<<

Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 700 410 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) intci.6: C08G 63/00, C08L 67/00, of the grant of the patent: C08G 63/553 02.06.1999 Bulletin 1999/22 (86) International application number: (21) Application number: 94923422.3 PCT/US94/07763 Date of 08.07.1994 (22) filing: (87) International publication number: WO 95/03362 (02.02.1995 Gazette 1995/06)

(54) STYRENE SOLUBLE UNSATURATED RESIN FROM POLYETHYLENE TEREPHTHALATE STYROLLOSLICHES UNGESATTIGTES POLYESTERHARZ VON POLYETHYLENTEREPHTALAT RESINE POLYESTER INSATUREE SOLUBLE AU STYRENE OBTENUE A PARTIR DU TEREPHTHALATE DE POLYETHYLENE

(84) Designated Contracting States: (74) Representative: VOSSIUS & PARTNER DE FR GB IT Siebertstrasse 4 81675 Miinchen (DE) (30) Priority: 13.07.1993 US 91488 (56) References cited: (43) Date of publication of application: US-A- 4 246 367 US-A- 5 380 793 13.03.1996 Bulletin 1996/11 • DATABASE WPI Week 8124 Derwent (73) Proprietor: ASHLAND OIL, INC. Publications Ltd., London, GB; AN 81 -4341 2d & Columbus, OH 43216 (US) SU-A-765 291 (GAIVORONSKAYA N I) , 26 September 1980 (72) Inventor: PEPPER, Timothy, Patrick Dublin, OH 4301 7 (US)

DO o o o Is- Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. a. 99(1) European Patent Convention). LU

Printed by Jouve, 75001 PARIS (FR) EP0 700 410 B1

Description

[0001] This invention relates to a novel unsaturated polyester resin composition and to a process for making such a resin from polyethylene terephthalate (PET). This process uses inexpensive glycols to depolymerize or digest the 5 PET and form an intermediate. The intermediate is reacted with unsaturated or anhydride and dicyclopentadiene to provide a resin unexpectedly highly soluble in styrene. These resins are used, when further reacted with styrene to make casting marble. When reinforced with they are used to manufacture auto parts and bathroom fixtures.

BACKGROUND 10 [0002] Polyethylene terephthalate (PET), made by reacting or dimethyl terephthalate and , is a versatile thermoplastic polyester used in synthetic fibers, extruded films such as x-ray films, molded engi- neering components, and blow molded bottles. Worldwide production of PET is above 1 ,000,000 metric tons a year. With such enormous production, effective use of PET waste is desirable. Waste PET is readily available at costs as is low as 35 cents per kilogram while its raw materials terephthalic acid and ethylene glycol cost 90 cents per kilogram and 40 cents per kilogram respectively. [0003] PET waste can be repelletized and converted into extruded or molded articles. Alternatively, PET can be converted into low molecular weight oligomers by glycolysis using inexpensive ethylene glycol or diethylene glycol or expensive . Certain of these glycolysis products can be further reacted with an unsaturated acid or 20 anhydride to make an unsaturated polyester resin which can be further reacted with large proportions of styrene to make a myriad of products. Unfortunately, as described by Vaidya and Nadkaini, in Industrial Engineering Chemical Research 1987, 26, 194-198; unsaturated polyester resins synthesized from ethylene glycol-based glycolyzed PET are incompatible with styrene monomer. However, Vaidya and Nadkaini found that PET waste depolymerized with expensive propylene glycol could be reacted with maleic anhydride and mixed with styrene monomer to produce useful 25 unsaturated polyester resins. These resins were comparable in processability to conventional general purpose resin. [0004] It would be economically advantageous if a process could be identified in which PET, glycolyzed using less costly glycols than propylene glycol, could effectively be used in producing styrenated, unsaturated polyester resins for commercial use. Any unsaturated polyester made using glycolyzed PET should be highly soluble in styrene so that manufacturers can use abundant proportions of styrene as they make articles. Some new approach is needed in order 30 to solve the problem, described by Vaidya and Nadkaini, of the incompatibility with styrene monomer of unsaturated made using ethylene glycol based glycolyzed PET.

OBJECTS

35 [0005] It is, therefore, an object of this invention, to provide a method of enhancing the styrene solubility of unsaturated polyesters made from PET depolymerized using inexpensive glycols. [0006] A further object of this invention is to identify a reactive monomer or coreactant which will enhance the solubility of a polyester resin in styrene.

40 BROAD STATEMENT OF THE INVENTION

[0007] In one aspect this invention is a method of making a scrap PET glycolysate into an unsatuated polyester resin highly soluble in styrene by incorporating dicyclopentadiene or cyclopentadiene into the resin. In another aspect this invention is the use of a PET glycolysate made using inexpensive ethylene glycol or diethylene glycol. 45 DETAILED DESCRIPTION OF THE INVENTION

[0008] The first ingredient in the polyester resin of this invention is PET or scrap PET. Scrap PET is readily available from Morgan and Company, Shelby, North Carolina and Martin Colorfi, Trenton, South Carolina. 50 [0009] PET has the structure:

55

2 EP0 700 410 B1

O O 1 ii II 5 HO+CHj-OS-O-C- -c-o- HO+C^-CMj-O-C-^^-C-O+CMj-CHj-OM L Jn|»l00)

