VINNAPAS® SOLID RESINS Low-Profile Additives for Composites Vinnapas® Polyvinyl Acetate As a Low-Profile Additive Applications in Fiber-Reinforced Plastics (FRP)

Total Page:16

File Type:pdf, Size:1020Kb

VINNAPAS® SOLID RESINS Low-Profile Additives for Composites Vinnapas® Polyvinyl Acetate As a Low-Profile Additive Applications in Fiber-Reinforced Plastics (FRP) Creating tomorrow’s solutions COMPOSITES I ADDITIVES VINNAPAS® SOLID RESINS Low-Profile Additives for Composites VINNAPAS® POLYVINYL ACETATE AS A LOW-PROFILE ADDITIVE APPLICATIONS IN FIBER-REINFORCED PLASTICS (FRP) 1. General Information In addition to VINNAPAS® B and UW 2. Low Profile Technology homopolymer grades, WACKER also VINNAPAS® is a solid, homogeneous, manufactures carboxylated VINNAPAS® Unsaturated polyester composites odorless and nontoxic thermoplastic copolymer C grades based on vinyl for fiber-reinforced plastics comprise synthetic polyvinyl acetate resin. acetate and crotonic acid. unsaturated polyester resins compound- ed with styrene, various fillers, peroxide WACKER produces VINNAPAS® homo- VINNAPAS® (polyvinyl acetate) resins catalysts, thickening agents, mold polymer B and UW grades with varying are used as low-profile additives in FRP release agents, low-profile additives degrees of polymerization, varying mo- composites. The great versatility of and reinforcing glass fibers. Low-profile lecular weights and varying viscosities VINNAPAS® low-profile additive resins technology includes various compound- in solution. has led to many FRP applications, ing techniques and various molding successfully combining zero shrink, techniques depending on the desired Class A surface quality, full viscosity quality and shape of the molded parts. control and design flexibility. On the following pages, we introduce our VINNAPAS® (polyvinyl acetate) resins for use as low-profile additives in FRP composites. VINNAPAS® is a registered trademark of Wacker Chemie AG. GOOD COMPATIBILITY WITH ALL MAJOR COMPOUNDING TECHNIQUES 2.1 Description of the Compounding Other compounding techniques used to RTM: Resin Transfer Molding Techniques harden and transform unsaturated poly- In the RTM process, a combination of ester resin composites into functional continuous mat is laid in the mold cavity. SMC: Sheet Molding Compound parts include: A matching mold half is fixed to the first SMC is prepared by applying a paste half tightly. Afterwards, a pressurized containing unsaturated polyester resin, BMC: Bulk Molding Compound resin system mixed with a free-radical styrene, filler, peroxide catalyst and a low- BMC is manufactured in a sigma- initiator is pumped into the closed mold profile additive (LPA) solution in styrene blade mixer and the resulting compound containing the reinforcement. The resin onto a polyamide film. Chopped glass is either injection-molded or compres- and fiber remain in the mold until cross- strand (glass-fiber) is dropped onto the sion-molded under high pressure and linking takes place. Then the composite UP resin paste sheet, and a second layer at elevated temperature. can be removed. The material may be of the SMC paste is applied to sand- Pultrusion: In the pultrusion process cured at room temperature or in a heated wich the glass-fiber layer. This multilayer for thermoset resins, fiber reinforcement mold by proper choice of initiator. The sheet runs through compaction rolls and is pulled through a resin impregnation RTM process is affected by such param- is rolled up for maturation. After matu- area to coat the reinforcement. Then it eters as: resin characteristics, resin ration, the compound has a very high is processed through preform plates to injection pressure, mold temperature or viscosity, which allows good glass-fiber begin to shape the fiber/resin bundle. vacuum conditions of the system. distribution during mold flow and easy Afterwards, it is pulled through a heated VINNAPAS® homopolymer grades handling of the material. Once matura- die to cure the resin. This process pro- provide superior stability and excellent tion is complete and the required viscos- duces little waste material. The cured shrinkage-control properties. ity has been reached, SMC can be cut part pultruded from the die requires into shapes and compression-molded at no further processing. The quality of high pressure and elevated temperature. pultruded composites is affected by process variables such as pull speed, die temperature or quality of fibers/ resins. VINNAPAS® homopolymer grades provide superior stability and excellent shrinkage-control