(12) Patent Application Publication (10) Pub. No.: US 2011/0082040 A1 Trevino Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0082040 A1 Trevino Et Al US 2011 0082040A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0082040 A1 Trevino et al. 43) Pub. Date: Apr. 7,9 2011 (54) COMPOSITION AND METHOD FOR A6IR 9/14 (2006.01) DELIVERY OF SUBSTANCES IN ADRY A633/32 (2006.01) MODE A633/22 (2006.01) A633/00 (2006.01) (75) Inventors: Ramiro Trevino, McKinney, TX A633/42 (2006.01) (US); Steven R. Ellis, McKinney, A6IR 8/02 (2006.01) TX (US) C05D 9/00 (2006.01) A61O 13/00 (2006.01) (73) Assignee: DAIRY MANUFACTURERS, B82Y5/00 (2011.01) INC., Prosper, TX (US) (52) U.S. Cl. ........... 504/358; 426/61; 426/648; 210/601; 405/128.7; 435/176; 424/489: 424/93.4; 424/94.1; (21) Appl. No.: 12/898,435 424/641; 424/639: 424/657; 424/722; 424/601; (22) Filed: Oct. 5, 2010 512/4; 71/62; 977/773;977/902 Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/248,724, filed on Oct. The present invention generally relates to compositions and 5, 2009, provisional application No. 61/248,776, filed methods of delivering Substances in a dry mode. In one on Oct. 5, 2009, provisional application No. 61/267, embodiment, the Substance can be bacteria, enzymes, other 520, filed on Dec. 8, 2009 microorganisms, or combinations thereof. The compositions , Illed On Dec. S., that are in accordance with various embodiments of the O O present invention have varied uses, which can include deliv Publication Classification ering microorganisms to remove contaminates, such as oil, (51) Int. Cl. chemical, waste, or sewage, from soil, water, or air. In other AOIN 25/00 (2006.01) embodiments, the Substances can include liquid food, liquid A2.3L I/29 (2006.01) food additives, liquid biotech agricultural ingredients, con CO2F 3/00 (2006.01) ventional liquid agricultural ingredients, liquid human well B09C I/02 (2006.01) ness and dietary Supplements, and liquid fragrances and CI2N II/4 (2006.01) beauty products. US 2011/0082040 A1 Apr. 7, 2011 COMPOSITION AND METHOD FOR having properties or characteristic of living things. Exem DELIVERY OF SUBSTANCES IN ADRY plary liquid additives include liquid food, liquid food addi MODE tives, liquid biotech agricultural ingredients, conventional liquid agricultural ingredients, liquid human wellness and RELATED APPLICATIONS dietary Supplements, and liquid fragrances and beauty prod 0001. This patent application claims priority to U.S. Pro uctS. visional Patent Application Ser. Nos. 61/248,724 filed on Oct. 0009. One embodiment of the invention is a composition 5, 2009, 61/248,776 filed on Oct. 5, 2009, and 61/267,520 for delivering microorganisms in a dry mode that contains filed on Dec. 8, 2009, all of which are incorporated by refer precipitated silica granules having a porous structure, and ence in their entireties. microorganisms loaded throughout the pores of the precipi tated silica granules. In another embodiment, the pores of the BACKGROUND OF THE INVENTION precipitated silica define a distribution of pore sizes, where a Substantial amount of pores have diameters within the range 0002 1. Field of the Invention of 38 to 240 nanometers. In another embodiment, the micro 0003. The present invention generally relates to composi organism can be bacteria, enzymes, fungi, archaea, viruses, tions and methods of delivering Substances in a dry mode. algae, plankton, planaria, protists, or combinations thereof. In 0004 2. Description of the Related Art another embodiment, the microorganism can be a bacillus 0005. It is very difficult to deliver various substances in a and/or an enzyme. In another embodiment, the composition dry form. For example, many essential minerals used to grow also includes nutrients loaded throughout the pores of the food crops exhibit hygroscopic properties when in their dry precipitated silica granules. In another embodiment, the form. This makes it difficult to handle and store these dry nutrients can be ammonia, nitrogen, ammonium nitrogen, forms as they tend to absorb water moisture from the atmo urea, dextrose, dextrin, Sugars, or combinations thereof. In sphere, resulting in a wet, Sticky mess that does not flow another embodiment, the composition has an initial microor easily. Hygroscopic minerals are usually prilled and coated or ganism count, and the composition is operable to maintain are crystallized