10 [0010] If the glycolysis of PET is carried out with excess amounts of ethylene glycol, the same structure is formed but n is now estimated to be less than ten. Glycolysis with other glycols will yield low molecular weight terephthalate oligomers. Glycols that yield particularly soluble unsaturated polyesters in styrene are propylene glycol, dipropylene glycol, and neopentyl glycol. These are relatively expensive. Ethylene glycol and diethylene glycol yield relatively in- soluble polyester resins in styrene, but have economic advantages because they are relatively cheaper. is [0011] In addition to using ethylene glycol or diethylene glycol to digest PET, another useful glycol source is the B- 270 mixed glycol and monomer stream available from Eastman Chemical Products, Inc., Kingsport, Tennessee which contains ethylene glycol, diethylene glycol, triethylene glycol and 1 ,4-cyclohexane dimethanol. [0012] Unsaturated polyesters can be formed by reacting the PET glycolysate with a, p unsaturated acid or anhydride. Among the useful unsaturated and anhydrides are: maleic acid, maleic anhydride, fumaric acid, aconitic acid, 20 mesaconic acid, citraconic acid, itaconic acid and halo and alkyl derivatives of such acids; the preferred acid and anhydride being maleic acid and maleic anhydride. Mixed streams may also be used. [0013] It was found that PET glycolysates made using ethylene glycol or diethylene glycol and then esterified with unsaturated acid or anhydride were not sufficiently soluble in styrene. "Solubility in styrene" is a test which is especially important to the user of unsaturated polyester resins. The styrene is required to further react, or "cure" the resin in 25 forming final products. It is also used to adjust the viscosity for proper processing properties. In addition, since styrene generally costs less than polyester resin, the user wants to use as much styrene as possible and generally wants to be able to combine approximately equal parts polyester resin and styrene. This formulation is made by determining the percent dry weight of the resin product and then adding enough styrene to give a 50% styrene content final formu- lation. Experimentally, when resins are soluble in an equal weight of styrene, inspection of the mixture shows a homo- 30 geneous liquid. When resins are not soluble in an equal weight of styrene, the mixture separates into two distinct layers. Typically, a resin may be soluble in 30% or 40% styrene but not soluble in 50% or 60% styrene. According to this invention, a resin made from PET which is not soluble in 30%, 40%, 50% or 60% styrene, is made soluble in 30%, 40%, 50% or 60% styrene by introducing DCPD into the resin. In this application when a resin is described as "soluble in 50% styrene" the phrase is meant to include from 45% to 55% styrene. 35 [0014] Dicyclopentadiene is a well-known, readily available raw material available from the petroleum industry. The report by RL. Smith et al. "The Use of Dicyclopentadiene in Polyesters" Proceedings of the 22nd Annual Technical Conference. Society of the Plastics Industry, Reinforced Plastics Division, Washington, D.C. (1967) describes modifying polyesters with a concentrated dicyclopentadiene extract. Various levels of purity are available and all are useful in this invention. 40 [0015] There are two different reactions in which dicyclopentadiene (DCPD) is incorporated into polyester resins. Which manner of addition occurs depends on the sequence of addition and the reaction conditions. [0016] When DCPD is reacted so as to be the terminal group the polymer is a norbornyl terminated unsaturated polyester resin (Figure 1 ). This can be effected by adding the acid directly across one of the double bonds of the DCPD, or forming the DCPD , and then esterifying through a condensation reaction. Preparation of norbornyl terminated 45 unsaturated polyester resins is taught by:

U.S. Patents 4029848 4117030 4148765 50 4167542 4233432 4246367 4348499 4360634 55 4409371 4410686 4435530 4471101

3 EP0 700 410 B1

4753982

which are incorporated herein by reference. Any polyester having hydroxyl orcarboxyl terminal groups can be reacted with a norbornyl radical to form such norbornyl terminated polyester resins. 5

10

[0017] Dicyclopentadiene can also be incorporated into an unsaturated polyester using another reaction, where di- cyclopentadiene serves as source of cyclopentadiene, a highly reactive monomer. This conjugated diene monomer readily undergoes a Diels-Alder reaction with carbon-carbon double bonds present in the resin structure to form cy- 15 clohexene derivatives having a bridged ring or endomethylene group (Figure II). This structure may be referred to as "nadic" which is an abbreviation of endomethylene tetrahydrophthalic or "norbomene dicarboxylic". When glycol and maleic anhydride are polyesterified at approximately 200°C followed by reaction with dicyclopentadiene at 160° - 170°C the Diels-Alder reaction product is formed as described in U.S. Patents 4,233,432 and 3,825,517. This polyester con- tains the following structural unit resulting from Diels-Alder reaction of dicyclopentadiene with a maleate/fumarate unit 20 in the unsaturated polyester chain

30 [0018] The a, p-unsaturated polycarboxylic acid is preferably maleic acid, fumaric acid, the anhydride of maleic acid, or mixtures of these compounds. Such acids are readily available, have good reactivity with the glycolysis product intermediate, and result in products of good properties. [0019] Other less preferred polycarboxylic acids and anhydrides such as phthallic anhydride, , ita- conic acid, cyclohexane dicarboxylic acid, terephthalic acid, adipic acid, sebacic acid, azelaic acid, and glutaric acid 35 can be added to mixtures of maleic and fumaric acids in making unsaturated polyester resins. The total amount of acid or anhydride varies as a function of the total polyol and norbomene ingredients used. [0020] The styrene-soluble unsaturated polyester resins of this invention are soluble in other unsaturated diluents including methyl methacrylate, vinyl toluene, paramethyl styrene, divinyl benzene and diallyl phthalate including mix- tures thereof. 40 [0021] Additionally, conventional additives are incorporated into the novel resin. Accordingly, suitable curing agents, low profile additives, accelerating agents, and the like are incorporated. Reinforcement and inert additives and fillers such as glass, metal filings, and inorganic fillers such as sand or clay also are appropriate. Pigments, release agents, plasticizers, and the like also are used as is necessary, desirable, or convenient in conventional fashion. The com- pounding of such polyester resin compositions is well known in the art. 45 [0022] In the following, preferred embodiments of the invention are listed :

1 . A method for making a styrene-soluble ethylenically-unsaturated polyester which comprises the steps of:

(a) depolymerizing polyethylene terephthalate with a glycol forming an intermediate having hydroxyl groups, so (b) re-esterifying said depolymerized polyethylene terephthalate intermediate with an alpha, beta ethylenically unsaturated dicarboxylic acid or anhydride and, (c) reacting said unsaturated polyester with an effective amount of cyclopentadiene or dicyclopentadiene.

2. The method of item 1 , wherein the reactions are carried out using: 55 5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol, 30 to 95 moles unsaturated acid or anhydride, and

4 EP0 700 410 B1

2 to 95 moles cyclopentadiene or 1 to 47.5 moles dicyclopentadiene.

3. The method of item 1 wherein the method for making a styrene-soluble ethylenically-unsaturated norbornyl terminated polyester resin comprises prereacting dicyclopentadiene, water and unsaturated acid or anhydride, 5 adding a hydroxyl terminated intermediate made by depolymerizing polyethylene terephtalate with a glycol, and, heating. 4. The method of item 3, wherein the reactions are carried out using:

2 to 95 moles cyclopentadiene, or 1 to 47.5 moles dicyclopentadiene, 10 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride, 5 to 70 moles polyethylene terephthalate, and 30 to 125 moles glycol. is 5. The method of item 2 or 4, wherein the reactions are carried out using:

40 to 60 moles polyethylene terephtalate, 60 to 70 moles glycol, 50 to 60 moles unsaturated acid or anhydride, and 20 20 to 30 moles cyclopentadiene or 10 to 15 moles dicyclopentadiene.