properties. Fiberglass SMC paste Cutter Polyamide film Compacting rolls SMC paste Polyamide film Finished SMC 2.2 Polyester Resin Applications: SMC Production Molding techniques Unsaturated polyester resin molding These problems were the consequence Benefits of VINNAPAS® Solid Resins: compounds are transformed into of the high polymerization shrinkage functional articles by a wide variety of unsaturated polyester resin with the • Zero shrinkage/expansion in of molding techniques. crosslinking styrene monomer. They FRP composites They include: are remedied by adding certain thermo- • Excellent gloss and surface • Hand lay-up and spray-up plastics to the molding compound. The smoothness • Filament winding and most effective shrinkage-control additive • Effective thickening of SMC continuous lamination was found to be polyvinyl acetate. With • Easy to process and to formulate • Pultrusion polyvinyl acetate compounds with zero • Consistent high quality • Injection molding shrinkage and zero expansion can be • Good mechanical properties • Compression molding formulated. This results in moldings • Fast and complete solubility in styrene with excellent surface smoothness and The UP composite is typically dimensional stability without warpage. ® modified with LPA for the following VINNAPAS C Grades molding techniques: 3.1 VINNAPAS® as Low-Profile Additive Very effective thickening in combination with MgO or CaO • Compression molding of SMC or VINNAPAS® is a most effective thermo- VINNAPAS® UW Grades BMC at high pressure and elevated plastic anti-shrink (low-profile) additive Moderate thickening effect without temperature in UP resin composites processed at MgO or CaO • Injection molding of BMC at high high molding temperatures. VINNAPAS® B Grades pressure and elevated temperature No thickening effect • Pultrusion: for special applications In addition to the zero shrink effect, • Resin transfer molding (RTM): for certain high-temperature unsaturated Typical SMC Formulation special applications, the UP resin polyester applications, such as SMC and Components Parts by wt batch is modified with LPA BMC, require effective thickening for easy Unsaturated Polyester Resin handling of the composite and for good Orthophthalic polyester resin 65.0 3. Low-Profile Additives glass-fiber distribution during mold flow: (65% in styrene) ® Carboxylated VINNAPAS C grades, in Additives Both SMC and BMC technology used to combination with magnesium oxide or VINNAPAS® PVAC 35.0 be subject to severe limitations because calcium oxide, are the perfect thickening (40% in styrene) of the following problems: systems for unsaturated resin composites. t-Butylperbenzonate 1.0 ® • Warpage of molded parts prevented Carboxylated VINNAPAS C grades, in Peroxy ester 0.2 the molding of close tolerances combination with a thickening paste, result Pigment dispersion 10.0 • Depressions (“sink marks”) on the in a high and constant viscosity level. Zinc stearate 2.0 surface After maturation, this combination is ideal Filler • Rough, wavy surfaces resulted in a to prevent exudation of the thermoplastic poor appearance resins. Carboxyl-free homopolymer Calcium carbonate 3 micron 180.0 VINNAPAS® B and UW grades are used Glass-fiber when only moderate or no thickening of 50 mm chopped glass-fiber, wt % 27– 29 the UP resin composite is required. 5 VINNAPAS® LOW-PROFILE ADDITIVES: OVERVIEW VINNAPAS® LP Additives Grade Type Solids Appearance Acid1 Viscosity2 Molecular Viscosity in styrene4 content mg KOH/g mPas weight3 Mw 40% in mPas VINNAPAS® LL 8251 carboxylated PVAc 100% Flakes 6–9 2.0–2.3 ~ 30 000 ~ 300 VINNAPAS® C 341 carboxylated PVAc 100% Flakes 6–8 3.5–3.8 ~ 60 000 ~ 1 000 VINNAPAS® C 501 carboxylated PVAc 100% Flakes 6–9 7.5–9.5 ~ 130 000 ~ 6 500 VINNAPAS® B 60 sp PVAc 100% Pellets < 0.5 3.5–5.0 ~ 65 000 ~ 1 000 VINNAPAS® B 100 sp PVAc 100% Pellets < 0.5 5.0–6.5 ~ 90 000 ~ 2 000 VINNAPAS® UW 1 FS PVAc 100% Beads < 0.5 8.0–11.0 ~ 130 000 ~ 5 000 VINNAPAS® UW 4 FS PVAc 100% Beads < 0.5 23–30 ~ 280 000 ~ 66 000 VINNAPAS® UW 10 FS PVAc 100% Beads < 0.5 35–55 ~ 360 000 ~ 160 000 1 Acid number: number of milligrams of potassium hydroxide required to neutralize the alkalireactive groups in 1 gram of VINNAPAS® LP Additive 2 Viscosity-conditions: 10% solution of VINNAPAS® LP Additive in ethylacetate, ASTMD 445–06; 20 °C 3 SEC conditions: PS standard; THF; 60 °C; weight average 4 Brookfield PHL 002 /23 °C ® Application Preparing a VINNAPAS Solution in Styrene: SMC BMC Pultrusion RTM Add the VINNAPAS® resin to the styrene VINNAPAS® LL 8251 while stirring well to prevent the