymer film comprising the step of:

extruding a modified polyester resin polymerized from monomers including a dicarboxylic acid and a glycol, wherein the glycol includes 2-methyl-1,3-propanediol, to form the polyester film, wherein the polymer film shrinks at least 50% in a main shrinkage direction after ten seconds in an 80 degree 50 Celsius hot water bath.

27. The method of claim 26, further including the step of applying a coating to the polymer filmline in- during film manufacture.

55 28. The method of claim 26, further including the step of applying heat to the polymer film during manufacture.

29. The method of claim 26, further including the step of applying heat to the polymer film after manufacture to achieve shrinkage.

6 EP 1 638 748 B1

30. The method of claim 29, wherein maximum shrinkage is reached at less than 80 degrees Celsius.

31. The method of claim 26, further including the step of orienting the polyester film in at least one direction.

5 32. The method of claim 31, wherein the polymer film is stretched from two to ten times in a main stretching direction.

33. The method of claim 31, wherein the polymer film is stretched from four to seven times in a main stretching direction.

10 Patentansprüche

1. Schrumpfbare Polymerfolie, umfassend: ein modifiziertes Polyesterharz, bei dem es sich um ein modifiziertes Po- lyethylenterephthalatharz handelt, das aus Monomeren, die eine Dicarbonsäure und ein Glykol umfassen, polyme- risiert ist, wobei das Glykol 2-Methyl-1,3-propandiol umfasst und wobei das Glykol teilweise durch das 2-Methyl- 15 1,3-propandiol ersetzt ist und wobei das 2-Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von minde- stens 5 Molprozent vorliegt und wobei die Polymerfolie nach zehn Sekunden in einem 80 Grad Celsius heißen Wasserbad in einer Hauptschrumpfrichtung um mindestens 50 % schrumpft.

2. Etikett, umfassend die Polymerfolie nach Anspruch 1. 20 3. Polymerfolie nach Anspruch 1, wobei die Polymerfolie transparent ist.

4. Polymerfolie nach Anspruch 1, wobei das Polyesterharz eine so hohe Glasübergangstemperatur aufweist, dass die Polymerfolie gegenüber Schrumpfung bei normalerweise beim Transport auftretenden Temperaturen resistent ge- 25 macht wird.

5. Polymerfolie nach Anspruch 1, wobei das 2-Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von 5 bis 50 Molprozent vorliegt.

30 6. Polymerfolie nach Anspruch 1, wobei das 2- Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von 10 bis 35 Molprozent vorliegt.

7. Polymerfolie nach Anspruch 1, wobei das 2- Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von 20 bis 30 Molprozent vorliegt. 35 8. Polymerfolie nach Anspruch 1, wobei das 2-Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von mehr als 10 Molprozent vorliegt.

9. Polymerfolie nach Anspruch 1, wobei das 2- Methyl-1,3-propandiol in dem Polyesterharz in einer Menge von 50 bis 40 100 Molprozent vorliegt.

10. Polymerfolie nach Anspruch 1, wobei die Polymerfolie eine Schrumpfung in einer Hauptschrumpfrichtung von min- destens 50 % aufweist.

45 11. Polymerfolie nach Anspruch 1, wobei die Polymerfolie eine Schrumpfung in einer Hauptschrumpfrichtung von 50 % bis 80 % aufweist.

12. Polymerfolie nach Anspruch 1, wobei die Polymerfolie eine Schrumpfung in einer Hauptschrumpfrichtung von 70 % bis 80 % aufweist. 50 13. Polymerfolie nach Anspruch 1, wobei das Glykol Ethylenglykol umfasst.

14. Polymerfolie nach Anspruch 1, wobei das Glykol Ethylenglykol und ein weiteres Glykol umfasst.

55 15. Polymerfolie nach Anspruch 1, wobei die Dicarbonsäure Terephthalsäure umfasst.

16. Polymerfolie nach Anspruch 1, wobei die Polymerfolie ferner ein weiteres Harz umfasst.

7 EP 1 638 748 B1

17. Polymerfolie nach Anspruch 16, wobei es sich bei dem weiteren Harz um PETG handelt.

18. Polymerfolie nach Anspruch 16, wobei es sich bei dem weiteren Harz um Polyethylennaphthalat handelt.

5 19. Polymerfolie nach Anspruch 16, wobei es sich bei dem weiteren Harz um Polystyrol handelt.

20. Polymerfolie nach Anspruch 1, die ferner eine Beschichtung auf der Polymerfolie umfasst.

21. Polymerfolie nach Anspruch 20, wobei die Beschichtung wässrig ist. 10 22. Polymerfolie nach Anspruch 1, wobei die Polymerfolie eine Dicke von 10 bis 200 Mikron aufweist.

23. Polymerfolie nach Anspruch 1, wobei die Polymerfolie eine Dicke von 25 bis 100 Mikron aufweist.

15 24. Polymerfolie nach Anspruch 1, wobei das Polyesterharz eine Glasübergangstemperatur von 50 bis 72 Grad Celsius aufweist.

25. Polymerfolie nach Anspruch 1, wobei das Polyesterharz eine Glasübergangstemperatur von 55 bis 65 Grad Celsius aufweist. 20 26. Verfahren zur Bildung einer Polymerfolie, bei dem man:

ein modifiziertes Polyesterharz, das aus Monomeren, die eine Dicarbonsäure und ein Glykol umfassen, poly- merisiert ist, wobei das Glykol 2-Methyl-1,3-propandiol umfasst, zu der Polyesterfolie extrudiert, 25 wobei die Polymerfolie nach zehn Sekunden in einem 80 Grad Celsius heißen Wasserbad in einer Haupt- schrumpfrichtung um mindestens 50 % schrumpft.

27. Verfahren nach Anspruch 26, bei dem man ferner während der Folienherstellung in- line eine Beschichtung auf die Polymerfolie aufbringt. 30 28. Verfahren nach Anspruch 26, bei dem man ferner während der Herstellung Wärme auf die Polymerfolie einwirken lässt.

29. Verfahren nach Anspruch 26, bei dem man ferner nach der Herstellung Wärme auf die Polymerfolie einwirken lässt, 35 um Schrumpfung zu bewirken.

30. Verfahren nach Anspruch 29, bei dem die maximale Schrumpfung bei weniger als 80 Grad Celsius erreicht wird.

31. Verfahren nach Anspruch 26, bei dem man ferner die Polyesterfolie in mindestens einer Richtung orientiert. 40 32. Verfahren nach Anspruch 31, bei dem man die Polymerfolie in einer Hauptstreckrichtung auf das Zwei- bis Zehnfache streckt.

33. Verfahren nach Anspruch 31, bei dem man die Polymerfolie in einer Hauptstreckrichtung auf das Vier- bis Sieben- 45 fache streckt.

Revendications

50 1. Film polymère thermorétractable comprenant une résine de polyester modifié qui représente une résine de polyé- thylène téréphtalate modifié polymérisée à partir de monomères englobant un acide dicarboxylique et un glycol, le glycol englobant le 2-méthyl-1,3-propanediol et le 2-méthyl-1,3-propanediol remplaçant en partie ledit glycol, et le 2-méthyl-1,3-propanediol étant présent dans la résine de polyester en une quantité d’au moins 5 moles % et le film polymère manifestant un rétrécissement à concurrence d’au moins 50 % dans une direction de rétrécissement 55 principale après 10 secondes dans un bain-marie à 80 °C.

2. Étiquette englobant le film polymère selon la revendication 1.

8 EP 1 638 748 B1

3. Film polymère selon la revendication 1, dans lequel le film polymère est transparent.

4. Film polymère selon la revendication 1, dans lequel la résine de polyester possède une température de transition vitreuse qui est suffisamment élevée pour rendre le film polymère résistant au rétrécissement à des températures 5 qu’il rencontre normalement lors de l’expédition.

5. Film polymère selon la revendication 1, dans lequel le méthyl-2- 1,3-propanediol est présent dans la résine de polyester à concurrence de 5 à 50 moles %.

10 6. Film polymère selon la revendication 1, dans lequel le méthyl-2- 1,3-propanediol est présent dans la résine de polyester à concurrence de 10 à 35 moles %.

7. Film polymère selon la revendication 1, dans lequel le méthyl-2- 1,3-propanediol est présent dans la résine de polyester à concurrence de 20 à 30 moles %. 15 8. Film polymère selon la revendication 1, dans lequel le méthyl-2- 1,3-propanediol est présent dans la résine de polyester à concurrence de plus de 10 moles %.

9. Film polymère selon la revendication 1, dans lequel le méthyl-2- 1,3-propanediol est présent dans la résine de 20 polyester à concurrence de 50 à 100 moles %.

10. Film polymère selon la revendication 1, dans lequel le film polymère possède un rétrécissement dans la direction de rétrécissement principale à concurrence d’au moins 50 %.

25 11. Film polymère selon la revendication 1, dans lequel le film polymère possède un rétrécissement dans la direction de rétrécissement principale à concurrence de 50 % à 80 %.

12. Film polymère selon la revendication 1, dans lequel le film polymère possède un rétrécissement dans la direction de rétrécissement principale à concurrence de 70 % à 80 %. 30 13. Film polymère selon la revendication 1, dans lequel le glycol englobe de l’éthylèneglycol.

14. Film polymère selon la revendication 1, dans lequel le glycol englobe de l’éthylèneglycol et un glycol supplémentaire.

35 15. Film polymère selon la revendication 1, dans lequel l’acide dicarboxylique englobe de l’acide téréphtalique.

16. Film polymère selon la revendication 1, dans lequel le film polymère englobe en outre une résine supplémentaire.

17. Film polymère selon la revendication 16, dans lequel la résine supplémentaire est du PETG. 40 18. Film polymère selon la revendication 16, dans lequel la résine supplémentaire est du polyéthylène naphtalate.

19. Film polymère selon la revendication 16, dans lequel la résine supplémentaire est du polystyrène.

45 20. Film polymère selon la revendication 1, englobant en outre un revêtement sur le film polymère.

21. Film polymère selon la revendication 20, dans lequel le revêtement est aqueux.

22. Film polymère selon la revendication 1, dans lequel le film polymère possède une épaisseur de 10 à 200 microns. 50 23. Film polymère selon la revendication 1, dans lequel le film polymère possède une épaisseur de 25 à 100 microns.

24. Film polymère selon la revendication 1, dans lequel la résine de polyester possède une température de transition vitreuse de 50 à 72 °C. 55 25. Film polymère selon la revendication 1, dans lequel la résine de polyester possède une température de transition vitreuse de 55 à 65 °C.

9 EP 1 638 748 B1

26. Procédé de production d’un film polymère comprenant l’étape consistant à :

extruder une résine de polyester modifié polymérisée à partir de monomères englobant un acide dicarboxylique et un glycol, le glycol englobant le 2-méthyl-1,3-propanediol, pour obtenir le film de polyester ; 5 le film polymère manifestant un rétrécissement à concurrence d’au moins 50 % dans une direction de rétrécis- sement principale après 10 secondes dans un bain-marie à 80 °C.

27. Procédé selon la revendication 26, englobant en outre l’étape consistant à appliquer un revêtement sur le film polymère en ligne au cours de la production du film. 10 28. Procédé selon la revendication 26, englobant en outre l’étape consistant à appliquer de la chaleur sur le film polymère lors de sa production.

29. Procédé selon la revendication 26, englobant en outre l’étape consistant à appliquer de la chaleur sur le film polymère 15 après sa production pour obtenir un rétrécissement.

30. Procédé selon la revendication 29, dans lequel on obtient un rétrécissement maximal à une température inférieure à 80 °C.

20 31. Procédé selon la revendication 26, englobant en outre l’étape consistant à orienter le film de polyester dans au moins une direction.

32. Procédé selon la revendication 31, dans lequel le film polymère est étiré à concurrence de 2 à 10 fois dans la direction d’étirage principale. 25 33. Procédé selon la revendication 31, dans lequel le film polymère est étiré à concurrence de 4 à 7 fois dans la direction d’étirage principale.

30

35

40

45

50

55

10 EP 1 638 748 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 4996291 A, Yoshinaka [0005] • US 5350601 A, Culbertson [0020]

11