6. The method of item 1 wherein the method for making a norbornyl terminated unsaturated polyester resin also containing tetrahydro-endo-methylene phthalic groups comprises reacting unsaturated anhydride with water and 25 dicyclopentadiene to form norbornyl terminated unsaturated acid, adding a hydroxyl terminated intermediate made by depolymerizing polyethylene terephthalate with a glycol, adding additional dicyclopentadiene, and heating. 7. The method of any one of items 1 to 6, wherein said glycol is cyclohexane dimethanol, diethylene glycol, dipro- pylene glycol, ethylene glycol, neopentyl glycol, triethylene glycol, or 2-methyl-1 ,3-propane , or mixtures there- of. 30 8. The method of any one of items 1 to 7, wherein polyethylene terephthalate is depolymerized with solubilizing glycol in the absence of propylene glycol. 9. The method of item 6, wherein the reaction is carried out using:

30 to 95 moles unsaturated anhydride, 35 2 to 105 moles water, 2 to 95 moles dicyctopentadiene, 5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol and 2 to 45 moles additional dicyclopentadiene. 40 10. The method of any one of items 1 to 9, wherein said glycol is ethylene glycol or diethylene glycol or mixtures thereof and said anhydride is maleic anhydride. 11 . The method of item 6, wherein the reactions are carried out using:

45 40 to 60 moles polyethylene terephtalate, 60 to 70 moles glycol 50 to 60 moles unsaturated acid or anhydride, 5 to 15 moles water, 5 to 12.5 moles dicyclopentadiene and, so 5 to 12.5 moles additional dicyclopentadiene.

12. The method of item 1 carried out in one pot comprising the steps of reacting an unsaturated anhydride with water and dicyclopentadiene to form norbornyl terminated unsaturated acid, adding additional dicyclopentadiene, adding polyethylene terephthalate and glycol, and heating, whereby a norbornyl-terminated unsaturated polyester 55 resin containing tetra hydroendomethylene phthalic groups is formed. 13. An unsaturated polyester resin composition soluble in styrene and useful for manufacture of gel coats, auto parts and bathroom fixtures comprising the reacted mixture of:

5 EP0 700 410 B1

a) a hydroxyl terminated intermediate made by depolymerizing polyethylene terephthalate with a glycol, b) an alpha, beta ethylenically unsaturated acid, and c) cyclopentadiene or dicyclopentadiene.

5 14. The composition of item 13 comprising

5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol, 30 to 95 moles unsaturated acid or anhydride and 10 2 to 95 moles cyclopentadiene or 1 to 47.5 moles dicyclopentadiene.

1 5. The composition of item 1 3 which is a norbornyl terminated unsaturated polyester resin composition comprising the reacted mixture of: is a) dicyclopentadiene prereacted with water and unsaturated acid or anhydride, and b) a hydroxyl terminated intermediate made by depolymerizing polyethylene terephtalate with solubilizing gly- col.

16. The composition of item 15 comprising 20 2 to 95 moles cyclopentadiene or 1 to 47.5 moles dicyclopentadiene, 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride, 5 to 70 moles polyethylene terephtalate, and 25 30 to 125 moles glycol.

17. The composition of item 14 or 16 comprising

40 to 60 moles polyethylene terephthalate, 30 60 to 70 moles glycol 50 to 60 moles unsaturated acid or anhydride, and 20 to 30 moles cyclopentadiene or 10 to 15 moles dicyclopentadiene.

35 18. The composition of item 13 which is a norbornyl terminated unsaturated polyester resin composition also containing cyclopentadiene added by Diels-Alder addition reaction, comprising the reacted mixture of:

a) dicyclopentadiene prereacted with water and an alpha, beta ethylenically unsaturated acid or anhydride, b) a hydroxyl-terminated intermediate made by depolymerizing scrap polyethylene terephthalate with a solu- 40 bilizing glycol, and c) additional dicyclopentadiene.

19. The composition of any one of items 13 to 18, wherein said glycol is cyclohexane dimethanol,

45 diethylene glycol, dipropylene glycol, ethylene glycol, neopentyl glycol, triethylene glycol or 2-mehyl-1 ,3-propane diol so or mixtures thereof.

20. The composition of any one of items 1 3 to 1 9, wherein polyethylene terephthalate is depolymerized with glycol in the absence of propylene glycol. 21. The composition of item 18 comprising 55 2 to 95 moles dicyclopentadiene, 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride,

6 EP0 700 410 B1

5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol, and 2 to 45 moles additional cyclopentadiene.

5 22. The composition of any one of items 13 to 21, wherein said glycol is ethylene glycol or diethylene glycol or mixtures thereof and said anhydride is maleic anhydride. 23. The composition of item 21 comprising

40 to 60 moles polyethylene terephthalate 10 60 to 70 moles glycol 50 to 60 moles unsaturated acid or anhydride 10 to 15 moles dicyclopentadiene, and 10 to 15 moles additional dicyclopentadiene is [0023] The following Examples describe the method and compositions of this invention. All units are in the metric system unless expressly stated otherwise. Further, all references cited herein are expressly incorporated by reference.

MATERIALS

20 [0024] Recovered Polyethylene terephthalate (PET) film from x-ray film was obtained from American Repet. Dieth- ylene (DEG), ethylene glycol (EG) and propylene glycol (PG) were obtained from Dow Chemical. Dicyclopentadiene (DCPD) of 98% purity was obtained from Exxon Chemical. Technical grade hydroquinone was obtained from Eastman Chemicals. High purity styrene containing 50 ppm tertiary-butylcatechol inhibitor (TBC) was obtained from Arco Chem- ical Co. or Amoco and can be used interchangeably. Maleic anhydride (MAN) briquettes were obtained from Ashland 25 Chemical, Inc. [0025] Example 1 describes the glycolysis of PET scrap film, the preparation of unsaturated polyester (UP) resins from the glycolyzates and solubilizing the unsaturated polyester resins using dicyclopentadiene to form a Diels-Alder product.

30 EXAMPLE 1

GLYCOLYSIS OF PET

[0026] PET film was charged to a 3 liter reaction kettle with a detachable 4 neck lid. A stirrer, thermocouple, nitrogen 35 sparge and full condenser were attached. The glycol was then charged, keeping the amount of ethylene glycol to a minimum necessary to glycolyze the PET. The mixture was then brought to a stirring reflux with a constant nitrogen sparge. These mixtures were reacted until they became homogenous. Any ethylene glycol that had been held out was added at this point. The resulting products are labelled according to the charges, i.e., if an original charge was 27% EG, and 73% PET, the label would be PETEG27. The charges run are labelled and listed below in Table 1 . 40

7 1—1—

(C CM O O) OOOO V oooo

CO o E in m co c\j o (n «5 CO N. CM <3" mi oooeocd c\i o cm co cm Q CO E co i>- o w in h- i- CO O Q O) V ID O) CO rr O CO CM CO CAi to 0) O E UU won h-co^ro _J V (D T h- rr CD O co id -r- Is-' cm cm *r in .

