Pine Sawflies, Neodiprion Spp. (Insecta: Hymenoptera: Diprionidae)1 Wayne N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hymenoptera (Stinging Wasps)
Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens. -
Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten. -
Parasitoid Complex of Overwintering Cocoons of Neodiprion Huizeensis (Hymenoptera: Diprionidae) in Guizhou, China
Revista Colombiana de Entomología 42 (1): 43-47 (Enero - Junio 2016) 43 Parasitoid complex of overwintering cocoons of Neodiprion huizeensis (Hymenoptera: Diprionidae) in Guizhou, China Complejo de parasitoides de capullos invernales de Neodiprion huizeensis (Hymenoptera: Diprionidae) en Guizhou, China LI TAO1,2, SHENG MAO-LING1,3, SUN SHU-PING1,4 and LUO YOU-QING5 Abstract: The conifer sawfly, Neodiprion huizeensis (Hymenoptera: Diprionidae), is an injurious leaf feeder of Pinus spp. (Pinaceae) in China. Its parasitoid complex of overwintering cocoons was investigated in Weining, Guizhou during 2012. The average parasitism rate of overwintering cocoons of N. huizeensis by the parasitoid complex was 34.6%. The parasitoid complex included Drino auricapita (Diptera: Tachinidae), ichneumonids, and Trichomalus sp. (Hymenoptera: Pteromalidae). The average parasitism rate of N. huizeensis by D. auricapita was 13.1%. The puparial period of D. auricapita averaged 16.4 ± 0.1 d. The female to male ratio was 1.1: 1. The ichneumonid complex included Aptesis grandis, A. melana, A. nigricoxa, Delomerista indica, Lamachus rufiabdominalis, L. nigrus, Bathythrix sp., Caenocryptus sp., Exyston spp., Gelis sp., Goryphus sp., and Olesicampe sp. The parasitism rate of N. huizeensis by ichneumonids was 17.1%. The parasitism rate of N. huizeensis by Trichomalus sp. was 4.5%, and the female to male ratio was 3.7: 1. The dominant species of parasitoids was D. auricapita followed by A. melana. The emergence of overwintered adults of N. huizeensis had two peaks: the first from the 17th to the 23rd of February, 2012; the second from February 29th to March 15th, 2012. The emergence of the parasitoid complexes coincided with each other and occurred from February 23rd to March 6th, 2012. -
Supplementary Materials Neodiprion Sawflies
Supplementary Materials Neodiprion sawflies: life history description and utility as a model for parent-offspring conflict To provide context for our comparative analysis of Neodiprion clutch-size traits, we provide relevant life history details (reviewed in Coppel and Benjamin 1965; Knerer and Atwood 1973; Wilson et al. 1992; Knerer 1993). Adult females emerge from cocoons with a full complement of mature eggs, find a suitable host, and attract males via a powerful pheromone. Shortly after mating, females use their saw-like ovipositors to embed their eggs within pine needles. While females of some species tend to lay their full complement of eggs on a single branch terminus, females of other species seek out multiple branches or trees for oviposition. Overall, female oviposition behavior is highly species-specific and, in some cases, diagnostic (Ghent 1959). Adult Neodiprion are non-feeding and short-lived (~2-4 days), dying soon after mating and oviposition. After hatching from eggs, Neodiprion larvae of many species form feeding aggregations that remain intact to varying degrees across 4-7 feeding instars, depending on the sex and the species. As larvae defoliate pine branches, they migrate to new branches and sometimes to new host trees (Benjamin 1955, Smirnoff 1960). During these migrations, colonies may undergo fission and fusion events (Codella and Raffa 1993, Codella and Raffa 1995, Costa and Loque 2001). Thus, while initial colony size corresponds closely to egg-clutch size, larvae are highly mobile and their dispersal behavior has the potential to substantially alter colony size (Codella and Raffa 1995). Beyond having a variable and well-documented natural history, Neodiprion provides an excellent test case for examining coevolution of female egg-laying and larval grouping behaviors because, as is likely the case for many insects, feeding in groups could confer both costs and benefits to the larvae (Codella and Raffa 1995, Heitland and Pschorn-Walcher 1993). -
Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016). -