to limit their natural hygroscopic properties. approximately 50 to 400% of the initial microorganism count While this keeps the solids in a usable and flowable form, it for a period of time, preferably at least 45 days. limits their ability to dissolve in other liquids for final appli 0010. In another embodiment, the composition for deliv cation. If these same minerals are dissolved in water prior to ering microorganisms in a dry mode can be practiced without prilling, however, transporting and handling of the liquefied Zeolites, aluminosilicates, mineral powder, and/or an acidic version of the minerals creates problems and drastically polymer. In one embodiment, the composition is operable to increases the costs associated with shipping and handling. It breakdown hydrocarbon deposits in water or soil when would be advantageous to provide compositions and methods applied in a dry state. In another embodiment, the composi for delivery of hygroscopic substances in a dry, flowable form tion can also include nutrients loaded in the precipitated silica that is readily dissolved or dispersed in water and applied to granules, such that the nutrients are in contact with the micro crops or other applications. organisms, wherein the nutrients are operable to provide a 0006 Cellular organisms, such as enzymes, bacteria, and food source to the microorganisms loaded throughout the other microorganisms, are typically not sustainable in a dry pores of the precipitated silica granules to enhance propaga state. Therefore, these organisms usually must be kept in wet tion of the microorganisms. As used herein, propagation conditions, which, as noted above, creates certain hardships refers to the ability of a substance to reproduce. related to their shipping and handling. It would be advanta 0011. In another embodiment, a composition for deliver geous to provide compositions and methods for delivery of ing Volatile fluids in a dry mode contains precipitated silica cellular organisms in a dry form. granules having a porous structure, and Volatile fluids loaded 0007 Some substances in their liquid states are relatively throughout the pores of the precipitated silica granules, the unstable. For example, substances which are volatile, or sub composition having 25 to 75% volatile fluid concentration by stances which contain one or more hydroxyl groups must be weight, the composition operable to maintain approximately used quickly since these unstable liquid Substances can lose 50 to 100% of volatile fluid concentration for a period of time, their efficacy after a few weeks. Therefore, it would be advan preferably at least 45 days, more preferably at least 90 days, tageous to provide compositions and methods for delivery of wherein the volatile fluid has a vapor pressure of at least 0.03 volatile or unstable fluids in a stable state that is shipped in a atm at 25° Celsius. As used herein, the term “fluid' is to be dry form. understood to include liquids, plasmas, and gases. In another embodiment, the volatile fluid has a vapor pressure of at least SUMMARY OF THE INVENTION 0.08 atm at 25° Celsius. Exemplary volatile liquids include, 0008. The present invention is directed to compositions without limitation, alcohols, gasoline, diesel fuel. and methods that satisfy at least one of these needs. The 0012 Another embodiment is a composition for deliver present invention relates to compositions and methods of ing essential oils in a dry mode that contains precipitated delivering a Substance as part of a composition in a dry mode. silica granules having a porous structure and an essential oil In one embodiment, the Substance can be bacteria, enzymes, loaded throughout the pores of the precipitated silica gran other microorganisms, or combinations thereof. In another ules, the composition having 25 to 75% essential oil concen embodiment, the Substance can be a liquid additive that can be tration by weight, the composition operable to maintain either organic or inorganic. As used herein with regards to approximately 50 to 100% of the essential oil concentration liquid additives, "organic' means Substances related to, for a period of at least 45 days. Exemplary essential oils derived from, or having properties or characteristic of living include, but are not limited to, agar oil, awain oil, angelica things. As used herein with regards to liquid additives, “inor root oil, anise oil, asafetida, balsam oil, basil oil, bay oil, ganic' means Substances composed of minerals rather than bergamot oil, black pepper, buchu oil, birch, camphor, Can US 2011/0082040 A1 Apr. 7, 2011 nabis flower, caraway oil, cardamom seed oil, carrot seed oil, water, alcohol, or acetone. Once the Substance is in a liquid cedarwood oil, chamomile oil, calamus root, cinnamon oil, state, the substance can be directly added and mixed with cistus, citronella oil, clary sage, clove leaf oil, coffee, clove precipitated silica granules Such that the Substance infuses leaf oil, coriander, costmary oil, costus root, cranberry seed throughout the precipitated silica granules to form a loaded oil, cubeb, cumin oil, cypress, cypriol, curry leaf davana oil, product. This loaded product can then be combined with other dill oil, elecampane, eucalyptus oil, fennel seed oil, fir,
Recommended publications
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Nucleotide Sequence and Phylogenetic Analysis of a Bamboo Mosaic Potexvirus Isolate from Common Bamboo (Bambusa Vulgaris Mcclure)
    YangBot. Bull. et al. Acad. Nucleotide Sin. (1997) sequence 38: 77-84 of BaMV-V RNA 77 Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo (Bambusa vulgaris McClure) Chi-Chen Yang1,2, Jih-Shiou Liu1, Chan-Pin Lin2 and Na-Sheng Lin1,3 1Institute of Botany, Academia Sinica, Taipei, Taiwan 115, Republic of China 2Department of Plant Pathology and Entomology, National Taiwan University, Taipei, Taiwan, Republic of China (Received September 20, 1996; Accepted January 30, 1997) Abstract. The complete cDNA sequence corresponding to the genomic RNA of an isolate bamboo mosaic potexvirus (BaMV-V) from common bamboo (Bambusa vulgaris McClure) was determined. This isolate is the first potexvirus with which a satellite RNA has been associated. The genome organization of BaMV-V, similar to those of other potexviruses, contained five open reading frames (ORFs 15) coding for polypeptides with molecular weight of 156 kDa, 28 kDa, 13 kDa, 6 kDa, and 25 kDa, respectively. Nucleotide sequence analysis showed a 10.0% difference from the BaMV-O isolate previously described whereas the amino acid comparison showed a difference of 3.2%. When three conservative domains of RNA dependent RNA polymerase (RdRp) were used for phylogenetic analysis, the greatest variation between two strains of each virus was only 12.8% of that between the two closest members of the potexvirus group. The grouping of potexviruses distinct from other groups of plant viruses was also confirmed by a comparision of three conservative motifs of RdRp. Keywords: Bamboo mosaic virus; Nucleotide sequence; Potexvirus. Introduction virus M, PVM) (Zavriev et al., 1991), hordeivirus (e.g.
    [Show full text]
  • Tamada-Text R3 HK-TT
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Tamada & Kondo - 1 Journal of General Plant Pathology Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors Tetsuo Tamada* and Hideki Kondo Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan. Current address for T. Tamada: Kita 10, Nishi 1, 13-2-606, Sapporo, 001-0010, Japan. *Corresponding author: Tetsuo Tamada; E-mail: [email protected] Total text pages 32 Word counts: 10 words (title); 147 words (Abstract); 6004 words (Main Text) Tables: 3; Figure: 1; Supplementary figure: 1 Tamada & Kondo - 2 Abstract About 20 species of viruses belonging to five genera, Benyvirus, Furovirus, Pecluvirus, Pomovirus and Bymovirus, are known to be transmitted by plasmodiophorids. These viruses have all positive-sense single-stranded RNA genomes that consist of two to five RNA components. Three species of plasmodiophorids are recognized as vectors: Polymyxa graminis, P. betae, and Spongospora subterranea. The viruses can survive in soil within the long-lived resting spores of the vector. There are biological and genetic variations in both virus and vector species. Many of the viruses have become the causal agents of important diseases in major crops, such as rice, wheat, barley, rye, sugar beet, potato, and groundnut. Control measure is dependent on the development of the resistant cultivars. During the last half a century, several virus diseases have been rapidly spread and distributed worldwide. For the six major virus diseases, their geographical distribution, diversity, and genetic resistance are addressed.
    [Show full text]
  • The Development and Characterisation of Grapevine Virus-Based
    The development and characterisation of grapevine virus-based expression vectors by Jacques du Preez Presented in partial fulfilment of the requirements for the degree Doctor of Philosophy at the Department of Genetics, Stellenbosch University March 2010 Supervisors: Prof JT Burger and Dr DE Goszczynski Study leader: Dr D Stephan Declaration I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. ______________________ Date: _______________ Jacques du Preez Copyright © 2010 Stellenbosch University All rights reserved ii Abstract Grapevine ( Vitis vinifera L.) is a very important agricultural commodity that needs to be protected. To achieve this several in vivo tools are needed for the study of this crop and the pathogens that infect it. Recently the grapevine genome has been sequenced and the next important step will be gene annotation and function using these in vivo tools. In this study the use of Grapevine virus A (GVA), genus Vitivirus , family Flexiviridae , as transient expression and VIGS vector for heterologous protein expression and functional genomics in Nicotiana benthamiana and V . vinifera were evaluated. Full-length genomic sequences of three South African variants of the virus (GTR11, GTG111 and GTR12) were generated and used in a molecular sequence comparison study. Results confirmed the separation of GVA variants into three groups, with group III (mild variants) being the most distantly related. It showed the high molecular heterogeneity of the virus and that ORF 2 was the most diverse. The GVA variants GTG111, GTR12 and GTR11 were placed in molecular groups I, II and III respectively.
    [Show full text]
  • Bunyaviridae Family and the Orthobunyavirus for BUNV Replication (8)
    Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase Xiaohong Shia,1, Catherine H. Bottingb, Ping Lia, Mark Niglasb, Benjamin Brennana, Sally L. Shirranb, Agnieszka M. Szemiela, and Richard M. Elliotta,2 aMedical Research Council–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, United Kingdom; and bBiomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved June 17, 2016 (received for review February 29, 2016) The M genome segment of Bunyamwera virus (BUNV)—the pro- (II and IV) (Fig. S1A), and its N-terminal domain (I) is required totype of both the Bunyaviridae family and the Orthobunyavirus for BUNV replication (8). genus—encodes the glycoprotein precursor (GPC) that is proteo- Cleavage of BUNV GPC is mediated by host proteases, but the lytically cleaved to yield two viral structural glycoproteins, Gn and Gc, details of which proteases are involved and the precise cleavage sites and a nonstructural protein, NSm. The cleavage mechanism of ortho- have not been clarified. Experimental data on GPC processing have bunyavirus GPCs and the host proteases involved have not been only been reported for snowshoe hare orthobunyavirus (SSHV); the clarified. In this study, we investigated the processing of BUNV GPC C terminus of SSHV Gn was determined by C-terminal amino acid and found that both NSm and Gc proteins were cleaved at their own sequencing to be an arginine (R) residue at position 299 (9) (Fig.
    [Show full text]
  • Disruption of Virus Movement Confers Broad-Spectrum Resistance Against
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10310-10314, October 1994 Plant Biology Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block (trnenic plant/doinat negative mutaton/ n l movement proein) DAVID L. BECK, CRAIG J. VAN DOLLEWEERD, TONY J. LOUGH, EZEQUIEL BALMORI, DAVIN M. VOOT, MARK T. ANDERSEN, IONA E. W. O'BRIEN, AND RICHARD L. S. FORSTERt Molecular Genetics Group, The Horticultural and Food Research Institute of New Zealand Ltd., Private Bag 92169, Auckland, New Zealand Communicated by George Bruening, June 23, 1994 ABSTRACT White clover mosaic virus strain 0 (WCIMV- tially difficult. New forms ofresistance active against several 0), species of the Potexvirus genus, contains a set of three different viruses or groups of viruses are being sought. One partially overlapping genes (the triple gene block) that encodes such approach involved the introduction of the gene coding nonvirion proteins of 26 kDa, 13 kDa, and 7 kDa. These for rat 2'-5' oligoadenylate synthetase into the genome of proteins are necesy for cell-to-cell movement in plants but potato plants (4). Genetically engineering transgenic plants to not for replication. The WCIMV-O 13-kDa gene was mutated block virus movement, mimicking the mechanism of some (to 13*) in a region of the gene that is conserved in all viruses natural resistance genes, has been proposed (1, 5, 6) but known to possess triple-gene-block proteins. All 10 13* trans- remains mostly unexploited. genic lines of Nicodiana benthamiana designed to express the The movement function of plant viruses can be comple- mutated movement protein were shown to be resistant to mented by another, frequently unrelated, virus in double systemic infection by WCIMV-O at 1 jug ofWCIMV virions per infections (7).
    [Show full text]
  • Us 2012/0074.014 A1 2 .. 1
    US 2012O074O14A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0074.014 A1 Tran et al. (43) Pub. Date: Mar. 29, 2012 (54) PRODUCT TYPICALLY BASED ON SALT OF Publication Classification PEROXYMONOSULFURIC ACID AND (51) Int. Cl SUITABLE FOR MEDICINAL USAGE, AND iBio/02 (2006.01) ASSOCATED PRODUCT FABRICATION B23P 19/00 (2006.01) A633/42 (2006.01) (75) Inventors: David Van Tran, San Jose, CA A6IR 9/14 (2006.01) (US); David Nguyen Tran, San CD7C 409/244 (2006.01) Jose, CA (US) A6II 3/327 (2006.01) s (52) U.S. Cl. ............. 206/438: 562/1; 514/578; 424/605; 424/400; 29/428 (73) Assignee: LuTran Industries, Inc. (57) ABSTRACT 21) Appl. No.: 13AO47,742 Products based on salt of peroxyperoxVmonosulfuric acid are suit (21) Appl. No 9 able for treating or/and preventing diseases and other debili tating medical conditions caused by bacterial, eukaryotic, (22) Filed: Mar. 14, 2011 prion, and viral pathogens and by non-pathogenic inflamma tion. The products may alternatively be based on inorganic Related U.S. Application Data halide and an oxidizing agent reactable in water with the inorganic halide to generate hypohalite ions. In addition, the (60) Provisional application No. 61/386,928, filed on Sep. products can be employed in other applications such as com 27, 2010. mercial and industrial applications. 5T. 2 .. 2. 1.4. J., Patent Application Publication Mar. 29, 2012 Sheet 1 of 2 US 2012/0074014 A1 cro Q-D 22 Fig. 2a Fig.2b Patent Application Publication Mar. 29, 2012 Sheet 2 of 2 US 2012/0074014 A1 90 92 US 2012/0074014 A1 Mar.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Characterization of Three Novel Viruses from the Families