CO E CO CM C7) rr CO CM O) v_ ^— O CD (O N O) V O) CMTrr^oooo-iTT-cD--

10 CD o E OCOCOOCOt-COOCON-O i-oc\i'-T--<-cDcor^030 1— ^co^'coco'co'co'cm cmcm'co 1X1 Cl-

io E co co-^cDcoooocor^cooTr cocj)co^-QCfiO)cocor^O) Oi r»LocMCDCDincDinininin

O f^ O ill O iu 0)0 O O ^ CD

OOOUIUlOLJOUlllllU LUUULUOOa.QLUOQO 1— t— h-f— Hf— 1— H-h- UJUIUJUJUJUJUIUUJIIJUJ 0.0.0.0.0.0.0.0.0.0.0.

8 EP0 700 410 B1

PREPARATION OF UNSATURATED POLYESTER (UP) RESINS

[0027] The UP resins were prepared by reacting the glycolyzed products with maleic anhydride (MAN) to give a theoretical ratio of 1.1/1 hydroxyl to carboxyl group. The reaction was carried out in the same kettle as the digestion. 5 The reflux condenser was replaced with a distillation column. The reaction was heated to 430°F (221 °C), maintaining a column top temperature of 212° (100°C) to 220°F (105°C). Once the column top temperature dropped below 200°F, the sparge tube was pushed to the bottom of the kettle, and turned on high. Each resin was reacted to below a 30 acid number (AN) and checked for solubility in 50% styrene and acid number. Only the PET-PG40 gave a solution in 50% styrene. The other products were incompatible with 50% styrene and separated into two layers. 10 PREPARATION OF DICYCLOPENTADIENE-PET GLYCOLYZATE UNSATURATED POLYESTER RESINS

[0028] The styrene insoluble resins were cooled to 360°F (182°C), and a reflux condenser replaced the distilled column. The sparge was turned off. The noted charge of DCPD was added dropwise over approximately 1 hour. The is reaction was held an additional hour at 360°F (182°C). The reflux condenser was once again replaced with a distillation column, and the sparge turned on. The cook temperature was brought up to410°F (210°C) and held for approximately one hour. The polyester was then thinned into inhibited styrene, and cooled to room temperature. Six of the styrene insoluble polyesters were treated in this fashion. All six products were now soluble in 50% styrene

9 EP0 700 410 B1

TABLE 2

5 CHARGE parts moles

PET-DEG 30 783 10 . MAN 186 1.80 DCPD 31 0.23

PET-DEG 15 40 738 MAN 231 2.36 0 DCPD 31 0.29 20 PET-EG 47 531

MAN 341 3.47

DCPD 125 0.98

PET-DEG 47 625

MAN 340 3.12 4 30 DCPD 69 0.52

PET-DEG 9 EG 34 567

MAN 306 3.12 35 5c . ______DCPD 127 0.96

PET-DEG 26 EG 15 651

40 MAN 270 2.76 ^ DCPD 79 0.60

45 EXAMPLE 2

[0029] Example 2 describes the preparation of a styrene soluble unsaturated polyester by the reaction of a PET glycolyzate with maleic anhydride, and the reaction product of maleic anhydride and dicyclopentadiene forming a nor- bornyl terminated unsaturated polyester resin. so [0030] DCPD (1 057 parts, 8.0 moles) and water (1 59 parts, 8.8 moles) were charged to a liter reactor equipped with a detachable lid, stirrer, nitrogen sparge, thermocouple and reflux condenser. Maleic anhydride (784 parts, 8.0 moles) was slowly added to the reactor in order to control the exotherm. The reaction temperature was maintained at 250-270° F (121-132°C) for 2.5 hours. [0031] The above DCPD, water and maleic anhydride reaction mixture (336 parts), PET DEG 47 glycolysate (2231 55 parts) and additional maleic anhydride (593 parts, 605 moles) were reacted in a 3 liter flask equipment with a stirrer nitrogen sparge, thermocouple and distillation column at 420°F (215°C) until an acid value of 10 was obtained. [0032] The resulting norbornyl terminated unsaturated polyester resin product was soluble in 50% styrene, whereas the product made using PET DEG 47 glycolysate and maleic anhydride, but without DCPD was insoluble in 50%

10 EP0 700 410 B1

styrene. [0033] Examples 3, 4 and 5 describe the production of styrene soluble unsaturated polyesters using PET glycolysate and DCPD which has been incorporated into the polyesters as both norbornyl terminated and Diels-Alder adducts.

5 EXAMPLE 3

[0034] PET DEG 39 glycolysate (2081 parts) was charged to a 3 liter reactor equipped with a stirrer, nitrogen sparge, thermocouple and reflux condenser. The glycolysate was heated to 1 90°F (88°C), then water (1 31 parts, 7.28 moles), maleic anhydride (651 parts, 6.64 moles) and DCPD (88 parts, 0.67 moles) were charged to the reactor. The reaction 10 was continued at 260°F (1 27°C) for 2 hours. The reflux condenser was replaced with a distillation column and mixture was reacted at 420°F (215°C) until an acid value of 11 was obtained. [0035] The resulting product was soluble in 50% styrene, whereas the product made using the PET DEG 39 glyco- lysate and maleic anhydride, but without DCPD, was insoluble in 50% styrene. is Example 4

[0036] DCPD (91 parts, 0.69 moles) and water (1 4 parts, 0.78 moles) were charged to a 3 liter reactor equipped with a stirrer, thermocouple, nitrogen sparge and reflux condenser. Maleic anhydride (67.5 parts, 0.69 moles) was slowly added to the reactor and then the mixture was heated to 250-270°F (121-132°C) for 2.5 hours. 20 [0037] The reflux condenser was replaced with a distillation column and PET DEG 40 glycolsate (2200 parts) and maleic anhydride (675 parts, 6.89 moles) were charged to the reactor. The mixture was heated at 420°F (215°C) until an acid value of 30 was obtained. [0038] The resin was cooled to 360°F (182°C) and DCPD (91 parts, 0.69 moles) was added to the reactor. The reaction was continued at 360°F (182°C) for an additional 2 hours. The reflux condenser was replaced with a distillation 25 column and the mixture reacted at 420°F (215°C) until an acid value of less than 20 was obtained. [0039] The resulting unsaturated polyester resin was soluble in 50% styrene.