formation ® VINNAPAS C 341 of lumps during dissolution. This should VINNAPAS® C 501 usually be done at room temperature; VINNAPAS® B 60 sp some temperature increase during the VINNAPAS® B 100 sp dissolving process is normal due to shear VINNAPAS® UW 1 FS friction. Protect the resulting solution from VINNAPAS® UW 4 FS direct light during storage. Additional temperature will increase the dissolving VINNAPAS® UW 10 FS speed. However, a control of solution = Recommended = Suitable stability is necessary due to the mono- meric styrene’s tendency to polymerize. The table at the top lists VINNAPAS® 3.2 VINNAPAS® Solution in Styrene VINNAPAS® LPA solution typically contains grades used as low-profile additives in 40% solids, but this may vary depending
Recommended publications
  • Mechanical Properties for Polyester Resin Reinforce with Fe Weave Wire
    International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 3, Issue 7, July 2014 ISSN 2319 - 4847 Mechanical Properties for Polyester resin Reinforce with Fe Weave Wire Alaa A. Abdul-Hamead 1, Thekra Kasim2, and Awattiff A.Mohammed 3 1 Materials Eng. Department University of Technology 2Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq 3Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq ABSTRACT In the present work we prepared and study a polymer composite using from and polyester polymer with iron weave wire ratios (5,10,15,20%) .At first was studied and examined with chemical composition analyzing, then some of physical and mechanical properties of the composite were studied stress –strain , impact strength, fracture toughness , hardness and thermal conductivity. Results show an improvement in these mechanical properties after reinforcement by metals the value of mechanical properties will increase with increasing percentage of reinforcement. Keywords: polymer composite, polyester , Fe weave wire , impact strength, fracture toughness, hardness & thermal conductivity. 1. INTRODUCTION Composite materials were created as a result of an intensive search for materials which offer high reinforcement levels, with good mechanical properties and light weight.[1] Polymer composites can be classified as :Macro-composites ,Micro- composites and Nanocomposites according to fillers size[2,3]. Unsaturated polymers (UPE) resin is used for a wide variety of industrial and consumer applications. This consumption can be split into two major categories of applications: reinforced and nonreinforced. In reinforced applications, resin and reinforcement, such as fiberglass, are used together to produce a composite with improved physical properties.
    [Show full text]
  • Poly (Ethylene Terephthalate) Recycling for High Value Added Textiles Sang Ho Park and Seong Hun Kim*
    Park and Kim Fashion and Textiles 2014, 1:1 http://link.springer.com/article/10.1186/s40691-014-0001-x REVIEW Open Access Poly (ethylene terephthalate) recycling for high value added textiles Sang Ho Park and Seong Hun Kim* * Correspondence: [email protected] Abstract Department of Organic anc Nano Engineering, College of This study reviews the problems in the use and disposal of poly (ethylene Engineering, Hanyang University, 17 terephthalate) (PET) and includes the concise background of virgin and recycled PET Haengdang-dong, Sungdong-gu, as well as their possible applications. The current state of knowledge with respect to Seoul 133-791, Korea PET recycling method is presented. Recycling of PET is the most desirable method for waste management, providing an opportunity for reductions in oil usage, carbon dioxide emissions and PET waste requiring disposal because of its non-degradability. Advanced technologies and systems for reducing contamination, mechanical and chemical recycling, and their applications are discussed, and the possibility of diverting the majority of PET waste from landfills or incineration to recycling is suggested. Keywords: Polyethylene terephthalate; Mechanical recycle; Chemical recycle Introduction Poly (ethylene terephthalate) (PET), commonly referred to as ‘polyester’ in the textile industry, is considered to be one of the most important thermoplastic polyesters (Incornato et al. 2000). It is widely used for various applications such as bottles, fibers, moldings, and sheets because of its excellent tensile and impact strength, clarity, pro- cessability, chemical resistance, and thermal stability (Pawlak et al. 2000; Kong and Hay 2003; Avila-Orta et al. 2003). The PET fiber patented originally by DuPont (DuPont, 1997) dominates over 50% of the world synthetic fiber market.
