Hymenoptera: Diprionidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................ -
Pine Sawflies, Neodiprion Spp. (Insecta: Hymenoptera: Diprionidae)1 Wayne N
EENY317 Pine Sawflies, Neodiprion spp. (Insecta: Hymenoptera: Diprionidae)1 Wayne N. Dixon2 Introduction Pine sawfly larvae, Neodiprion spp., are the most common defoliating insects of pine trees, Pinus spp., in Florida. Sawfly infestations can cause growth loss and mortality, especially when followed by secondary attack by bark and wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae, Scolytidae). Trees of all ages are susceptible to sawfly defoliation (Barnard and Dixon 1983; Coppel and Benjamin 1965). Distribution Neodiprion spp. are indigenous to Florida. Host tree specificity and location will bear on sawfly distribution statewide. Description Six species are covered here so there is some variation in appearance. However, an adult female has a length of 8 to 10 mm, with narrow antennae on the head and a stout and Figure 1. Larvae of the blackheaded pine sawfly, Neodiprion excitans thick-waisted body. This is unlike most Hymenopteran Rohwer, on Pinus sp. Credits: Arnold T. Drooz, USDA Forest Service; www.forestryimages.org insects which have the thinner, wasp-like waist. The background color varies from light to dark brown, with Adult yellow-red-white markings common. The two pairs of The adult male has a length of 5 to 7 mm. The male has wings are clear to light brown with prominent veins. broad, feathery antennae on the head with a slender, thick- waisted body. It generally has brown to black color wings, similar to the female. 1. This document is EENY317 (originally published as DPI Entomology Circular No. 258), one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date January 2004. -
And Its Glucoside in Pinus Sylvestris Needles Consumed by Diprion Pini Larvae
Original article Quantitative variations of taxifolin and its glucoside in Pinus sylvestris needles consumed by Diprion pini larvae MA Auger C Jay-Allemand C Bastien C Geri 1 INRA, Station de Zoologie Forestière; 2 INRA, Station d’Amélioration des Arbres Forestiers, F-45160 Ardon, France (Received 22 March 1993; accepted 2 November 1993) Summary — The relationships between quantitative variations of 2 flavanonols in Scots pine needles and Diprion pini larvae mortality were studied. Those 2 compounds were characterized as taxifolin (T) and its glucoside (TG) after hydrolysis and analysis by TLC, HPLC and spectrophotometry. Quantitative differences between 30 clones were more important for TG than for T, nevertheless clones which presented a content of taxifolin higher than 1.5 mg g-1 DW showed a T/TG ratio equal to or greater than 0.5 (fig 2). Quantitative changes were also observed throughout the year. The amount of taxifolin peaked in autumn as those of its glucoside decreased (fig 3). Darkness also induced a gradual increase of T but no significant effect on TG (fig 4). Storage of twigs during feeding tests and insect defoliation both induced a strong glucosilation of taxifolin in needles (table I). High rates of mortality of Diprion pini larvae were associated with the presence of T and TG both in needles and faeces (table II). Preliminary experiments of feeding bioassay with needles supplemented by taxifolin showed a significant reduction of larval development but no direct effect on larval mortality (table III). Regulation processes between taxifolin and its glucoside, which could involve glucosidases and/or transferases, are discussed for the genetic and environmental factors studied. -
Natural Occurrence of the Nuc1eopolyhedrosis Virus of The
ENTOMOPHAGA 25 ( 3 ). 1980, 261-267 NATURAL OCCURRENCE OF THE NUCLEOPOLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR [LEP. : LYMANTRIIDAE] IN WILD BIRDS AND MAMMALS (I) R. A. LAUTENSCHLAGER (2), J. D. PODGWAITE (3) & D. E. WATSON (3) (2) Northeastern Forest Experiment Station Forest Service, U. S. Dep. Agriculture, 370 Reed Road, Broomall, Pa. 19008 (4). (3) U.S_D.A., Forest Service, Northeastern Forest Experiment Station, Forest Insect & Disease Labo ratory, Hamden, Connecticut 06514, U.S.A_ Three species of birds and 5 species of mammals were captured in the wild from 2 plots in which mortality from naturally occurring nucleopolyhedrosis virus (NPV) among gypsy moth, Lymantria dispar (L.), larvae was 15 %and 70 %. Bioassays of intestinal contents showed that blue jays, Cyanocitta cristata (L.), towhees, Pipilo erythrophthalmus (L.), white-footed mice, Peromyscus leucopus (RAFINESQUE), redback voles, Clethrionomys gapperi (VIGERS), raccoons, Procyon lotor (L.), and a chipmunk, Tamias striatus (L.), contained infectious NPV (poly hedra) in their alimentary tracts, whereas robins, Turdus migratorius (L.), and masked shrews, Sorex cinereus (KERR), did not. Comparisons among mice and voles indicated that those collected from the plot in which the NPV mortality was greatest (70 %) contained the most virus. We concluded that birds and mammals can passively transport infectious gypsy moth NPV in the wild. Nucleopolyhedrosis viruses (NPVs) are among the primary natural regulators in dense populations of many insect species, and some appear promising as applied control agents in pest management programs. Understanding the epidemiology of these viruses is critical to predicting population trends and implementing appropriate pest management strategies. Recent studies have emphasized the mechanisms of NPV transmission within and between insect generations. -
Parasitoid Complex of Overwintering Cocoons of Neodiprion Huizeensis (Hymenoptera: Diprionidae) in Guizhou, China
Revista Colombiana de Entomología 42 (1): 43-47 (Enero - Junio 2016) 43 Parasitoid complex of overwintering cocoons of Neodiprion huizeensis (Hymenoptera: Diprionidae) in Guizhou, China Complejo de parasitoides de capullos invernales de Neodiprion huizeensis (Hymenoptera: Diprionidae) en Guizhou, China LI TAO1,2, SHENG MAO-LING1,3, SUN SHU-PING1,4 and LUO YOU-QING5 Abstract: The conifer sawfly, Neodiprion huizeensis (Hymenoptera: Diprionidae), is an injurious leaf feeder of Pinus spp. (Pinaceae) in China. Its parasitoid complex of overwintering cocoons was investigated in Weining, Guizhou during 2012. The average parasitism rate of overwintering cocoons of N. huizeensis by the parasitoid complex was 34.6%. The parasitoid complex included Drino auricapita (Diptera: Tachinidae), ichneumonids, and Trichomalus sp. (Hymenoptera: Pteromalidae). The average parasitism rate of N. huizeensis by D. auricapita was 13.1%. The puparial period of D. auricapita averaged 16.4 ± 0.1 d. The female to male ratio was 1.1: 1. The ichneumonid complex included Aptesis grandis, A. melana, A. nigricoxa, Delomerista indica, Lamachus rufiabdominalis, L. nigrus, Bathythrix sp., Caenocryptus sp., Exyston spp., Gelis sp., Goryphus sp., and Olesicampe sp. The parasitism rate of N. huizeensis by ichneumonids was 17.1%. The parasitism rate of N. huizeensis by Trichomalus sp. was 4.5%, and the female to male ratio was 3.7: 1. The dominant species of parasitoids was D. auricapita followed by A. melana. The emergence of overwintered adults of N. huizeensis had two peaks: the first from the 17th to the 23rd of February, 2012; the second from February 29th to March 15th, 2012. The emergence of the parasitoid complexes coincided with each other and occurred from February 23rd to March 6th, 2012. -
Abietane and Pimarane Diterpene Acid Evolution in Scots Pine Pinus
Abietane and pimarane diterpene acid evolution in Scots pine Pinus sylvestris needles in relation to feeding of the pine sawfly, Diprion pini L L Buratti, Jp Allais, C Geri, M Barbier To cite this version: L Buratti, Jp Allais, C Geri, M Barbier. Abietane and pimarane diterpene acid evolution in Scots pine Pinus sylvestris needles in relation to feeding of the pine sawfly, Diprion pini L. Annales des sciences forestières, INRA/EDP Sciences, 1990, 47 (2), pp.161-171. hal-00882698 HAL Id: hal-00882698 https://hal.archives-ouvertes.fr/hal-00882698 Submitted on 1 Jan 1990 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Abietane and pimarane diterpene acid evolution in Scots pine Pinus sylvestris needles in relation to feeding of the pine sawfly, Diprion pini L. L Buratti JP Allais C Geri M Barbier 1 Institut de Chimie des Substances Naturelles - CNRS 91198 Gif-sur-Yvette, Cedex ; 2 Station de Zoologie Forestière - INRA Ardon 45160 Olivet, France (Received 16 February 1989; accepted 30 June 1989) Summary - Abietane and pimarane resin acids extracted from the needles of Scots pine, Pinus sylvestris, were analysed by reverse phase HPLC followed by GC of their methyl esters, in relation to the seasons, or the age of the trees. -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin, -
The Pennsylvania State University
The Pennsylvania State University The Graduate School PLANTS AS ILLEGITIMATE RECEIVERS OF INSECT SIGNALS: INSIGHT FROM MAIZE AND TEOSINTE A Thesis in Entomology by Julianne Golinski © 2020 Julianne Golinski Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 ii The thesis of Julianne Golinski was reviewed and approved by the following: John F. Tooker Professor of Entomology and Extension Specialist Thesis Advisor Jared G. Ali Assistant Professor of Entomology Ben McGraw Associate Professor of Turfgrass Science Gary W. Felton Professor of Entomology Head of Department of Entomology iii ABSTRACT Plants have evolved to be sensitive to a range of insect-associated cues to detect the presence of herbivorous species and mount effective defense responses against future attack. Insect pheromones have recently been added to this library of cues as some plant species can act as “illegitimate receivers” that eavesdrop on the pheromones of insect herbivores, which act as reliable indicators of future larval damage. My thesis begins with a review that explores the perceptive capabilities of plants and how the ability to eavesdrop on insect pheromone cues may have evolved. I also cover the three known examples of plant illegitimate receivers and use shared traits in these systems to build criteria for finding other host plant species that may also utilize this strategy; native host plants species with (1) native, co-evolved insect herbivore species (2) that release abundant amounts of chemicals on or near the host plant, and (3) substantially reduce host plant fitness. My second chapter highlights two agriculturally relevant plant species that fit the criteria, maize (Zea mays ssp. -
Why Hymenoptera – Not Coleoptera – Is the Most Speciose Animal Order
bioRxiv preprint doi: https://doi.org/10.1101/274431; this version posted March 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Quantifying the unquantifiable: 2 why Hymenoptera – not Coleoptera – is the most speciose animal order 3 4 Andrew A. Forbes, Robin K. Bagley, Marc A. Beer, Alaine C. Hippee, & Heather A. Widmayer 5 University of Iowa, Department of Biology, 434 Biology Building, Iowa City, IA 52242 6 7 Corresponding author: 8 Andrew Forbes 9 10 Email address: [email protected] 11 12 13 1 bioRxiv preprint doi: https://doi.org/10.1101/274431; this version posted March 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 Abstract: We challenge the oft-repeated claim that the beetles (Coleoptera) are the most species- 15 rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, are more 16 speciose, due in large part to the massively diverse but relatively poorly known parasitoid wasps. 17 The idea that the beetles have more species than other orders is primarily based on their 18 respective collection histories and the relative availability of taxonomic resources, which both 19 disfavor parasitoid wasps. Since it is unreasonable to directly compare numbers of described 20 species in each order, we present a simple logical model that shows how the specialization of 21 many parasitic wasps on their hosts suggests few scenarios in which there would be more beetle 22 species than parasitic wasp species. -
Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7
Impacts of Invasive Species in Terrestrial and Aquatic Systems 2 in the United States Albert E. Mayfeld III, Steven J. Seybold, Wendell R. Haag, M. Tracy Johnson, Becky K. Kerns, John C. Kilgo, Daniel J. Larkin, Rima D. Lucardi, Bruce D. Moltzan, Dean E. Pearson, John D. Rothlisberger, Jefrey D. Schardt, Michael K. Schwartz, and Michael K. Young 2.1 Introduction have been estimated at $120 billion annually (Crowl et al. 2008; Pimentel et al. 2000, 2005). These costs include lost The introduction, establishment, and spread of invasive production and revenue from agricultural and forest prod- species in terrestrial and aquatic environments is widely ucts, compromised use of waterways and terrestrial habi- recognized as one of the most serious threats to the health, tats, harm to human and animal health, reduced property sustainability, and productivity of native ecosystems values and recreational opportunities, and diverse costs (Holmes et al. 2009; Mack et al. 2000; Pyšek et al. 2012; associated with managing (e.g., monitoring, preventing, USDA Forest Service 2013). In the United States, invasive controlling, and regulating) invasive species (Aukema species are the second leading cause of native species et al. 2011; Pimentel et al. 2005). The national signifcance endangerment and extinction, and their costs to society of these economic, ecological, and social impacts in the A. E. Mayfeld III (*) R. D. Lucardi U.S. Department of Agriculture, Forest Service, Southern Research U.S. Department of Agriculture, Forest Service, Southern Research Station, Insects, Diseases and Invasive Plants of Southern Forests, Station, Athens, GA, USA Asheville, NC, USA e-mail: [email protected] B. -
Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S.