Hymenoptera, Pompilidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio da Producao Cientifica e Intelectual da Unicamp JHR 46: 165–172 (2015) Paracyphononyx scapulatus (Hymenoptera, Pompilidae)... 165 doi: 10.3897/JHR.46.5833 SHORT COMMUNICATION http://jhr.pensoft.net Paracyphononyx scapulatus (Hymenoptera, Pompilidae), a koinobiont ectoparasitoid of Trochosa sp. (Araneae, Lycosidae) Hebert da Silva Souza1, Yuri Fanchini Messas1, Fabiana Masago2, Eduardo Fernando dos Santos3, João Vasconcellos-Neto1 1 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, Campinas, São Paulo, Brazil 2 Universidade Estadual Paulista “Júlio de Mesquita Filho”, Insti- tuto de Biociências, Departamento de Farmacologia, Distrito de Rubião Júnior, s/n, Botucatu, São Paulo, Brazil 3 Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Letras e Ciências Exatas, Departamento de Biologia Animal, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, Brazi Corresponding author: Hebert da Silva Souza ([email protected]) Academic editor: J. Neff | Received 5 August 2015 | Accepted 18 September 2015 | Published 30 November 2015 http://zoobank.org/83B4CF20-1B29-4D7C-9203-F925181A419E Citation: Souza HS, Messas YF, Masago F, dos Santos ED, Vasconcellos-Neto J (2015) Paracyphononyx scapulatus (Hymenoptera: Pompilidae), a koinobiont ectoparasitoid of Trochosa sp. (Araneae: Lycosidae). Journal of Hymenoptera Research 46: 165–172. doi: 10.3897/JHR.46.5833 Abstract The genus Paracyphononyx Gribodo, 1884 (Pompilidae) contains species that act as koinobiont parasitoids of cursorial spiders. Here, we record a new parasitism interaction involving the pompilid wasp Paracypho- nonyx scapulatus (Bréthes) and the hunter spider Trochosa sp. -
2015 Forest Health Highlights Michigan Department of Natural Resources Acknowledgments
2015 Forest Health Highlights Michigan Department of Natural Resources Acknowledgments Forest Health Highlights is a summary of the condition of Michigan’s forests during 2015 and the work done to preserve and protect them by Forest Resources Division, Department of Natural Resources, www.michigan.gov/foresthealth. Written by Michigan Department of Natural Resources Forest Resources Division Michigan Department of Agriculture and Rural Development Michigan State University Department of Forestry and the Department of Entomology United States Department of Agriculture Forest Service Photographs and design by Michigan Department of Natural Resources Forest Resources Division United States Department of Agriculture Forest Service Michigan Department of Agriculture & Rural Development Michigan State University Maps and other information provided by Michigan Department of Agriculture and Rural Development United States Department of Agriculture Forest Service and Animal and Plant Health Inspection Service Michigan State University Extension Cover photo: The redheaded pine sawfly, Neodiprion lecontei, is native to Michigan and much of eastern North America. The larvae feed in colonies and consume both new and old foliage. During outbreaks, multiple colonies can attack young trees and cause complete defoliation and tree mortality. The preferred hosts in Michigan are jack pine and red pine. Young plantations less than 15 feet in height are at greatest risk. Photo by Michigan Department of Natural Resources forest health technician Scott Lint. -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
Yellowjackets and Hornets, Vespula and Dolichovespula Spp. (Insecta: Hymenoptera: Vespidae)1 E
EENY-081 Yellowjackets and Hornets, Vespula and Dolichovespula spp. (Insecta: Hymenoptera: Vespidae)1 E. E. Grissell and Thomas R. Fasulo2 Introduction Distribution Only two of the 18 Nearctic species of Vespula are known Vespula maculifrons is found in eastern North America, from Florida (Miller 1961). These are the two yellowjackets: while Vespula squamosa is found in the eastern United eastern yellowjacket, V. maculifrons (Buysson) and the States and parts of Mexico and Central America. The southern yellowjacket, V. squamosa (Drury). One species baldfaced hornet, Dolichovespula maculata, is found of Dolichovespula is also present: the baldfaced hornet, throughout most of the Nearctic region. D. maculata (Linnaeus). The baldfaced hornet is actually a yellowjacket. It receives its common name of baldfaced Identification from its largely black color but mostly white face, and that The three species of Florida yellowjackets are readily of hornet because of its large size and