    [Show full text]
  • Coupled Glass-Fiber Reinforced Polyoxymethylene Gekoppeltes Glasfaserverstärktes Polyoxymethylen Polyoxyméthylène Renforcé Par Fibre De Verre Couplée
    (19) TZZ ZZ__T (11) EP 2 652 001 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 18/56 (2006.01) C08G 18/76 (2006.01) 26.12.2018 Bulletin 2018/52 C08K 7/14 (2006.01) C08J 5/04 (2006.01) (21) Application number: 11769886.0 (86) International application number: PCT/EP2011/067992 (22) Date of filing: 14.10.2011 (87) International publication number: WO 2012/049293 (19.04.2012 Gazette 2012/16) (54) COUPLED GLASS-FIBER REINFORCED POLYOXYMETHYLENE GEKOPPELTES GLASFASERVERSTÄRKTES POLYOXYMETHYLEN POLYOXYMÉTHYLÈNE RENFORCÉ PAR FIBRE DE VERRE COUPLÉE (84) Designated Contracting States: (74) Representative: Lahrtz, Fritz et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Isenbruck Bösl Hörschler LLP GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Patentanwälte PL PT RO RS SE SI SK SM TR Prinzregentenstrasse 68 81675 München (DE) (30) Priority: 14.10.2010 EP 10187614 (56) References cited: (43) Date of publication of application: EP-A1- 1 630 198 WO-A1-2006/105918 23.10.2013 Bulletin 2013/43 DE-A1- 2 162 345 US-A1- 2005 107 513 (73) Proprietor: Celanese Sales Germany GmbH • DATABASE WPI Week 201025 Thomson 65843 Sulzbach (DE) Scientific, London, GB; AN 2010-D80494 XP002615422, -& WO 2010/035351 A1 (72) Inventors: (POLYPLASTICS KK) 1 April 2010 (2010-04-01) • MARKGRAF, Kirsten • K. KAWAGUCHI, E. MASUDA, Y. TAJIMA: 69469 Weinheim (DE) "Tensile Behavior of Glass-Fiber-Filled • LARSON, Lowell Polyacetal: Influence of the Functional Groups of Independence, KY 41051 (US) Polymer Matrices", JOURNAL OF APPLIED POLYMER SCIENCE, vol.