    viruses Article Characterization of Three Novel Viruses from the Families Nyamiviridae, Orthomyxoviridae, and Peribunyaviridae, Isolated from Dead Birds Collected during West Nile Virus Surveillance in Harris County, Texas Peter J. Walker 1 , Robert B. Tesh 2,3,4,5,6, Hilda Guzman 2,5,6, Vsevolod L. Popov 2,4,5,6, 2,5,6, 7 8 Amelia P.A. Travassos da Rosa y, Martin Reyna , Marcio R.T. Nunes , William Marciel de Souza 8,9 , Maria A. Contreras-Gutierrez 10, Sandro Patroca 8, Jeremy Vela 7, Vence Salvato 7, Rudy Bueno 7, Steven G. Widen 11 , Thomas G. Wood 11 and Nikos Vasilakis 2,3,4,5,6,* 1 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] 2 Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; [email protected] (R.B.T.); [email protected] (H.G.); [email protected] (V.L.P.) 3 Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 4 Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 5 Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 6 World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 7 Mosquito and Vector Control Division, Harris County Public Health and Environmental Services, 3330 Old Spanish Trail, Houston, TX 77021,
    [Show full text]
  • Progress and Prospects of Studies on Polymyxa Graminis and Its Transmitted Cereal Viruses in China*
    PROGRESS IN NATURAL SCIENCE V ol .15 , No .6 , June 2005 REVIEW ARTICLE Progress and prospects of studies on Polymyxa graminis and its transmitted cereal viruses in China* CH EN Jianping ** (Virology and Biotechnology Institute , Zhejiang Academy of Agricultural Sciences, Key Laboratory of Plant Virology , Ministry of Agri- culture and Zhejiang Province, Hangzhou 310021, China) Received October 8 , 2004 ;revised October 25 , 2004 Abstract Polymyxa gram inis is a eukaryotic obligate biotrophic parasite of plant roots that belongs to a poorly studied discrete taxonomic unit informally called “ plasmodiophorids” .P .graminis is nonpathogenic , but has the ability to acquire and transmit nine plant viruses w hich belong to genera Bymovirus and Furovirus and cause serious diseases in cereal crop speciesand also result in significant yield reductions in China and elsew here.Genus Bymovirus contains barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), w heat yellow mosaic virus (WYMV), w heat spindle streak mosaic virus (WSS MV), and oat mosaic virus (OMV), and genus F urovirus contains soil-borne w heat mosaic virus(S BW MV), oat golden stripe virus(OGSV), and new ly identified Chinese w heat mosaic virus(CWM V)and soil-borne cereal mosaic virus(S BCMV).All these viruses have been sequenced and their w orldw ide distribu- tions have been studied .The viruses are protected by the environment w ithin P .gra minis resting spores that may remain dormant but vi- able for decades(probably until a suitable host plant is encountered).S pontaneous deletion mutants of S BW MV , OGS V and OMV are de- tected , and these deletion mutants are not transmissible by the fungus.The persistent, soil-borne nature of these diseases makes the use of virus-resistant crop varieties cu rren tly the only practical and environmentally friendly means to control them , and a large number of disease resistant germ plasms have been screened .
    [Show full text]
  • Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L
    Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L. Patil Mariya Ivanova Stoyanova Editors Plant Viruses: Evolution and Management Plant Viruses: Evolution and Management Rajarshi Kumar Gaur • Nikolay Manchev Petrov • Basavaprabhu L. Patil • M a r i y a I v a n o v a S t o y a n o v a Editors Plant Viruses: Evolution and Management Editors Rajarshi Kumar Gaur Nikolay Manchev Petrov Department of Biosciences, College Department of Plant Protection, Section of Arts, Science and Commerce of Phytopathology Mody University of Science and Institute of Soil Science, Technology Agrotechnologies and Plant Sikar , Rajasthan , India Protection “Nikola Pushkarov” Sofi a , Bulgaria Basavaprabhu L. Patil ICAR-National Research Centre on Mariya Ivanova Stoyanova Plant Biotechnology Department of Phytopathology LBS Centre, IARI Campus Institute of Soil Science, Delhi , India Agrotechnologies and Plant Protection “Nikola Pushkarov” Sofi a , Bulgaria ISBN 978-981-10-1405-5 ISBN 978-981-10-1406-2 (eBook) DOI 10.1007/978-981-10-1406-2 Library of Congress Control Number: 2016950592 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]