aerial nest. In general, separated by differences in body color and pattern. Identi- the term “hornet” is used for species which nest above fication is possible without a hand lens or microscope, and, ground and the term “yellowjacket” for those which make for this reason, a simple pictorial key is all that is necessary. subterranean nests. All species are social, living in colonies Color patterns are relatively stable, and their use is further of hundreds to thousands of individuals. strengthened by morphological characters (Miller 1961). Queens and workers may be separated by abdominal pat- terns; males have seven abdominal segments while females have only six. Biology Colonies are founded in the spring by a single queen that mated the previous fall and overwintered as an adult, usually under the bark of a log. -
The Insect Orders IV: Hymenoptera
Introduction to Applied Entomology, University of Illinois The Insect Orders IV: Hymenoptera Spalangia nigroaenea, a parasite in the family Pteromalidae, depositing an egg into a house fly puparium. Photo by David Voegtlin. Hymenoptera: Including the sawflies, parasitic wasps, ants, wasps, and bees 2 versions of the derivation of the name Hymenoptera: Hymen = membrane; ptera = wings; membranous wings Hymeno = god of marriage -- union of front and hind wings by hamuli Web sites to check: Hymenoptera at BugGuide Hymenoptera on the NCSU General Entomology page Description and identification: Adult: Mouthparts: chewing or chewing/lapping Size: Minute to large Wings: 4 or none, front wing larger than hind wing, front and hind wings are coupled by hamuli to function as one. Antennae: Long and filiform (hairlike) in Symphyta; many forms in Apocrita Other characteristics: Abdomen is broadly joined to the thorax in Symphyta; constricted to form a "waist"-like propodeum in Apocrita. Immatures: In Symphyta, eruciform (caterpillar-like), but with 6 or more pairs of prolegs that lack crochets; 2 large stemmata; all are plant-feeders In Apocrita, larvae have true head capsules, but no legs; some feed on other arthropods Metamorphosis: Complete Habitat: On vegetation, as parasites of other insects, in social colonies Pest or Beneficial Status: A few plant pests (sawflies); many are beneficial as parasites of other insects and as pollinators. Honey bees are important pollinators and produce honey. Stinging species can injure humans and domestic animals. Introduction to Applied Entomology, University of Illinois Suborder Symphyta (one of two suborders): The sawflies and horntails. The name sawfly is derived from the saw-like nature of the ovipositor. -
Hibiscus Sawfly, Atomacera Decepta HYMENOPTERA: ARGIDAE
Rose Hiskes, Diagnostician and Horticulturist Valley Laboratory The Connecticut Agricultural Experiment Station 153 Cook Hill Road, P. O Box 248 Windsor, CT 06095 Phone: (860) 683-4977 Email: [email protected] Hibiscus Sawfly, Atomacera decepta HYMENOPTERA: ARGIDAE Rose mallow, Hibiscus moscheutos, a (Figure 3). The larvae look like moth or southern native, along with related hybrids butterfly caterpillars but can be and cultivars are valued in Northeast gardens distinguished from them by the number of for their many mid- to late summer blooms short, fleshy prolegs found on the abdomen. and strong stems that rarely need staking. Moth and butterfly larvae have five or fewer Their white, pink or red flowers, some as pairs of prolegs, while sawflies have none or large as dinner plates, can have a darker eye. more than five pairs of prolegs. The Until recently, they have been relatively free hibiscus sawfly larva has six pairs of of insect and disease pests in home prolegs. Mature larvae, up to ½” long, form landscapes. In 2004 and 2005, however, straw-colored fibrous cocoons (Figure 4). larvae of the hibiscus sawfly defoliated many rose mallow plants in Connecticut Life Cycle and Damage: landscapes. This sawfly is more commonly Not much is known of the life cycle of this found in the Mid-Atlantic and Midwest pest in the Northeast. Adult activity and egg states. It also feeds on hollyhock and other laying may take place from late May through mallows. If left untreated for several the growing season until the first frost. Eggs seasons, populations can build up and kill an are laid in older leaves and hatch in about a otherwise healthy plant. -
Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin,