Progress and Prospects of Studies on Polymyxa Graminis and Its Transmitted Cereal Viruses in China*

Total Page:16

File Type:pdf, Size:1020Kb

Progress and Prospects of Studies on Polymyxa Graminis and Its Transmitted Cereal Viruses in China* PROGRESS IN NATURAL SCIENCE V ol .15 , No .6 , June 2005 REVIEW ARTICLE Progress and prospects of studies on Polymyxa graminis and its transmitted cereal viruses in China* CH EN Jianping ** (Virology and Biotechnology Institute , Zhejiang Academy of Agricultural Sciences, Key Laboratory of Plant Virology , Ministry of Agri- culture and Zhejiang Province, Hangzhou 310021, China) Received October 8 , 2004 ;revised October 25 , 2004 Abstract Polymyxa gram inis is a eukaryotic obligate biotrophic parasite of plant roots that belongs to a poorly studied discrete taxonomic unit informally called “ plasmodiophorids” .P .graminis is nonpathogenic , but has the ability to acquire and transmit nine plant viruses w hich belong to genera Bymovirus and Furovirus and cause serious diseases in cereal crop speciesand also result in significant yield reductions in China and elsew here.Genus Bymovirus contains barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), w heat yellow mosaic virus (WYMV), w heat spindle streak mosaic virus (WSS MV), and oat mosaic virus (OMV), and genus F urovirus contains soil-borne w heat mosaic virus(S BW MV), oat golden stripe virus(OGSV), and new ly identified Chinese w heat mosaic virus(CWM V)and soil-borne cereal mosaic virus(S BCMV).All these viruses have been sequenced and their w orldw ide distribu- tions have been studied .The viruses are protected by the environment w ithin P .gra minis resting spores that may remain dormant but vi- able for decades(probably until a suitable host plant is encountered).S pontaneous deletion mutants of S BW MV , OGS V and OMV are de- tected , and these deletion mutants are not transmissible by the fungus.The persistent, soil-borne nature of these diseases makes the use of virus-resistant crop varieties cu rren tly the only practical and environmentally friendly means to control them , and a large number of disease resistant germ plasms have been screened . Keywords: Polymyxa graminis, cereal viruses, genus Bymovirus, genus Furovirus . As early as in the 1920s , a mosaic or rosette disease gal vector are ex tremely tolerant to a poo r environ- w as first reported on winter wheat in America , and then ment and chemicals , and they can survive in the soil it w as found that the pathogen w as transmitted via soil. fo r decades ;(2)there are v arious species of viruses In 1925 , Mckinney successfully transmitted the pathogen and strains , and the continuous appearance of new from the infected plants to healthy plants by mechanical pathogenic types and strains breaks the resistance of inoculation and proved that the pathogen w as a virus , the virus-resistant cultivars and creates difficulties in named soil-bo rne w heat mosaic virus (SBWMV).In cereals breeding .Therefore , to understand the mech- 1969 , Rao and Brakke found that SBWMV w as anism of interaction among the viruses , fungal vector [ 1] transmitted by Polymy xa graminis in soil .In later and cereal crops at the molecular level , and to estab- years , similar diseases were also repo rted in Japan , I- lish new sy stem s and methods fo r disease control are taly , France , Germany , Brazil and Argentina , w hich significantly important .Since 1985 , w e have studied attracted people' s attention because of their serious the fungal vector P .graminis , virus species , ge- effects on production of cereal crops . nomic organization , disease epidemiology , fungal In China , Poly myxa graminis transmitted cere- transmission, as w ell as screening of resistant al viruses w ere first identified in the 1970s[ 2] .The germ plasms .In this review , I summarize the re- diseases caused by these viruses have seriously oc- search prog ress and prospects of the fung al transmit- curred in estimated 200 million ha of successive barley ted cereal viruses in China . and w heat crops in Henan , Sichuan , Hubei , Shaanx- 1 Polymyxa graminis transmitted cereal i , Shandong , Jiangsu , Zhejiang , Anhui provinces and Shanghai City and resulted in a loss of 1 .5 million viruses tons of yield .The rapid spread of the diseases and se- 1 .1 Taxonomy and genomic organization rious damage of crops are caused by the follow ing rea- sons :(1)the thick-w alled resting spo res of the fun- All of the Polymy xa graminis transmitted cereal * Supported by the National Natural S cience Foundation of China (G rant No .30225031) ** E-mail:Jpchen2001 @Hzcnc.com 482 w ww .tandf.co .uk/journals Prog ress in Natural Science Vol .15 No .6 2005 viruses contain tw o single-stranded positive-sense reading frame (ORF)w hich encodes a 257 —271 kD RNA genomes , and belong to genera By mov irus and single poly peptide .From this single large poly protein Furovirus respectively . precursor , 8 mature functional proteins , P3 , 7K , CI , 14K , NIa-Vpg , NIa-Pro , NIb and CP from N- M embers of genus By mov irus are mainly dis- terminus to C-terminus , are derived by proteolytic tributed in Asia , Europe and No rth America , and are cleavage (Fig .1(a)).Among these pro teins , NIb is barley yellow mosaic virus (BaYM V), barley mild related to genome replication , C I is possibly associat- mosaic virus (BaMM V), w heat yellow mosaic virus ed to virus movement , NIa-Pro encodes main viral (WYM V), w heat spindle streak mosaic virus (WSS- proteinase , N Ia -VPg encodes genome-linked pro- M V)and oat mosaic virus (OMV).These viruses se- tein , and CP is the only structure protein for RNA riously infect winter barley , w heat , oat and rye crops encapsidation .RNA2 also contains a large ORF and and are mostly serologically related , but have sig nifi- encodes a 98 —101 kD polypeptide w hich produces cant differences in nucleotide sequences as w ell as host two functional proteins (P1 and P2)after proteolytic ranges[ 3 —8] .Recently , w e have identified that those cleavage .Of these two pro teins , P1 is a proteinase , viruses that occurred in China are BaYM V and BaM- and P2 is possibly associated to fungal transmission . M V for barley and WYMV for w heat .The genomic Both RNA1 and RNA2 contain a poly(A)tail at their o rganization has been determined fo r BaYMV and 3′-terminus[ 9 , 10] .After infection by these bymovirus- W YMV and partial for BaMM V , showing a similari- es, a large number of membranous bodies connected ty among them and some homology to the insect w ith endaplasmic reticulum and cylindrical o r pin- transmitted poty viruses .BaYM V and WYMV , the w heel inclusion bodies fo rm in the infected cells of the w ell studied bymoviruses , have bipartite genomes cereal crops .This cytopatholog ical change can be w ith a larger RNA 1 (about 7 .5 kb)and a smaller used as a diagnostic character for infection of by- RNA 2 (about 3 .5 kb)in the longer and shorter par- [ 4 , 5 , 11] moviruses . ticles, respectively .RNA1 contains one large open Fig .1 . Genomic organizations of genera Bymovirus(a)and F urovirus(b). Genus Furov irus has not been classified to any bers and structures of RNA genome , Torrnace and family of plant virus .This genus used to be consid- M ayo re-classified the previous genus Furov irus into ered to contain all fungus transmitted rod-shaped four new genera including Benyv irus , Pomov irus , viruses.According to species of fungal vector , num- Pecluv irus and Furovirus . The new genus Prog ress in Natural Science Vol.15 No .6 2005 w ww .tandf.co .uk/journals 483 Furovirus is characterized by rod-shaped virus parti- w as w idely adopted because its short g row ing period cles, bipartite RNA genomes containing CP-RT and hig h yield made it particularly suitable for use in a gene , but not TGB genes and poly (A) tail , and cropping system having three crops each year (rice transmitted by P .graminis .The definite members from M ay-August and again August-November , fol- of this genus are SBWMV and sorghum chlo rotic spot low ed by either barley , w heat o r oilseed rape from virus (SrCMV), and oat golden stripe virus (OGSV) November-May).This system became widely estab- w as classified as a strain of SBWM V[ 12] .Recently , lished during the 1960s in the middle and lower re- our studies demonstrate that OGSV is an independent gions of the Yang tze River basin and other parts of member[ 13] , and tw o new identified species, Chinese Eastern China .How ever , Zhaoshu 3 proved to be w heat mosaic virus (CWMV)and soil-bo rne cereal very susceptible to BaYM V , and by the mid-1970s, mosaic virus (SBCMV ), are different from SB- BaYM V had become serious in all the areas w here the WMV , and are also members of this genus[ 14, 15] . cultivar w as regularly grow n[ 17, 18] . Virus particles of genus Furov irus consist of two We have determined the complete sequence of single-stranded positive-sense RNA genomes (Fig .1 BaYM V Yancheng isolate[ 9] .Sequence com parison a- (b))and a coat protein .Both RNA1 and RNA2 are mong Chinese , Germ an and Japanese BaYMV isolates necessary for virus infection and replication , and con- indicated that the 5′-UTR regions have the most sig- tain a cap structure (M 7GpppG)at their 5′-termini , nificant variation , and P1 , P3 , CI , NIa , 5′-part of but no poly(A)tail at the 3′-termini .RNA1 contains CP and 3′-terminus of RNA1 also present different three ORFs .The first one encodes a 149 —153 kD variations .In general, RNA2 show s a g reater varia- polypeptide and the opal termination codon (UGA) tion than RNA1 .The P2 fragment w as more variable can be partially suppressed to ex tend to the second than the CP and phylogenetic analysis of both regions ORF which produces a 208 —212 kD read-throug h show ed that Asian and European isolates fo rm distinct protein .The motifs for methyl-transferase and N TP- clusters, indicating that molecular evolution of binding helicase activity are identified in the 149 — BaYM V isolates is linked to their geog raphical distri- 153 kD protein whereas that for RNA-dependent bution[ 9] .
Recommended publications
  • Nucleotide Sequence and Phylogenetic Analysis of a Bamboo Mosaic Potexvirus Isolate from Common Bamboo (Bambusa Vulgaris Mcclure)
    YangBot. Bull. et al. Acad. Nucleotide Sin. (1997) sequence 38: 77-84 of BaMV-V RNA 77 Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo (Bambusa vulgaris McClure) Chi-Chen Yang1,2, Jih-Shiou Liu1, Chan-Pin Lin2 and Na-Sheng Lin1,3 1Institute of Botany, Academia Sinica, Taipei, Taiwan 115, Republic of China 2Department of Plant Pathology and Entomology, National Taiwan University, Taipei, Taiwan, Republic of China (Received September 20, 1996; Accepted January 30, 1997) Abstract. The complete cDNA sequence corresponding to the genomic RNA of an isolate bamboo mosaic potexvirus (BaMV-V) from common bamboo (Bambusa vulgaris McClure) was determined. This isolate is the first potexvirus with which a satellite RNA has been associated. The genome organization of BaMV-V, similar to those of other potexviruses, contained five open reading frames (ORFs 15) coding for polypeptides with molecular weight of 156 kDa, 28 kDa, 13 kDa, 6 kDa, and 25 kDa, respectively. Nucleotide sequence analysis showed a 10.0% difference from the BaMV-O isolate previously described whereas the amino acid comparison showed a difference of 3.2%. When three conservative domains of RNA dependent RNA polymerase (RdRp) were used for phylogenetic analysis, the greatest variation between two strains of each virus was only 12.8% of that between the two closest members of the potexvirus group. The grouping of potexviruses distinct from other groups of plant viruses was also confirmed by a comparision of three conservative motifs of RdRp. Keywords: Bamboo mosaic virus; Nucleotide sequence; Potexvirus. Introduction virus M, PVM) (Zavriev et al., 1991), hordeivirus (e.g.
    [Show full text]
  • Tamada-Text R3 HK-TT
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Tamada & Kondo - 1 Journal of General Plant Pathology Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors Tetsuo Tamada* and Hideki Kondo Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan. Current address for T. Tamada: Kita 10, Nishi 1, 13-2-606, Sapporo, 001-0010, Japan. *Corresponding author: Tetsuo Tamada; E-mail: [email protected] Total text pages 32 Word counts: 10 words (title); 147 words (Abstract); 6004 words (Main Text) Tables: 3; Figure: 1; Supplementary figure: 1 Tamada & Kondo - 2 Abstract About 20 species of viruses belonging to five genera, Benyvirus, Furovirus, Pecluvirus, Pomovirus and Bymovirus, are known to be transmitted by plasmodiophorids. These viruses have all positive-sense single-stranded RNA genomes that consist of two to five RNA components. Three species of plasmodiophorids are recognized as vectors: Polymyxa graminis, P. betae, and Spongospora subterranea. The viruses can survive in soil within the long-lived resting spores of the vector. There are biological and genetic variations in both virus and vector species. Many of the viruses have become the causal agents of important diseases in major crops, such as rice, wheat, barley, rye, sugar beet, potato, and groundnut. Control measure is dependent on the development of the resistant cultivars. During the last half a century, several virus diseases have been rapidly spread and distributed worldwide. For the six major virus diseases, their geographical distribution, diversity, and genetic resistance are addressed.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • The Development and Characterisation of Grapevine Virus-Based
    The development and characterisation of grapevine virus-based expression vectors by Jacques du Preez Presented in partial fulfilment of the requirements for the degree Doctor of Philosophy at the Department of Genetics, Stellenbosch University March 2010 Supervisors: Prof JT Burger and Dr DE Goszczynski Study leader: Dr D Stephan Declaration I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. ______________________ Date: _______________ Jacques du Preez Copyright © 2010 Stellenbosch University All rights reserved ii Abstract Grapevine ( Vitis vinifera L.) is a very important agricultural commodity that needs to be protected. To achieve this several in vivo tools are needed for the study of this crop and the pathogens that infect it. Recently the grapevine genome has been sequenced and the next important step will be gene annotation and function using these in vivo tools. In this study the use of Grapevine virus A (GVA), genus Vitivirus , family Flexiviridae , as transient expression and VIGS vector for heterologous protein expression and functional genomics in Nicotiana benthamiana and V . vinifera were evaluated. Full-length genomic sequences of three South African variants of the virus (GTR11, GTG111 and GTR12) were generated and used in a molecular sequence comparison study. Results confirmed the separation of GVA variants into three groups, with group III (mild variants) being the most distantly related. It showed the high molecular heterogeneity of the virus and that ORF 2 was the most diverse. The GVA variants GTG111, GTR12 and GTR11 were placed in molecular groups I, II and III respectively.
    [Show full text]
  • Disruption of Virus Movement Confers Broad-Spectrum Resistance Against
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10310-10314, October 1994 Plant Biology Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block (trnenic plant/doinat negative mutaton/ n l movement proein) DAVID L. BECK, CRAIG J. VAN DOLLEWEERD, TONY J. LOUGH, EZEQUIEL BALMORI, DAVIN M. VOOT, MARK T. ANDERSEN, IONA E. W. O'BRIEN, AND RICHARD L. S. FORSTERt Molecular Genetics Group, The Horticultural and Food Research Institute of New Zealand Ltd., Private Bag 92169, Auckland, New Zealand Communicated by George Bruening, June 23, 1994 ABSTRACT White clover mosaic virus strain 0 (WCIMV- tially difficult. New forms ofresistance active against several 0), species of the Potexvirus genus, contains a set of three different viruses or groups of viruses are being sought. One partially overlapping genes (the triple gene block) that encodes such approach involved the introduction of the gene coding nonvirion proteins of 26 kDa, 13 kDa, and 7 kDa. These for rat 2'-5' oligoadenylate synthetase into the genome of proteins are necesy for cell-to-cell movement in plants but potato plants (4). Genetically engineering transgenic plants to not for replication. The WCIMV-O 13-kDa gene was mutated block virus movement, mimicking the mechanism of some (to 13*) in a region of the gene that is conserved in all viruses natural resistance genes, has been proposed (1, 5, 6) but known to possess triple-gene-block proteins. All 10 13* trans- remains mostly unexploited. genic lines of Nicodiana benthamiana designed to express the The movement function of plant viruses can be comple- mutated movement protein were shown to be resistant to mented by another, frequently unrelated, virus in double systemic infection by WCIMV-O at 1 jug ofWCIMV virions per infections (7).
    [Show full text]
  • Us 2012/0074.014 A1 2 .. 1
    US 2012O074O14A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0074.014 A1 Tran et al. (43) Pub. Date: Mar. 29, 2012 (54) PRODUCT TYPICALLY BASED ON SALT OF Publication Classification PEROXYMONOSULFURIC ACID AND (51) Int. Cl SUITABLE FOR MEDICINAL USAGE, AND iBio/02 (2006.01) ASSOCATED PRODUCT FABRICATION B23P 19/00 (2006.01) A633/42 (2006.01) (75) Inventors: David Van Tran, San Jose, CA A6IR 9/14 (2006.01) (US); David Nguyen Tran, San CD7C 409/244 (2006.01) Jose, CA (US) A6II 3/327 (2006.01) s (52) U.S. Cl. ............. 206/438: 562/1; 514/578; 424/605; 424/400; 29/428 (73) Assignee: LuTran Industries, Inc. (57) ABSTRACT 21) Appl. No.: 13AO47,742 Products based on salt of peroxyperoxVmonosulfuric acid are suit (21) Appl. No 9 able for treating or/and preventing diseases and other debili tating medical conditions caused by bacterial, eukaryotic, (22) Filed: Mar. 14, 2011 prion, and viral pathogens and by non-pathogenic inflamma tion. The products may alternatively be based on inorganic Related U.S. Application Data halide and an oxidizing agent reactable in water with the inorganic halide to generate hypohalite ions. In addition, the (60) Provisional application No. 61/386,928, filed on Sep. products can be employed in other applications such as com 27, 2010. mercial and industrial applications. 5T. 2 .. 2. 1.4. J., Patent Application Publication Mar. 29, 2012 Sheet 1 of 2 US 2012/0074014 A1 cro Q-D 22 Fig. 2a Fig.2b Patent Application Publication Mar. 29, 2012 Sheet 2 of 2 US 2012/0074014 A1 90 92 US 2012/0074014 A1 Mar.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Molecular Analysis of Vanilla Mosaic Virus from the Cook Islands
    Molecular Analysis of Vanilla mosaic virus from the Cook Islands Christopher Puli’uvea A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2017 School of Science I Abstract Vanilla was first introduced to French Polynesia in 1848 and from 1899-1966 was a major export for French Polynesia who then produced an average of 158 tonnes of cured Vanilla tahitensis beans annually. In 1967, vanilla production declined rapidly to a low of 0.6 tonnes by 1981, which prompted a nation-wide investigation with the aim of restoring vanilla production to its former levels. As a result, a mosaic-inducing virus was discovered infecting V. tahitensis that was distinct from Cymbidium mosaic virus (CyMV) and Odontoglossum ringspot virus (ORSV) but serologically related to dasheen mosaic virus (DsMV). The potyvirus was subsequently named vanilla mosaic virus (VanMV) and was later reported to infect V. tahitensis in the Cook Islands and V. planifolia in Fiji and Vanuatu. Attempts were made to mechanically inoculate VanMV to a number of plants that are susceptible to DsMV, but with no success. Based on a partial sequence analysis, VanMV-FP (French Polynesian isolate) and VanMV-CI (Cook Islands isolate) were later characterised as strains of DsMV exclusively infecting vanilla. Since its discovery, little information is known about how VanMV-CI acquired the ability to exclusively infect vanilla and lose its ability to infect natural hosts of DsMV or vice versa. The aims of this research were to characterise the VanMV genome and attempt to determine the molecular basis for host range specificity of VanMV-CI.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0069256A1 Smith Et Al
    US 20090069256A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0069256A1 Smith et al. (43) Pub. Date: Mar. 12, 2009 (54) ENHANCING PROTEIN EXPRESSION Related U.S. Application Data (60) Provisional application No. 60/576,819, filed on Jun. (76) Inventors: Larry R. Smith, San Diego, CA 4, 2004. (US); Vafa Shahabi, Valley Forge, PA (US); Maninder K. Sidhu, New Publication Classification City, NY (US) (51) Int. Cl. A63L/7088 (2006.01) Correspondence Address: CI2N IS/II (2006.01) HUNTON & WILLIAMS LLP CI2N 15/87 (2006.01) INTELLECTUAL PROPERTY DEPARTMENT A6IP 43/00 (2006.01) 1900 KSTREET, N.W., SUITE 1200 CI2N IS/00 (2006.01) WASHINGTON, DC 20006-1109 (US) (52) U.S. Cl. ...... 514/44; 536/23.1; 536/23.53: 536/23.5; 536/23.6:536/23.7:536/23.72:536/23.74; 435/455; 435/320.1 (21) Appl. No.: 11/628,455 (57) ABSTRACT (22) PCT Fled: Jun. 6, 2005 Modified polynucleotide compositions providing enhanced gene expression and methods for preparing said compositions (86) PCT NO.: PCT/US05/19592 are disclosed. Methods of using the compositions, such as in screening assays, diagnostic tools, kits, etc. and for preven S371 (c)(1), tion and/or treatment of diseases and disorders are also dis (2), (4) Date: Nov. 8, 2007 closed. SWall (3733) DraI(3734) Stul (52) BclI (3512) ASCI (3496) ApaI (3482) BSInI (3370) BglII (457) 2->BGHpolyA BspEI (3271) BspMI (540) BseRI (3241) human IL-15 (BH15) Psp1406I (667) BamHI (3071) “HuigE leader PflMI (3056) kanamycin Eael (768) NsiI (791) (3737 bp) XmnI (806) BpmI (2976)1 AgeI (846) MsiI (2745) BSrFI (846) SnaBI (2722) Eam1105I (920) BSaAI (2722) DraII (1155) Asel (2390) Spel (2383) EcoRV (2291) ClaI (2285) NruI (2254) BSrBI (1965) AfilII (1896) MunI (2209) Patent Application Publication Mar.
    [Show full text]
  • Multipartite Viruses: Organization, Emergence and Evolution
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA MOLECULAR MULTIPARTITE VIRUSES: ORGANIZATION, EMERGENCE AND EVOLUTION TESIS DOCTORAL Adriana Lucía Sanz García Madrid, 2019 MULTIPARTITE VIRUSES Organization, emergence and evolution TESIS DOCTORAL Memoria presentada por Adriana Luc´ıa Sanz Garc´ıa Licenciada en Bioqu´ımica por la Universidad Autonoma´ de Madrid Supervisada por Dra. Susanna Manrubia Cuevas Centro Nacional de Biotecnolog´ıa (CSIC) Memoria presentada para optar al grado de Doctor en Biociencias Moleculares Facultad de Ciencias Departamento de Biolog´ıa Molecular Universidad Autonoma´ de Madrid Madrid, 2019 Tesis doctoral Multipartite viruses: Organization, emergence and evolution, 2019, Madrid, Espana. Memoria presentada por Adriana Luc´ıa-Sanz, licenciada en Bioqumica´ y con un master´ en Biof´ısica en la Universidad Autonoma´ de Madrid para optar al grado de doctor en Biociencias Moleculares del departamento de Biolog´ıa Molecular en la facultad de Ciencias de la Universidad Autonoma´ de Madrid Supervisora de tesis: Dr. Susanna Manrubia Cuevas. Investigadora Cient´ıfica en el Centro Nacional de Biotecnolog´ıa (CSIC), C/ Darwin 3, 28049 Madrid, Espana. to the reader CONTENTS Acknowledgments xi Resumen xiii Abstract xv Introduction xvii I.1 What is a virus? xvii I.2 What is a multipartite virus? xix I.3 The multipartite lifecycle xx I.4 Overview of this thesis xxv PART I OBJECTIVES PART II METHODOLOGY 0.5 Database management for constructing the multipartite and segmented datasets 3 0.6 Analytical
    [Show full text]
  • Downloaded by the Reader
    Virology Journal BioMed Central Commentary Open Access International Committee on Taxonomy of Viruses and the 3,142 unassigned species CM Fauquet*1 and D Fargette2 Address: 1International Laboratory for Tropical Agricultural Biotechnology, Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132 USA and 2Institut de Recherche pour le Developpement, BP 64501, 34394 Montpellier cedex 5, France Email: CM Fauquet* - [email protected]; D Fargette - [email protected] * Corresponding author Published: 16 August 2005 Received: 08 July 2005 Accepted: 16 August 2005 Virology Journal 2005, 2:64 doi:10.1186/1743-422X-2-64 This article is available from: http://www.virologyj.com/content/2/1/64 © 2005 Fauquet and Fargette; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In 2005, ICTV (International Committee on Taxonomy of Viruses), the official body of the Virology Division of the International Union of Microbiological Societies responsible for naming and classifying viruses, will publish its latest report, the state of the art in virus nomenclature and taxonomy. The book lists more than 6,000 viruses classified in 1,950 species and in more than 391 different higher taxa. However, GenBank contains a staggering additional 3,142 "species" unaccounted for by the ICTV report. This paper reviews the reasons for such a situation and suggests what might be done in the near future to remedy this problem, particularly in light of the potential for a ten-fold increase in virus sequencing in the coming years that would generate many unclassified viruses.
    [Show full text]
  • Serological and Genomic Characterization of Two Plant RNA Viruses: Barley Mild Mosaic Virus (Bammv) and a Potential Cryptic Virus from Pine (Pinus Sylvestris)
    Serological and genomic characterization of two plant RNA viruses: Barley Mild Mosaic Virus (BaMMV) and a potential cryptic virus from pine (Pinus sylvestris) Ph.D. thesis by Dorina Veliceasa Supervisor: Dr. Noémi Lukács Institute of Plant Biology, Biological Research Centre Hungarian Academy of Sciences Szeged, 2005 TABLE OF CONTENTS Acknowledgements i Abbreviations ii General Introduction iii 1. RESEARCH BACKGROUNG 1 1.1 Double-stranded RNA viruses 1 1.1.1 Plant cryptic viruses 1 1.1.2 dsRNA virus RNA-dependent RNA polymerase 5 1.1.3 dsRNA viruses: origin and phylogenetic implications 11 1.2 Single-stranded, messengers sense RNA viruses 13 1.2.1 Barley mild mosaic virus (BaMMV) 13 1.2.2 Serological relationships between different BaMMV isolates and BaYMV 17 1.2.3 Epitope mapping by using multipin overlapping peptide fragments 20 2. OBJECTIVES 24 3. MATERIAL AND METHODS 26 3.1 Reagents 26 3.2 Plant material and virus isolates 26 3.2.1 Plant material 26 3.2.2 Virus isolates 26 3.3 dsRNA isolation 26 3.4 cDNA synthesis 27 3.5. Cloning 27 3.6. Sequence analysis 28 3.7. Nucleotide sequence data 28 3.8. Preparation of the antigen 29 3.9. Production of monoclonal antibodies (MAb) 29 3.10. Synthesis of peptides 29 3.11. Assay of monoclonal antibodies 30 3.11.1. Enzyme-linked immunosorbent assay (ELISA) of hybrid cell lines 30 3.11.2. Triple antibody sandwich (TAS) ELISA 30 3.11.3. ELISA on peptides 31 3.11.4. Dot blot 32 3.11.5. Western blot (WB) analysis 32 3.11.6.
    [Show full text]