Diccionari De Neurociència Pot Ajudar a Resoldre

Total Page:16

File Type:pdf, Size:1020Kb

Diccionari De Neurociència Pot Ajudar a Resoldre La neurociència integra un ampli conjunt de disciplines dedica- des a l’estudi del sistema nerviós. Termes com ara estimulació magnètica transcranial, hemisferi cerebral, lateralització, memò- ria a curt termini o transmissió sinàptica poden generar dubtes denominatius o conceptuals que el Diccionari de neurociència pot ajudar a resoldre. Aquesta obra, que vol ser una eina pràctica de referència termi- nològica, conté més de mil nou-cents termes, classificats en les àrees següents: neuroanatomia, neurohistologia, neurobiolo- gia cel·lular, neurobiologia del desenvolupament, neuroquími- ca, neurofarmacologia, neurofisiologia cel·lular i de sistemes, neurobiologia del comportament, neurologia, neuropsicologia i psiquiatria, neurociència computacional i disciplines connexes amb la neurociència. Cada article terminològic inclou la denominació catalana —amb la categoria lèxica i els sinònims, si en té—, els equivalents en castellà i anglès, la definició i, sovint, notes explicatives. Els índexs finals permeten accedir al contingut dels articles termi- nològics a partir de les denominacions castellanes o angleses. Amb la col·laboració de: Amb el suport de: Diccionari de neurociència TERMCAT, Centre de Terminologia Biblioteca de Catalunya. Dades CIP: Valero Cabré, Antoni Diccionari de neurociència Bibliografia. Índexs. – Text en català, equivalències en castellà i anglès ISBN 9788439388357 I. Reig i Vilallonga, Josep, dir. II. Navarro, X. (Xavier), dir. III. TERMCAT, Centre de Terminologia IV. Títol 1. Neurociències – Diccionaris – Català 2. Català – Diccionaris poliglots 616.8(038)) Aquest diccionari és una obra creada pel TERMCAT a partir d’un corpus bàsic de terminologia de neurociència que va ser elaborat entre els anys 2000 i 2005 per Antoni Valero-Cabré amb la col·laboració dels Serveis Lingüístics de la Universitat de Barcelona. Barcelona, 2011 Direcció, coordinació i elaboració: TERMCAT, Centre de Terminologia Coordinadors científics: Josep Reig Vilallonga i Xavier Navarro Acebes Autors: Antoni Valero-Cabré (autor principal) Laia Acarín Pérez, Albert Adell Calduch, Jordi Bruna Escuer, Joan X. Comella Carnicé, Arcadi Gual Sala, Carme Junqué Plaja, Xavier Navarro Acebes, Josep M. Pericay Hosta, Josep Reig Vilallonga, Antoni Rodríguez Fornells i Elena Valderrama Vallés (autors especialistes d’àrea) Il·lustració de la coberta: © Romain Quentin i Antoni Valero-Cabré. Grup de Dinàmiques Cerebrals, Plasticitat i Rehabilitació, CNRS UMR 7225 Institut del Cervell, París França (Imatge cromàticament modificada dels fascicles cerebrals d’un cervell humà intacte obtinguda amb una tractografia mitjançant tensor de difusió) © TERMCAT, Centre de Terminologia. Tots els drets reservats. Amb la col·laboració de: Xarxa Vives d‘Universitats Amb el suport de: Generalitat de Catalunya. Departament de Salut Obra Social de CatalunyaCaixa Primera edició: novembre de 2011 ISBN: 978-84-393-8835-7 Dipòsit legal: B-3666-2012 Coordinació de l’edició, disseny i composició: Entitat Autònoma del Diari Oficial i de Publicacions Impressió i enquadernació: Formes Design Queda totalment prohibida la reproducció, distribució, comunicació pública, posada a disposició del públic, transformació i qualsevol altra forma d’explotació, total o parcial, d’aquesta obra, per qualsevol mitjà, sense la prèvia autorització escrita atorgada pel TERMCAT, que es podrà sol·licitar a: Mallorca, 272-274, 1r 08037 Barcelona ([email protected]) DIRECCIÓ TERMCAT Rosa Colomer i Artigas COORDINACIÓ TERMCAT Executiva Jordi Bover i Salvadó Tècnica M. Antònia Julià i Berruezo EQUIP TERMINOLÒGIC TERMCAT Recerca terminològica Documentació Laura Moliné Grau Mariona Torra Ginestà Olga Andrés Viñas Ricard Ferrer Sarrió Edició Pilar Hernández Abellán Normalització Xavier Fargas Valero Dolors Montes Pérez Marta Sabater i Berenguer COORDINADORS CIENTÍFICS Josep Reig Vilallonga Departament de Ciències Morfològiques Unitat d’Anatomia i Embriologia Humana Facultat de Medicina Universitat Autònoma de Barcelona Xavier Navarro Acebes Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia Institut de Neurociències Universitat Autònoma de Barcelona AUTORS Autor principal Antoni Valero-Cabré Lab. Plasticitat Dinàmica Cerebral i Rehabilitació Institut del Cervell i de la Medul·la Espinal (CRICM) Centre Nacional de la Recerca Científica (CNRS) Departament d’Anatomia i Neurobiologia Escola de Medicina Universitat de Boston Autors especialistes d’àrea Laia Acarín Pérez (Neurohistologia) Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia Institut de Neurociències Universitat Autònoma de Barcelona Albert Adell Calduch (Neurobiologia molecular) Departament de Neuroquímica i Neurofarmacologia Institut d’Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS) Centre d’Investigació Biomèdica en Xarxa de Salut Mental (CIBERSAM) Jordi Bruna Escuer (Neurologia) Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia Universitat Autònoma de Barcelona Hospital Universitari de Bellvitge Joan X. Comella Carnicé (Neurobiologia cel·lular i del desenvolupament) Fundació Hospital Universitari Vall d’Hebron – Institut de Recerca (VHIR) Departament de Bioquímica i Biologia Molecular Institut de Neurociències Universitat Autònoma de Barcelona CIBERNED Arcadi Gual Sala (Neurofisiologia cel·lular i de sistemes) Departament de Ciències Fisiològiques I Facultat de Medicina Universitat de Barcelona Carme Junqué Plaja (Neuropsicologia) Departament de Psiquiatria i Psicobiologia Clínica Facultat de Medicina Universitat de Barcelona Institut d’Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS) Xavier Navarro Acebes (Neurofisiologia cel·lular i de sistemes) Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia Institut de Neurociències Universitat Autònoma de Barcelona Josep M. Pericay Hosta (Psiquiatria) Servei de Psiquiatria Hospital de la Santa Creu i Sant Pau Josep Reig Vilallonga (Neuroanatomia) Departament de Ciències Morfològiques Unitat d’Anatomia i Embriologia Humana Facultat de Medicina Universitat Autònoma de Barcelona Antoni Rodríguez Fornells (Neurobiologia del comportament) Institució Catalana de Recerca i Estudis Avançats (ICREA) Elena Valderrama Vallés (Neurociència computacional) Departament de Microelectrònica i Sistemes Electrònics Escola d’Enginyeria Universitat Autònoma de Barcelona Volem expressar el nostre agraïment a Ignasi Casadesús, de la Xarxa Vives d’Universitats, a Jordi Pere, del Departament de Salut de la Generalitat de Catalunya, i a Marta Cos, de l’Obra Social de CatalunyaCaixa, que han contribuït amb les seves gestions a impulsar i tirar endavant aquest projecte. També volem agrair a Conxa Planas i a Àngels Egea, dels Serveis Lingüístics de la Universitat de Barcelona, l’aportació de les dades digitals de l’obra Vocabulari de neurociència, d’Antoni Valero-Cabré. Igualment, manifestem el nostre reconeixement als especialistes que ens han assessorat en alguna fase de l’elaboració de l’obra, particularment als assistents a la sessió de normalització que va tenir lloc a la seu del TERMCAT el 14 de juliol de 2009: Albert Compte, Carles Enric Escera, Josep Esquerda, Xavier Fuentes, Francisco Lozano, Núria Sebastian, Carles Solsona, Adolf Tobeña i Ramon Trullàs. I, finalment, agraïm el suport en tasques terminològiques a Anna Truyols i Maria Cortés. Sumari IX Presentació XI Introducció XXIII Arbre de camp XXV Abreviacions 1 Diccionari 339 Índex castellà 369 Índex anglès 397 Bibliografia VII Presentació En les darreres dècades el món de les neurociències s’ha anat engrandint de forma extraor- dinària, fins a límits insospitats —com ha succeït, d’altra banda, en tots els terrenys científics. A més, aquest camp de la ciència té moltes línies frontereres amb altres camps: anatomia, fisiologia, bioquímica, farmacologia, genètica, immunologia i medicina interna, entre d’altres, cosa que obliga a un esforç addicional de consens. L’aparició de noves tecnologies, nous instruments i aparells, nous conceptes, i fins i tot substàncies noves, ha fet necessari donar un nom a tots aquests ens fins ara inexistents des del punt de vista lingüístic. La nostra llengua, igual que les altres llengües cultes, ha anat denominant les diverses adquisicions i novetats científiques amb neologismes, molts cops barbarismes, d’arrels gairebé sempre llatines o anglosaxones. Aquests nous termes, a més d’enriquir la nostra llengua, són imprescindibles en el nostre vocabulari actual. Però calia una tasca d’ordenació i uniformització per a intentar que tots els neurocientífics sabéssim com utilitzar el llenguatge, i per no maltractar, un cop més, la nostra llengua. Un grup de neurocientífics, en col·laboració amb el TERMCAT, sota els auspicis de la Gene- ralitat de Catalunya, ha abordat el problema de la normalització del nostre vocabulari. Jo crec que ha estat, alhora, una tasca molt feixuga i complexa, gens senzilla i del tot indispensable. Tots els hem d’estar agraïts pel seu esforç. Per sort, la feina feta és un punt de referència, un inici, però segur que el constant pro- grés científic farà necessàries noves actualitzacions normalitzades, que aniran eixamplant el diccionari que avui apareix. Els criteris emprats per a confeccionar-lo ja s’han establert i faran més fàcils les futures edicions. Finalment, vull agrair als companys que m’han proposat per redactar aquest pròleg la seva deferència. JOSEP MARIA GRAU I VECIANA Catedràtic de Neurologia de la Universitat Autònoma de Barcelona Director de Docència de l’Hospital de la Santa Creu i Sant Pau IX Introducció El Diccionari de neurociència
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover
    biomolecules Article Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover Joell L. Solan 1 and Paul D. Lampe 1,2,* 1 Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] 2 Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 22 November 2020; Published: 24 November 2020 Abstract: The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
    [Show full text]
  • Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy
    International Journal of Molecular Sciences Review Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy Aoife Gowran 1,*, Maura Brioschi 2, Davide Rovina 1 , Mattia Chiesa 3,4 , Luca Piacentini 3,* , Sara Mallia 1, Cristina Banfi 2,* , Giulio Pompilio 1,5,6,* and Rosaria Santoro 1,4 1 Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] (D.R.); [email protected] (S.M.); [email protected] (R.S.) 2 Unit of Cardiovascular Proteomics, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 3 Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 4 Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy 5 Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy 6 Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] (A.G.); [email protected] (L.P.); cristina.banfi@cardiologicomonzino.it (C.B.); [email protected] (G.P.) Abstract: Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling Citation: Gowran, A.; Brioschi, M.; abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy Rovina, D.; Chiesa, M.; Piacentini, L.; (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also Mallia, S.; Banfi, C.; Pompilio, G.; Santoro, R.
    [Show full text]
  • Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment
    Otology & Neurotology 34:995Y1004 Ó 2013, Otology & Neurotology, Inc. Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment *†‡Tobias Moser, *Friederike Predoehl, and §Arnold Starr *InnerEarLab, Department of Otolaryngology, University of Go¨ttingen Medical School; ÞSensory Research Center SFB 889, þBernstein Center for Computational Neuroscience, University of Go¨ttingen, Go¨ttingen, Germany; and §Department of Neurology, University of California, Irvine, California, U.S.A. Objective: To review new insights into the pathophysiology of are similar to those accompanying auditory neuropathy, a group sensorineural hearing impairment. Specifically, we address defects of genetic and acquired disorders of spiral ganglion neurons. of the ribbon synapses between inner hair cells and spiral ganglion Genetic auditory synaptopathies include alterations of glutamate neurons that cause auditory synaptopathy. loading of synaptic vesicles, synaptic Ca2+ influx or synaptic Data Sources and Study Selection: Here, we review original vesicle turnover. Acquired synaptopathies include noise-induced publications on the genetics, animal models, and molecular hearing loss because of excitotoxic synaptic damage and subse- mechanisms of hair cell ribbon synapses and their dysfunction. quent gradual neural degeneration. Alterations of ribbon synapses Conclusion: Hair cell ribbon synapses are highly specialized to likely also contribute to age-related hearing loss. Key Words: enable indefatigable sound encoding with utmost temporal precision. GeneticsVIon
    [Show full text]
  • Clustering of Na+ Channels and Node of Ranvier Formation in Remyelinating Axons
    The Journal of Neuroscience, January 1995, 15(l): 492503 Clustering of Na+ Channels and Node of Ranvier Formation in Remyelinating Axons Sanja Dugandgija-NovakoviC,’ Adam G. Koszowski,2 S. Rock Levinson,2 and Peter Shragerl ‘Department of Physiology, University of Rochester Medical Center, Rochester, New York 14642 and 2Department of Physiology, University of Colorado Health Sciences Center, Denver, Colorado 80262 Polyclonal antibodies were raised against a well conserved nodal regions(Black et al., 1990). The density of Na+ channels, region of the vertebrate Na+ channel and were affinity pu- in particular, is about 25 times higher at nodesof Ranvier than rified for use in immunocytochemistry. Focal demyelination at internodal sites (Shrager, 1989). There has been vigorous of rat sciatic axons was initiated by an intraneural injection debate over the mechanism of Na+ channel clustering during of lysolecithin and Na+ channel clustering was followed at myelination, particularly with respect to the role of Schwann several stages of myelin removal and repair. At 1 week post- cells, and studies have included both developing nerve and injection axons contained long, fully demyelinated regions. pathological conditions (Ellisman, 1979; Rosenbluth, 1979; Ro- Na+ channel clusters appeared only at heminodes forming senbluth and Blakemore, 1984; Le Beau et al., 1987; England the borders of these zones, and at widely spaced isolated et al., 1990, 1991; Joe and Angelides, 1992, 1993).There remain sites that may represent former nodes of Ranvier. Over the many interesting questions, particularly regarding remodeling next few days proliferating Schwann cells adhered to axons that occurs following myelin disruption. When axons are de- and began to extend processes.
    [Show full text]
  • Changes in Expression of P2X1 Receptors and Connexin 43 in the Rat Myometrium During Pregnancy
    Changes in expression of P2X1 receptors and connexin 43 in the rat myometrium during pregnancy Tina Khanam, B.Sc., and Geoffrey Burnstock, Ph.D., D.Sc. Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, United Kingdom Objective: To investigate the expression of P2X1 receptors and connexin 43 in gap junctions between smooth mus- cle cells. Contraction mediated by P2X receptors is known to occur in the bladder and male reproductive tract, and cell–cell coupling of smooth muscle via gap junctions is essential for synchronized rhythmic activity of these tissues. Design: We selected for this study rat myometrial smooth muscle during pregnancy and at postpartum day l. Setting: University medical school. Animal(s): Laboratory rats. Intervention(s): Rats were mated and became pregnant. Main Outcome Measure(s): Immunostaining and fluorescence and confocal microscopy. Result(s): The level of P2X1 receptor expression remained low throughout pregnancy (days 4 to 20) but was greatly up-regulated at day 22 (postpartum day 1). Connexin 43 expression showed a pattern of up-regulation, with progression through pregnancy and peaking near labor, but exhibited a rapid down-regulation after parturition. Conclusion(s): The functional significance of the changes in connexin 43 and P2X1 receptor expression that have been observed is discussed in relation to triggering and modulation of uterine contractility during and after preg- nancy. (Fertil SterilÒ 2007;88(Suppl 2):1174–9. Ó2007 by American Society for Reproductive Medicine.) Key Words: P2X1 receptor, connexin 43, myometrium, rat, confocal microscopy, immunofluorescence A recent article has shown that P2X1 receptors are closely as- connexins and P2 receptor-mediated processes.
    [Show full text]
  • Arcachon and Cholinergic Transmission Victor P. Whittaker*
    J Physiology (Paris) (1998) 92, 53-57 © Elsevier, Paris Arcachon and cholinergic transmission Victor P. Whittaker* Max-Planck-lnstitut fiir biophysikalische Chemic, D-37070 GOttingen, Germany Abstract -- The cholinergic nature of transmission at the electromotor synapse of Torpedo marmorata was established at Arcachon in 1939 by Feldberg, Fessard and Nachmansohn (J. Physiol. (Lond.) 97 (1939/1940) 3P-4P) soon after transmission at the neuromuscular junction had been shown to be cholinergic. In 1964, after a quarter of a century of neglect, workers in Cambridge, then in Paris, Gtittingen and elsewhere, began to use this system, 500-1000 times richer in cholinergic synapses than muscle, for intensive studies of cholinergic transmission at the cellular and molecular level. (@Elsevier, Paris) Resum6 -- Arcachon et la transmission cholinergique. La nature cholinergique de la transmission ~ la synapse 61ectromotrice de la torpille a 6t6 6tablie ~ Arcachon en 1939 par Feldberg, Fessard et Nachmansohn (J. Physiol. (Lond.) 97 (1939/1940) 3P-4P), peu aprrs la drcouverte du caractrre cholinergique de la transmission h la jonction neuromusculaire. Aprrs une prriode assez longue de d6su6tude, les chercheurs de Cambridge, Paris, Grttingen et d'ailleurs ont commencr, vers 1964, h utiliser ce systrme, 500-1000 fois plus riche en terminaisons cholinergiques que le muscle, pour 6tudier intensivement la transmission cholinergique au niveau cellulaire et molr- culaire. (@Elsevier, Paris) Torpedo marmorata I electric organ / electromotor synapse / cholinergic transmission 1. Introduction However, in terms of availability, amount of tissue per specimen and density of synaptic material, the The electric ray, Torpedo marmorata, is fairly Torpedinidae, especially T. marmorata (Eastern At- common in the Bay of Biscay (Baie de Gascoigne): lantic), T.
    [Show full text]
  • Initial Stage of Fetal Development of the Pharyngotympanic Tube Cartilage with Special Reference to Muscle Attachments to the Tube
    Original Article http://dx.doi.org/10.5115/acb.2012.45.3.185 pISSN 2093-3665 eISSN 2093-3673 Initial stage of fetal development of the pharyngotympanic tube cartilage with special reference to muscle attachments to the tube Yukio Katori1, Jose Francisco Rodríguez-Vázquez2, Samuel Verdugo-López2, Gen Murakami3, Tetsuaki Kawase4,5, Toshimitsu Kobayashi5 1Division of Otorhinolaryngology, Sendai Municipal Hospital, Sendai, Japan, 2Department of Anatomy and Embryology II, Faculty of Medicine, Complutense University, Madrid, Spain, 3Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, 4Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, 5Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan Abstract: Fetal development of the cartilage of the pharyngotympanic tube (PTT) is characterized by its late start. We examined semiserial histological sections of 20 human fetuses at 14-18 weeks of gestation. As controls, we also observed sections of 5 large fetuses at around 30 weeks. At and around 14 weeks, the tubal cartilage first appeared in the posterior side of the pharyngeal opening of the PTT. The levator veli palatini muscle used a mucosal fold containing the initial cartilage for its downward path to the palate. Moreover, the cartilage is a limited hard attachment for the muscle. Therefore, the PTT and its cartilage seemed to play a critical role in early development of levator veli muscle. In contrast, the cartilage developed so that it extended laterally, along a fascia-like structure that connected with the tensor tympani muscle. This muscle appeared to exert mechanical stress on the initial cartilage.
    [Show full text]
  • Tonic Tensor Tympani Syndrome (TTTS)
    Tonic Tensor Tympani Syndrome (TTTS) http://www.dineenandwestcott.com.au/hyperacusis.php?fid=1 Retrieved 15ththth May 2009 In the middle ear, the tensor tympani muscle and the stapedial muscle contract to tighten the middle ear bones (the ossicles) as a reaction to loud, potentially damaging sound. This provides protection to the inner ear from these loud sounds. In many people with hyperacusis, an increased, involuntary activity can develop in the tensor tympani muscle in the middle ear as part of a protective and startle response to some sounds. This lowered reflex threshold for tensor tympani contraction is activated by the perception/anticipation of sudden, unexpected, loud sound, and is called tonic tensor tympani syndrome (TTTS). In some people with hyperacusis, it appears that the tensor tympani muscle can contract just by thinking about a loud sound. Following exposure to intolerable sounds, this heightened contraction of the tensor tympani muscle: • tightens the ear drum • stiffens the middle ear bones (ossicles) • can lead to irritability of the trigeminal nerve, which innervates the tensor tympani muscle; and to other nerves supplying the ear drum • can affect the airflow into the middle ear. The tensor tympani muscle functions in coordination with the tensor veli palatini muscle. When we yawn or swallow, these muscles work together to open the Eustachian tube. This keeps the ears healthy by clearing the middle ear of any accumulated fluid and allows the ears to “pop” by equalising pressure caused by altitude changes. TTTS can lead to a range of symptoms in and around the ear(s): ear pain; pain in the jaw joint and down the neck; a fluttering sensation in the ear; a sensation of fullness in the ear; burning/numbness/tingling in and around the ear; unsteadiness; distorted hearing.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Dystrophin Complex Functions As a Scaffold for Signalling Proteins☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1838 (2014) 635–642 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Dystrophin complex functions as a scaffold for signalling proteins☆ Bruno Constantin IPBC, CNRS/Université de Poitiers, FRE 3511, 1 rue Georges Bonnet, PBS, 86022 Poitiers, France article info abstract Article history: Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and Received 27 May 2013 incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex Received in revised form 22 August 2013 (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins Accepted 28 August 2013 and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force trans- Available online 7 September 2013 duction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaf- fold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling Keywords: Dystrophin-associated protein complex (DAPC) processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. syntrophin The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle Sodium channel cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More TRPC channel generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins.
    [Show full text]
  • Regulation of Myelin Structure and Conduction Velocity by Perinodal Astrocytes
    Correction NEUROSCIENCE Correction for “Regulation of myelin structure and conduc- tion velocity by perinodal astrocytes,” by Dipankar J. Dutta, Dong Ho Woo, Philip R. Lee, Sinisa Pajevic, Olena Bukalo, William C. Huffman, Hiroaki Wake, Peter J. Basser, Shahriar SheikhBahaei, Vanja Lazarevic, Jeffrey C. Smith, and R. Douglas Fields, which was first published October 29, 2018; 10.1073/ pnas.1811013115 (Proc. Natl. Acad. Sci. U.S.A. 115,11832–11837). The authors note that the following statement should be added to the Acknowledgments: “We acknowledge Dr. Hae Ung Lee for preliminary experiments that informed the ultimate experimental approach.” Published under the PNAS license. Published online June 10, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1908361116 12574 | PNAS | June 18, 2019 | vol. 116 | no. 25 www.pnas.org Downloaded by guest on October 2, 2021 Regulation of myelin structure and conduction velocity by perinodal astrocytes Dipankar J. Duttaa,b, Dong Ho Wooa, Philip R. Leea, Sinisa Pajevicc, Olena Bukaloa, William C. Huffmana, Hiroaki Wakea, Peter J. Basserd, Shahriar SheikhBahaeie, Vanja Lazarevicf, Jeffrey C. Smithe, and R. Douglas Fieldsa,1 aSection on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; bThe Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817; cMathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information
    [Show full text]