    [Show full text]
  • Fiber Reinforced Polymer (FRP) Composites
    Fiber Reinforced Polymer (FRP) Composites Gevin McDaniel, P.E. Roadway Design Standards Administrator & Chase Knight, PhD Composite Materials Research Specialist Topics Covered Overview of FRP Composites Currently Available National Specifications FDOT Design Criteria and Specifications Acceptable FDOT Applications Research on FRP Composites District 7 Demonstration Project Chase Knight, PhD - Usage (Characteristics/Durability) Questions 2 FRP Overview: What is FRP? General Composition Carbon, Glass, Etc. Polymer 3 FRP Overview: Fibers Common Fiber Types: Aramid - Extremely sensitive to environmental conditions Glass (Most Widely Used) - Subject to creep under high sustained loading - Subject to degradation in alkaline environment Carbon - Premium Cost Basalt - The future of FRP fibers? 4 FRP Overview: Fibers Used in many different forms: Short Fibers Chopped Fibers Long Fibers Woven Fibers 5 FRP Overview: Resins Two Categories: Thermoset Resins (most common for structural uses) - Liquid state at room temperature prior to curing - Impregnated into reinforcing fibers prior to heating - Chemical reaction occurs during heating/curing - Solid after heating/curing; Can’t be reversed/reformed Thermoplastic Resins - Solid at room temperature (recycled plastic pellets) - Heated to liquid state and pressurized to impregnate reinforcing fibers - Cooled under pressure; Can be reversed/reformed 6 FRP Overview: Resins Common Thermoset Resin Types Polyester - Lowest Cost Vinyl ester - Industry Standard Polyurethane - Premium Cost
    [Show full text]
  • CV TJH January 2021
    Arrabon Technologies Limited Dr Trevor J. Hutley MBA Global Polymer Industry Consultant Research & Innovation Advisor Technical & Management Consultant Experience Summary A career polymer and petrochemical industry specialist with global experience in many pioneering and complex situations. An unusual combination of broad and deep technology and science knowledge; an understanding of intellectual property; combined with finance, marketing, manufacturing and business experience, deployed in technical service, problem solving, new product / new market / new business development and technology commercialisation, in industry, business and educational spheres, in many cultural contexts. A continuous track record of the commercial development and application of technology and science in a multitude of market sectors. Kaizen [continuous improvement] is part of his DNA. Very strong market and customer focus. A strategic and global business thinker. High energy, serious commitment to the task. Very pro-active. Passionate. Analytical driver. Very high personal standards of achievement with impeccable integrity, and a good sense of humour. A very fast learner, with a teachable spirit. Adaptable. Flexible. Highly creative. Excellent presentation and communication skills, confident public speaker. A frequently invited speaker, chairman and moderator at international conferences. Credentials Brunel University UK BTech First Class Polymer Technology Cranfield Institute of Technology PhD in Polymer Engineering Business School, Lausanne CH MBA summa cum
    [Show full text]
  • Role of Thermosetting Polymer in Structural Composite
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ivy Union Publishing (E-Journals) American Journal of Polymer Science & Engineering Kausar A. American Journal of Polymer Sciencehttp://www.ivyunion.org/index.php/ajpse/ & Engineering 2017, 5:1-12 Page 1 of 12 Review Article Role of Thermosetting Polymer in Structural Composite Ayesha Kausar1 1 Nanoscience and Technology Department, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan Abstract Thermosetting resins are network forming polymers with highly crosslinked structure. In this review article, thermoset of epoxy, unsaturated polyester resin, phenolic, melamine, and polyurethane resin have been conversed. Thermosets usually have outstanding tensile strength, impact strength, and glass transition temperature (Tg). Epoxy is the most widely explored class of thermosetting resins. Owing to high stiffness and strength, chemical resistance, good dielectric behavior, corrosion resistance, low shrinkage during curing, and good thermal features, epoxy form the most important class of thermosetting resins for several engineering applications. Here, essential features of imperative thermosetting resins have been discussed such as mechanical, thermal, and non-flammability. At the end, employment of thermosetting resins in technical applications like sporting goods, adhesives, printed circuit board, and aerospace have been included. Keywords: Thermoset; epoxy; mechanical; non-flammability; application Received : November 14, 2016; Accepted: January 8, 2017; Published: January 16, 2017 Competing Interests: The authors have declared that no competing interests exist. Copyright: 2017 Kausar A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • 4.4 Polyester Resin Plastic Products Fabrication 4.4.1 General
    4.4 Polyester Resin Plastic Products Fabrication 4.4.1 General Description1-2 A growing number of products are fabricated from liquid polyester resin reinforced with glass fibers and extended with various inorganic filler materials such as calcium carbonate, talc, mica, or small glass spheres. These composite materials are often referred to as fiberglass-reinforced plastic (FRP), or simply "fiberglass". The Society Of The Plastics industry designates these materials as "reinforced plastics/composites" (RP/C). Also, advanced reinforced plastics products are now formulated with fibers other than glass, such as carbon, aramid, and aramid/carbon hybrids. In some processes, resin products are fabricated without fibers. One major product using resins with fillers but no reinforcing fibers is the synthetic marble used in manufacturing bathroom countertops, sinks, and related items. Other applications of nonreinforced resin plastics include automobile body filler, bowling balls, and coatings. Fiber-reinforced plastics products have a wide range of application in industry, transportation, home, and recreation. Industrial uses include storage tanks, skylights, electrical equipment, ducting, pipes, machine components, and corrosion resistant structural and process equipment. In transportation, automobile and aircraft applications are increasing rapidly. Home and recreational items include bathroom tubs and showers, boats (building and repair), surfboards and skis, helmets, swimming pools and hot tubs, and a variety of sporting goods. The thermosetting polyester resins considered here are complex polymers resulting from the cross-linking reaction of a liquid unsaturated polyester with a vinyl type monomer, list often styrene. The unsaturated polyester is formed from the condensation reaction of an unsaturated dibasic acid or anhydride, a saturated dibasic acid or anhydride, and a polyfunctional alcohol.
    [Show full text]
  • Castin'craft Casting Resin Basics, Instructions and Tips
    CASTIN’CRAFT CASTING RESIN BASICS, INSTRUCTIONS AND TIPS BASICS OF RESIN CASTING (cured) stage in 1 to 24 hours. The length of this cycle will vary Resin casting is an exciting and fun craft that allows you to greatly depending on the four factors mentioned previously. The embed or encase almost any object in crystal-clear plastic. The period of time between the addition of the catalyst and the gel basic materials needed to get started in resin crafting are easy to stage is called the 'working time' or 'pot life' of the resin. find and relatively inexpensive. Generally this is about 15 to 20 minutes. Do not catalyze more You'll need: resin than you can pour during the 'working time' since catalyzed 1. Casting resin and catalyst resin cannot be poured once it has gelled. Do not pour catalyzed 2. Disposable graduated paper mixing cups resin back into your casting resin can. Catalyst should be stored 3. Wooden stir sticks at room temperature, out of sunlight and out of reach of children. 4. A mold Shelf life is indefinite as long as stored properly. 5. Objects you wish to embed EMBEDMENTS Color dyes and pigments are optional and can be used to create a Here are some suggested objects that can be suspended or variety of special effects and backgrounds. Resin crafting encased in casting resin: • Crushed glass • Coins • Fabric* • supplies are available at hobby, craft and plastics supply stores. Flowers - dried or pressed • Glass jewels or marbles • Glitter • Insects or biological specimens • Jewelry findings • Leaves - Understanding the basics of how casting resin can be changed dried or pressed • Mechanical parts, nuts bolts etc.
    [Show full text]
  • Materials for Polymer Composites
    Module 2 - Materials For Polymer Composites Module 2 - Materials for Polymer Composites Introduction Major constituents in a fiber-reinforced composite material are the reinforcing fibers and a matrix, which acts as a binder for the fibers. Other constituents that may also be found are coupling agents, coatings, and fillers. Coupling agents and coatings are applied on the fibers to improve their wetting with the matrix as well as to promote bonding across the fiber–matrix interface. Both in turn promote a better load transfer between the fibers and the matrix. Fillers are used with some polymeric matrices primarily to reduce cost and improve their dimensional stability. Manufacturing of a composite structure starts with the incorporation of a large number of fibers into a thin layer of matrix to form a lamina (ply). The thickness of a lamina is usually in the range of 0.1–1 mm. If continuous (long) fibers are used in making the lamina, they may be arranged either in a unidirectional orientation (i.e., all fibers in one direction, Figure 2.1a), in a bidirectional orientation (i.e., fibers in two directions, usually normal to each other, Figure 2.1b), or in a multidirectional orientation (i.e., fibers in more than two directions, Figure 2.1c). The bi- or multidirectional orientation of fibers is obtained by weaving or other processes used in the textile industry. For a lamina containing unidirectional fibers, the composite material has the highest strength and modulus in the longitudinal direction of the fibers. However, in the transverse direction, its strength and modulus are very low.
    [Show full text]
  • Development of Thermoplastic Pultrusion with Modeling And
    Development of Thermoplastic Pultrusion with Modeling and Experiments Khongor Jamiyanaa and Uday Vaidya University of Alabama at Birmingham (UAB) GATE Scholar Project ID: LM085 Project No: DE-EE-0005580 Program Manager: Adrienne Riggi This presentation does not contain any proprietary or confidential information Project Summary* (The budget below represents the entire GATE Center. This presentation is only a sub-set of the DOE GATE effort.) Barriers Timeline • Limited information on Project Start - Oct 2011 advanced materials Project End – Sep 2016 database 72.6 % complete • Lack of high temperature properties Budget (Overall GATE Center) Total project: $750,000* Partners DOE portion: $600,000 • ORNL University Cost Share: $150,000 • MIT- RCF $447,420 DOE • Owens Corning $325,000 Expended • Polystrand, PPG 72.6% complete • CIC, Canada Khongor Jamiyanaa (GATE Scholar) - Background • Graduated from Colorado State Univ. in 2010 • BS in Mechanical Engineering, Minor in Mathematics • Graduated from Univ. of Alabama at Birmingham in 2014 • MS in Materials Science and Engineering • Research Thesis: Design and modeling of Thermoplastic Pultrusion Process • 1yr Co-op internship at Owens Corning Science & Technology center in 2013. • Application Development Engineer RELEVANCE Pultrusion Applications in Automotive, Truck and Mass Transit Wide Ranges of Pultrusion Offers: cosmetic and structural Frame • High strength-to- Members applications: weight ratio • Transportation Brackets Grates • Corrosion • Truck frame resistance members Pultrusion • Vehicle
    [Show full text]
  • Pultex Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles Imperial Version Volume 5 – Revision 3
    The Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles Imperial Version Volume 5 – Revision 3 Featuring PultexStandard Structural Profiles Pultex SuperStructural Profiles Nuclear test tower constructed using Pultex® Standard Structural Profiles Creative Pultrusions, Inc. reserves the right to edit and modify literature, please consult the web site for the most current version of this document. “The first Pultex® Design Manual was published in 1973. The New and Improved Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles, 2004 Edition, Volume 5 – Revision 3 is a tool for engineers to specify Pultex® pultruded standard structural profiles. Creative Pultrusions, Inc. consistently improves its information to function as a solid reference for engineers.” “No portion of this Design Manual may be reproduced in any form without the prior written consent of Creative Pultrusions, Inc.” Volume 5 - Revision 3 Copyright© 2016 by Creative Pultrusions, Inc. All Rights Reserved Creative Pultrusions®, Flowgrip®, Pultex®, Supergrate®, SUPERPILE®, Superplank®, SuperLoc® and Superdeck® are registered trademarks of Creative Pultrusions, Inc. Superstud!™, Superstud!™/Nuts!, SUPURTUF™, Tuf-dek™, SuperWale™, SuperCap™ and SuperRod™are trademarks of Creative Pultrusions, Inc. i The New and Improved Pultex® Pultrusion Global Design Manual Contents The New and Improved Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles,
    [Show full text]
  • A Review of Long Fibre-Reinforced Thermoplastic Or Long Fibre Thermoplastic (LFT) Composites
    International Materials Reviews ISSN: 0950-6608 (Print) 1743-2804 (Online) Journal homepage: https://www.tandfonline.com/loi/yimr20 A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites Haibin Ning, Na Lu, Ahmed Arabi Hassen, Krishan Chawla, Mohamed Selim & Selvum Pillay To cite this article: Haibin Ning, Na Lu, Ahmed Arabi Hassen, Krishan Chawla, Mohamed Selim & Selvum Pillay (2019): A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites, International Materials Reviews, DOI: 10.1080/09506608.2019.1585004 To link to this article: https://doi.org/10.1080/09506608.2019.1585004 Published online: 11 Mar 2019. Submit your article to this journal Article views: 1 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=yimr20 INTERNATIONAL MATERIALS REVIEWS https://doi.org/10.1080/09506608.2019.1585004 A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites Haibin Ning a,NaLub, Ahmed Arabi Hassenc, Krishan Chawlaa, Mohamed Selima and Selvum Pillaya aDepartment of Materials Science and Engineering, Materials Processing and Applications Development (MPAD) Centre, University of Alabama at Birmingham, Birmingham, AL, USA; bLyles School of Civil Engineering, School of Materials Engineering, Purdue University, West Lafayette, IN, USA; cManufacturing Demonstration Facility (MDF), Oak Ridge National Laboratory (ORNL), Knoxville, TN, USA ABSTRACT ARTICLE HISTORY Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites possess Received 8 August 2018 superior specific modulus and strength, excellent impact resistance, and other advantages Accepted 15 February 2019 such as ease of processability, recyclability, and excellent corrosion resistance.
    [Show full text]