Example 5

30 [0040] DCPD (457 parts, 3.46 moles) and water (68 parts, 3.78 moles) were charged to a 3 liter reactor equipped with stirrer, thermocouple, nitrogen sparge and reflux condenser. Maleic anhydride 33 parts, 3.46 moles was slowly added to the reactor and then the mixture was heated to 250-270°F (121-132°C) for 2.5 hours. [0041] The mixture was heated to 320°F (160°C) and then DCPD (228 parts, 1.73 moles) was added to the reactor. The reaction was continued for an additional 3 hours at 360°F (182°C). 35 [0042] PET (929 parts, 4.84 moles) and EG (407 parts, 6.56 moles) were charged to the reactor. The reflux condenser was replaced with a distillation column. The mixture was reacted at 430°F (221 °C) until the mixture became homog- enous. [0043] The mixture was cooled to 340°F (171°C) and then maleic anhydride (677 parts, 6.91 moles and EG (150 parts, 2.42 moles) were charged to the reactor. The mixture was reacted at 410°F (210°C) until an acid value of less 40 than 30 was obtained. [0044] The resulting unsaturated polyester was soluble in 50% styrene.

Claims 45 1. A method for making a styrene-soluble ethylenically-unsaturated polyester which comprises the steps of:

(a) depolymerizing polyethylene terephthalate with a glycol forming an intermediate having hydroxyl groups, (b) re-esterifying said depolymerized polyethylene terephthalate intermediate with an alpha, beta ethylenically so unsaturated dicarboxylic acid or anhydride and, (c) reacting said unsaturated polyester with an effective amount of cyclopentadiene or dicyclopentadiene.

2. The method of Claim 1 , wherein the reactions are carried out using:

55 5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol, 30 to 95 moles unsaturated acid or anhydride, and 2 to 95 moles cyclopentadiene or 1 to 47.5 moles dicyclopentadiene.

11 EP0 700 410 B1

3. The method of claim 1 wherein the method for making a styrene-soluble ethylenically-unsaturated norbornyl-ter- minated polyester resin comprises prereacting dicyclopentadiene, water and unsaturated acid or anhydride, adding a hydroxyl-terminated intermediate made by depolymerizing polyethylene terephthalate with a glycol, and, heating.

5 4. The method of Claim 3, wherein the reactions are carried out using:

2 to 95 moles cyclopentadiene, or 1 to 47.5 moles dicyclopentadiene, 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride, 10 5 to 70 moles polyethylene terephthalate, and 30 to 125 moles glycol.

5. The method of Claim 2 or 4, wherein the reactions are carried out using: is 40 to 60 moles polyethylene terephthalate, 60 to 70 motes glycol, 50 to 60 moles unsaturated acid or anhydride, and 20 to 30 moles cyclopentadiene or 10 to 15 moles dicyclopentadiene. 20 6. The method of claim 1 wherein the method for making a norbornyl terminated unsaturated polyester resin also containing tetrahydro-endo-methylene phthalic groups comprises reacting unsaturated anhydride with water and dicyclopentadiene to form norbornyl-terminated unsaturated acid, adding a hydroxyl terminated intermediate made by depolymerizing polyethylene terephthate with a glycol, adding additional dicyclopentadiene, and heating. 25 7. The method of any one of Claims 1 to 6, wherein said glycol is cyclohexane dimethanol, diethylene glycol, dipro- pylene glycol, ethylene glycol, neopentyl glycol, triethylene glycol, or 2-methyl-1 ,3-propane diol, or mixtures there- of.

30 8. The method of any one of Claims 1 to 7, wherein polyethylene terephthalate is depolymerized with solubilizing glycol in the absence of propylene glycol.

9. The method of Claim 6, wherein the reaction is carried out using:

35 30 to 95 moles unsaturated anhydride, 2 to 105 moles water, 2 to 95 moles dicyclopentadiene, 5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol and 40 2 to 45 moles additional dicyclopentadiene.

10. The method of any one of Claims 1 to 9, wherein said glycol is ethylene glycol or diethylene glycol or mixtures thereof and said anhydride is maleic anhydride.

45 11. The method of Claim 6, wherein the reactions are carried out using:

40 to 60 moles polyethylene terephthalate, 60 to 70 moles glycol 50 to 60 moles unsaturated acid or anhydride, so 5 to 15 moles water, 5 to 12.5 moles dicyclopentadiene and, 5 to 12.5 moles addittional dicyclopentadiene.

12. The method of claim 1 carried out in one pot comprising the steps of reacting an unsaturated anhydride with water 55 and dicyclopentadiene to form norbornyl terminated unsaturated acid, adding additional dicyclopentadiene, adding polyethylene terephthalate and glycol, and heating, whereby a norbornyl terminated unsaturated polyester resin containing tetra hydroendomethylene phthalic groups is formed.

12 EP0 700 410 B1

13. An unsaturated polyester resin composition soluble in styrene and useful for manufacture of gel coats, auto parts and bathroom fixtures comprising the reacted mixture of:

a) a hydroxyl-terminated intermediate made by depolymerizing polyethylene terephthalate with a glycol, 5 b) an alpha, beta ethylenically unsaturated acid, and c) cyclopentadiene or dicyclopentadiene.

14. The composition of Claim 13 comprising

10 5 to 70 moles polyethylene terephthalate, 30 to 125 moles glycol, 30 to 95 moles unsaturated acid or anhydride and 2 to 95 moles cyclopentadiene or 1 to 47,5 moles dicyclopentadiene. is 15. The composition of claim 13 which is a norbornyl terminated unsaturated polyester resin composition comprising the reacted mixture of:

a) dicyclopentadiene prereacted with water and unsaturated acid or anhydride, and b) a hydroxyl-terminated intermediate made by depolymerizing polyethylene terephthalate with solubilizing 20 glycol.

16. The composition of Claim 15 comprising

2 to 95 moles cyclopentadiene or 1 to 47.5 moles dicyclopentadiene, 25 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride, 5 to 70 moles polyethylene terephthalate, and 30 to 125 moles glycol.

30 17. The composition of Claim 14 or 16 comprising

40 to 60 moles polyethylene terephthalate, 60 to 70 moles glycol 50 to 60 moles unsaturated acid or anhydride, 35 and 20 to 30 moles cyclopentadiene or 10 to 15 moles dicyclopentadiene.

18. The composition of claim 13 which is a norbornyl terminated unsaturated polyester resin composition also con- taining cyclopentadiene added by Diels-Alder addition reaction, comprising the reacted mixture of: 40 a) dicyclopentadiene prereacted with water and an alpha, beta ethylenically unsaturated acid or anhydride, b) a hydroxyl terminated intermediate made by depolymerizing scrap polyethylene terephthalate with a solu- bilizing glycol, and c) additional dicyclopentadiene. 45 19. The composition of any one of Claims 13 to 18, wherein said glycol is cyclohexane dimethanol,

diethylene glycol, dipropylene glycol, so ethtlene glycol, neopentyl glycol, triethylene glycol or 2-methyl-1 ,3-propane diol or mixtures thereof.

55 20. The composition of any one of Claims 1 3 to 19, wherein polyethylene terephthalate is depolymerized with glycol in the absence of propylene glycol.

21. The composition of Claim 18 comprising

13 EP0 700 410 B1

2 to 95 moles dicyclopentadiene, 2 to 105 moles water, 30 to 95 moles unsaturated acid or anhydride, 5 to 70 moles polyethylene terephthalate, 5 30 to 125 moles glycol, and 2 to 45 moles additional cyclopentadiene.

22. The composition of any one of Claims 13 to 21, wherein said glycol is ethylene glycol or diethylene glycol or mixtures thereof and said anhydride is maleic anhydride. 10 23. The composition of Claim 21 comprising

40 to 60 moles polyethylene terephthalate 60 to 70 moles glycol is 50 to 60 moles unsaturated acid or anhydride 10 to 15 moles dicyclopentadiene, and 10 to 15 moles additional dicyclopentadiene

20 Patentanspriiche

1. Verfahren zur Herstellung eines styrol-loslichen, ethylenisch ungesattigten Polyesters umfassend die Schritte:

(a) Depolymerisation von Polyethylenterephthalat mit einem Glykol, wobei ein Zwischenprodukt mit Hydroxyl- 25 gruppen gebildet wird, (b) Wiederveresterung des Zwischenprodukts der Polyethylenterephthalatdepolymerisation mit einer alpha, beta-ethylenisch ungesattigten Dicarbonsaure oder einem alpha, beta-ethylenisch ungesattigten Anhydrid und (c) Umsetzen des ungesattigten Polyesters mit einer wirksamen Menge Cyclopentadien oder Dicyclopenta- dien. 30 2. Verfahren nach Anspruch 1 , wobei die Reaktionen durchgefiihrt werden unter Verwendung von:

5 bis 70 Mol Polyethylenterephthalat, 30 bis 125 Mol Glykol, 35 30 bis 95 Mol ungesattigter Saure oder ungesattigtem Anhydrid, und 2 bis 95 Mol Cyclopentadien oder 1 bis 47,5 Mol Dicyclopentadien.

3. Verfahren nach Anspruch 1 , wobei das Verfahren zur Herstellung eines styrolloslichen, ethylenisch ungesattigten, norbornyl-terminierten Polyesterharzes umfaBt Vorreaktion von Dicyclopentadien, Wasser und ungesattigter Sau- 40 re oder ungesattigtem Anhydrid, Zugabe eines hydroxyl-terminierten Zwischenproduktes, das durch die Depoly- merisation von Polyethylenterephthalat mit einem Glykol hergestellt wird, und Erhitzen umfaBt.

4. Verfahren nach Anspruch 3, wobei die Reaktionen durchgefiihrt werden unter Verwendung von:

45 2 bis 95 Mol Cyclopentadien oder 1 bis 47,5 Mol Dicyclopentadien, 2 bis 105 Mol Wasser, 30 bis 95 Mol ungesattigter Saure oder ungesattigtem Anhydrid, 5 bis 70 Mol Polyethylenterephthalat und 30 bis 125 Mol Glykol. 50 5. Verfahren nach Anspruch 2 oder 4, wobei die Reaktionen durchgefiihrt werden unter Verwendung von:

40 bis 60 Mol Polyethylenterephthalat, 60 bis 70 Mol Glykol, 55 50 bis 60 Mol ungesattigter Saure oder ungesattigtem Anhydrid und 20 bis 30 Mol Cyclopentadien oder 10 bis 15 Mol Dicyclopentadien.

6. Verfahren nach Anspruch 1 , wobei das Verfahren zur Herstellung eines norbornyl-terminierten, ungesattigten Po-

14 EP0 700 410 B1

lyesterharzes, das auch Tetrahydro-endo-methylenphthalsauregruppen enthalt, Reaktion von ungesattigtem An- hydrid mit Wasser und Dicyclopentadien, urn norbornyl-terminierte, ungesattigte Saure zu bilden, Zugabe von hydroxyl-terminiertem Zwischenprodukt, das durch die Depolymerisation von Polyethylenterephthalat mit einem Glykol hergestellt wird, Zugabe von zusatzlichem Dicyclopentadien und Erhitzen umfaBt. 5 7. Verfahren nach einem der Anspriiche 1 bis 6, wobei das Glykol Cyclohexandimethanol, Diethylenglykol, Dipropy- lenglykol, Ethylenglykol, Neopentylglykol, Triethylenglykol oder 2-Methyl-1 ,3-propandiol oder Gemische hiervon ist.

10 8. Verfahren nach einem der Anspriiche 1 bis 7, wobei Polyethylenterephthalat mit loslich machendem Glykol in Abwesenheit von Propylenglykol depolymerisiert wird.

9. Verfahren nach Anspruch 6, wobei die Reaktion durchgefiihrt wird unter Verwendung von: is 30 bis 95 Mol ungesattigtem Anhydrid, 2 bis 105 Mol Wasser, 2 bis 95 Mol Dicyclopentadien, 5 bis 70 Mol Polyethylenterephthalat, 30 bis 125 Mol Glykol und 20 2 bis 45 Mol zusatzlichem Dicyclopentadien.

10. Verfahren nach einem der Anspriiche 1 bis 9, wobei das Glykol Ethylenglykol oder Diethylenglykol oder Gemische hiervon ist und das Anhydrid Maleinsaureanhydrid ist.

25 11. Verfahren nach Anspruch 6, wobei die Reaktionen durchgefiihrt werden unter Verwendung von:

40 bis 60 Mol Polyethylenterephthalat, 60 bis 70 Mol Glykol, 50 bis 60 Mol ungesattigter Saure oder ungesattigtem Anhydrid, 30 5 bis 15 Mol Wasser, 5 bis 12,5 Mol Dicyclopentadien und 5 bis 12,5 Mol zusatzlichem Dicyclopentadien.

12. Verfahren nach Anspruch 1 als Ein-Topf-Synthese durchgefiihrt umfassend die Schritte: Reaktion eines ungesat- 35 tigten Anhydrids mit Wasser und Dicyclopentadien, urn norbornyl-terminierte, ungesattigte Saure zu bilden, Zugabe von zusatzlichem Dicyclopentadien, Zugabe von Polyethylenterephthalat und Glykol und Erhitzen, wobei ein nor- bornyl-terminiertes, ungesattigtes Polyesterharz, das Tetrahydro-endo-methylenphthalsauregruppen enthalt, ge- bildet wird.

40 13. Ungesattigte Polyesterharzzusammensetzung, die in Styrol loslich ist, und die zur Herstellung von Geliiberziigen, Autoteilen und Badezimmerinstallationen verwendet werden kann, umfassend das reagierte Gemisch aus:

(a) einem hydroxyl-terminierten Zwischenprodukt, das durch Depolymerisation von Polyethylenterephthalat mit einem Glykol hergestellt wird, 45 (b) einer alpha, beta-ethylenisch ungesattigten Saure und (c) Cyclopentadien oder Dicyclopentadien.

14. Zusammensetzung nach Anspruch 13 umfassend

50 5 bis 70 Mol Polyethylenterephthalat, 30 bis 125 Mol Glykol, 30 bis 95 Mol ungesattigte Saure oder ungesattigtes Anhydrid und 2 bis 95 Mol Cyclopentadien oder 1 bis 47,5 Mol Dicyclopentadien.

55 15. Zusammensetzung nach Anspruch 13, die eine norbornyl-terminierte, ungesattigte Polyesterharzzusammenset- zung ist, umfassend das reagierte Gemisch aus:

(a) Dicyclopentadien, das mit Wasser und ungesattigter Saure oder ungesattigtem Anhydrid vorreagiert ist, und

15 EP0 700 410 B1

(b) einem hydroxyl-terminierten Zwischenprodukt, das durch Depolymerisation von Polyethylenterephthalat mit loslich machendem Glykol hergestellt wird.

16. Zusammensetzung nach Anspruch 15 umfassend 5 2 bis 95 Mol Cyclopentadien oder 1 bis 47,5 Mol Dicyclopentadien 2 bis 105 Mol Wasser, 30 bis 95 Mol ungesattigte Saure oder ungesattigtes Anhydrid 5 bis 70 Mol Polyethylenterephthalat und 10 30 bis 125 Mol Glykol.

17. Zusammensetzung nach Anspruch 14 oder 16 umfassend

40 bis 60 Mol Polyethylenterephthalat, is 60 bis 70 Mol Glykol, 50 bis 60 Mol ungesattigte Saure oder ungesattigtes Anhydrid, und 20 bis 30 Mol Cyclopentadien oder 10 bis 15 Mol Dicyclopentadien.

18. Zusammensetzung nach Anspruch 13, die eine norbornyl-terminierte, ungesattigte Polyesterharzzusammenset- 20 zung ist, die ebenfalls Cyclopentadien enthalt, das durch eine Diels-Alder-Additionsreaktion addiert wurde, um- fassend das reagierte Gemisch aus:

(a) Dicyclopentadien, das mit Wasser und einer aipha, beta- und ethylenisch ungesattigten Saure oder unge- sattigtem Anhydrid vorreagiert ist, 25 (b) einem hydroxyl-terminierten Zwischenprodukt, das durch Depolymerisation von Polyethylenterephthalat- abfall mit einem loslich machenden Glykol hergestellt wird, und (c) zusatzlichem Dicyclopentadien.

19. Zusammensetzung nach einem der Anspriiche 13 bis 18, wobei das Glykol Cyclohexandimethanol, Diethylengly- 30 kol, Dipropylenglykol, Ethylenglykol, Neopentylglykol, Triethylenglykol oder 2-Methyl-1 ,3-propandiol oder Gemi- sche hiervon ist.

20. Zusammensetzung nach einem der Anspriiche 1 3 bis 1 9, wobei Polyethylenterephthalat mit Glykol in Abwesenheit von Propylenglykol depolymerisiert wird. 35 21. Zusammensetzung nach Anspruch 18 umfassend

2 bis 95 Mol Dicyclopentadien, 2 bis 105 Mol Wasser, 40 30 bis 95 Mol ungesattigte Saure oder ungesattigtes Anhydrid, 5 bis 70 Mol Polyethylenterephthalat, 30 bis 125 Mol Glykol und 2 bis 45 Mol zusatzliches Cyclopentadien.

45 22. Zusammensetzung nach einem der Anspriiche 13 bis 21, wobei das Glykol Ethylenglykol oder Diethylenglykol oder Gemische hiervon ist und das Anhydrid Maleinsaureanhydrid ist.

23. Zusammensetzung nach Anspruch 21 umfassend

50 40 bis 60 Mol Polyethylenterephthalat, 60 bis 70 Mol Glykol, 50 bis 60 Mol ungesattigte Saure oder ungesattigtes Anhydrid 10 bis 15 Mol Dicyclopentadien und 10 bis 15 Mol zusatzliches Dicyclopentadien. 55

16 EP0 700 410 B1

Revendications

1 . Procede pour produire un polyester ethyleniquement insature soluble dans le styrene qui comprend les etapes de :

5 (a) depolymerisation de polyethyleneterephtalate avec un glycol pour former un intermediate ayant des grou- pes hydroxyles, (b) reesterification dudit intermediate polyethyleneterephtalate depolymerise avec un acide ou anhydride di- carboxylique a,p-ethyleniquement insature et (c) reaction dudit polyester insature avec une quantite efficace de cyclopentadiene ou de dicyclopentadiene. 10 2. Procede selon la revendication 1 , dans lequel les reactions sont conduites avec:

5 a 70 mol de polyethyleneterephtalate, 30 a 1 25 mol de glycol, is 30 a 95 mol d'acide ou anhydride insature et 2 a 95 mol de cyclopentadiene ou 1 a 47,5 mol de dicyclopentadiene.

3. Procede selon la revendication 1, dans lequel le procede pour produire une resine de polyester a terminaisons norbornyle ethyleniquement insaturee soluble dans le styrene comprend la prereaction de dicyclopentadiene, 20 d'eau et d'acide ou anhydride insature, I'addition d'un intermediate a terminaisons hydroxyle produit par depoly- merisation de polyethyleneterephtalate avec un glycol et le chauffage.

4. Procede selon la revendication 3, dans lequel les reactions sont conduites avec:

25 2 a 95 mol de cyclopentadiene ou 1 a 47,5 mol de dicyclopentadiene, 2 a 105 mol d'eau, 30 a 95 mol d'acide ou anhydride insature, 5 a 70 mol de polyethyleneterephtalate et 30 a 1 25 mol de glycol. 30 5. Procede selon la revendication 2 ou 4, dans lequel les reactions sont conduites avec:

40 a 60 mol de polyethyleneterephtalate, 60 a 70 mol de glycol, 35 50 a 60 mol d'acide ou anhydride insature et 20 a 30 mol de cyclopentadiene ou 10 a 15 mol de dicyclopentadiene.

6. Procede selon la revendication 1 dans lequel le procede de production d'une resine de polyester insature a ter- 40 minaisons norbornyle contenant aussi des groupes tetrahydro-endomethylene phtaliques comprend la reaction d'un anhydride insature avec de I'eau et du dicyclopentadiene pour former un acide insature a terminaisons nor- bornyle, I'addition d'un intermediate a terminaisons hydroxyle forme par depolymerisation du polyethylenetereph- talate avec un glycol, I'addition de dicyclopentadiene supplementaire et le chauffage.

45 7. Procede selon I'une quelconque des revendications 1 a 6, dans lequel ledit glycol est le cyclohexanedimethanol, le diethyleneglycol, le dipropyleneglycol, I'ethyleneglycol, le neopentylglycol, le triethyleneglycol ou le 2-methyl- 1 ,3-propanediol, ou des melanges de ceux-ci.

8. Procede selon I'une quelconque des revendications 1 a 7, dans lequel le polyethyleneterephtalate est depolymerise so avec un glycol solubilisant en I'absence de propyleneglycol.

9. Procede selon la revendication 6, dans lequel la reaction est conduite avec:

30 a 95 mol d'anhydride insature, 55 2 a 105 mol d'eau, 2 a 95 mol de dicyclopentadiene, 5 a 70 mol de polyethyleneterephtalate, 30 a 1 25 mol de glycol et

17 EP0 700 410 B1

2 a 45 mol de dicyclopentadiene supplementaire.

10. Procede selon I'une quelconque des revendications 1 a 9, dans lequel ledit glycol est I'ethyleneglycol ou le die- thyleneglycol ou des melanges de ceux-ci et ledit anhydride est I'anhydride maleique. 5 11. Procede selon la revendication 6, dans lequel les reactions sont conduites avec:

40 a 60 mol de polyethyleneterephtalate, 60 a 70 mol de glycol, 10 30 a 60 mol d'acide ou anhydride insature, 3 a 15 mol d'eau, 3 a 12,5 mol de dicyclopentadiene et 3 a 12,5 mol dicyclopentadiene supplementaire. is 12. Procede selon la revendication 1 mis en oeuvre dans un pot comprenant les etapes de reaction d'un anhydride insature avec de I'eau et du dicyclopentadiene pour former un acide insature a terminaisons norbornyle, I'addition de dicyclopentadiene supplementaire, I'addition de polyethyleneterephtalate et de glycol, et le chauffage, de sorte qu'il se forme une resine de polyester insature a terminaisons norbornyle contenant des groupes tetahydroendo- methylene phtaliques. 20 13. Composition de resine de polyester insature soluble dans le styrene et utile pour la production d'enduits gelifies, de pieces pour vehicules automobiles et d'elements pour salle de bain comprenant le melange ayant reagi de :

a) un intermediate a terminaisons hydroxyle forme par depolymerisation du polyethyleneterephtalate avec 25 un glycol, b) un acide a,p-ethyleniquement insature et c) du cyclopentadiene ou du dicyclopentadiene.

14. Composition selon la revendication 13 comprenant : 30 5 a 70 mol de polyethyleneterephtalate, 30 a 1 25 mol de glycol, 30 a 95 mol d'acide ou anhydride insature et 2 a 95 mol de cyclopentadiene ou 1 a 47,5 mol de dicyclopentadiene. 35 15. Composition selon la revendication 13 qui est une composition de resine de polyester insature a terminaisons norbornyle comprenant le melange ayant reagi de:

a) dicyclopentadiene ayant prereagi avec de I'eau et un acide ou anhydride insature, et 40 b) un intermediate a terminaisons hydroxyle forme par depolymerisation du polyethyleneterephtalate avec un glycol solubilisant.

16. Composition selon la revendication 15 comprenant :

45 2 a 95 mol de cyclopentadiene ou 1 a 47,5 mol de dicyclopentadiene, 2 a 105 mol d'eau, 30 a 95 mol d'acide ou anhydride insature, 5 a 70 mol de polyethyleneterephtalate et 30 a 1 25 mol de glycol. 50 17. Composition selon la revendication 14 ou 16 comprenant :

40 a 60 mol de polyethyleneterephtalate, 60 a 70 mol de glycol, 55 50 a 60 mol d'acide ou anhydride insature et 20 a 30 mol de cyclopentadiene ou 10 a 15 mol de dicyclopentadiene.

18 EP0 700 410 B1

18. Composition selon la revendication 13 qui est une composition de resine de polyester insature a terminaisons norbornyle contenant aussi du cyclopentadiene ajoute par une reaction d'addition de Diels-Alder, comprenant le melange ayant reagi de :

a) dicyclopentadiene ayant prereagi avec de I'eau et un acide ou anhydride a,p-ethyleniquement insature, b) un intermediate a terminaisons hydroxyle forme par depolymerisation de dechets de polyethylenetereph- talate avec un glycol solubilisant et c) du dicyclopentadiene supplementaire.

19. Composition selon I'une quelconque des revendications 13 a 18, dans laquelle ledit glycol est le cyclohexanedi- methanol,

le diethyleneglycol, le dipropyleneglycol, I'ethyleneglycol, le neopentylglycol, le triethyleneglycol ou le 2-methyl-1 ,3-propanediol ou des melanges de ceux-ci.

20. Composition selon I'une quelconque des revendications 13 a 19, dans laquelle le polyethyleneterephtalate est depolymerise avec un glycol en I'absence de propyleneglycol.

21. Composition selon la revendication 18 comprenant :

2 a 95 mol de dicyclopentadiene, 2 a 105 mol d'eau, 30 a 95 mol d'acide ou anhydride insature, 5 a 70 mol de polyethyleneterephtalate, 30 a 1 25 mol de glycol, et 2 a 45 mol de cyclopentadiene supplementaire.

22. Composition selon I'une quelconque des revendications 1 3 a 21 , dans laquelle ledit glycol est I'ethyleneglycol ou le diethyleneglycol ou des melanges de ceux-ci et ledit anhydride est I'anhydride maleique.

23. Composition selon la revendication 21 comprenant :

40 a 60 mol de polyethyleneterephtalate, 60 a 70 mol de glycol, 50 a 60 mol d'acide ou anhydride insature, 10 a 15 mol de dicyclopentadiene et 10 a 15 mol de dicyclopentadiene supplementaire.

19