Evolution of the Insects

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Insects CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999). Already it is known that in well-sampled related, owing to the reduction into a single claw on the larval temperate regions, Hymenoptera outnumber Coleoptera leg, the presence of labial silk glands in the larva, and a scle- (e.g., Gaston, 1991), and the order rivals the beetles in a few rotized sitophore plate in the cibarium of the adult mouth- well-studied tropical ecosystems (e.g., Noyes, 1989; Stork, parts (Königsmann, 1976; Kristensen, 1981, 1991, 1995, 1999a), 1991; Hanson and Gauld, 1995). Today there are approxi- as well as significant reduction of the prothorax. Molecular mately 125,000 named species of Hymenoptera, but even the studies have also supported this position (e.g., Whiting et al., most conservative estimates on the total diversity of the 1997; Wheeler et al., 2001). The sister-group relationship order approximate figures between 600,000 and 1,200,0000 between the Hymenoptera and the panorpid orders is species (Gaston, 1991; Grissell, 1999; Austin and Dowton, intriguing and might, on the surface, suggest that the order 2000b). The sobering aspect of these estimates is that 60–88% should stem well into the Permian because numerous Paleo- of the order remains undescribed, perhaps 96% if Stork’s rad- zoic mecopteroids (stem-group Antliophora and Panorpida) ical estimate of 2.5 million species is adopted (Stork, 1996). are known from this period. This vast diversity is largely hidden among the relatively The earliest definitive Hymenoptera, which are easily rec- poorly explored microhymenopterans (e.g., Proctotrupoidea, ognizable by the distinctive wing venation, are from the Chalcidoidea, Platygastroidea) and where vast new faunas of Triassic of Australia, Central Asia, and Africa (Riek, 1955; species are continually discovered. However, even among Rasnitsyn, 1964, 1969; Schlüter, 2000). Are the Hymenoptera the more physically “robust” lineages, like Ichneumonoidea, more ancient than presumed, owing to the antiquity of their the number of species is rising rapidly as more comprehen- sister group? They likely are not. As we shall discuss later, sive sampling and monographs are undertaken of megadi- numerous fossilized “mecopteroid” wings from the Permian verse regions, such as Malaysia, Indonesia, Ecuador, Peru, exhibit only primitive traits for the Hymenoptera ϩ Panorp- and Zaire. Major treatments covering both the systematics ida complex, and defining features of Panorpida cannot and biology of the Hymenoptera include Evans and West- be determined for many of these taxa. It is, therefore, pos- Eberhard (1970), Iwata (1972, 1976), Spradberry (1973b), sible that some of these Paleozoic groups are in fact stem- Krombein et al. (1979), Gauld and Bolton (1988), Schedl group lineages to the Hymenoptera ϩ Panorpida, with the (1991), Goulet and Huber (1993), LaSalle and Gauld (1993), Hymenoptera and panorpoid orders as we know them today Godfray (1994), Hanson and Gauld (1995), Quicke (1997), having arisen from a paraphyletic cloud of Paleozoic taxa at Austin and Dowton (2000a), and O’Neill (2001). Although 407 CY501-C11[407-467].qxd 3/2/05 12:57 PM Page 408 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: 408 EVOLUTION OF THE INSECTS of the union of two gametes. Males, however, are produced from unfertilized eggs and as such have only a single com- pliment of the genome (i.e., are haploid). Diploid males do at times occur, particularly among the social aculeates, but typically they do not survive to maturity, but instead die as larvae. Hymenoptera are well known as parasitoids (Figure 11.2), a mode of life in which they have succeeded and far sur- passed all other insect parasites. As such, the group is of para- mount importance in natural ecosystems, but it has also made them a focus for biological control agents in integrated pest management (e.g., Waage and Greathead, 1986). Para- sitoids, unlike parasites, develop from nutrients extracted from a single host organism either externally (ectopara- sitoids) or internally (endoparasitoids), and they kill the host 11.1. Hamuli on the hind wing of a wasp, which is a defining feature as a direct or indirect result (a parasite, while inflicting mini- of the Hymenoptera. These microscopic hooks link to the posterior mal to severe ill effects, does not kill its host). The host, how- margin of the forewing and couple the wings in flight. Hymenoptera ever, remains alive for the larger part of the parasitoid’s effectively fly like flies, with functionally one pair of wings. Scanning electron micrograph. period of feeding. This mode of life is remarkably efficient, and parasitoid wasps are so diverse that they exploit most groups of terrestrial arthropods. Some parasitoid wasps are certainly dated, the book by Malyshev (1966: translated 1968) hyperparasitoids, in which one parasitoid attacks another is a remarkable source for information on the biology of hymenopterans. As mentioned before, the Hymenoptera possess numer- ous primitive traits combined with several unique features. Notable primitive features in the groundplan of Hymenoptera include the mandibulate mouthparts and the generalized ovipositor of the “lepismatoid” type (i.e., the typical arrange- ment for Dicondylia with a gonangulum), although the first gonocoxite in the order has been entirely lost and is wholly replaced by the gonangulum (and comments about a first valvifer or gonocoxa in the order are erroneous and actually refer to the gonangulum) (Figure 4.8). Hymenoptera are defined by the following specialized features: relatively small hind wings that are linked to the forewings by a series of minute hooks (hamuli) on the leading edge and that grasp the posterior edge of the forewing (Figure 11.1); the anal veins of the forewing not reaching the posterior wing mar- gin; a modification of the protibial spur into an “antenna cleaner”; articulation of the profurcal apophyses to the propleura; the presence, at least among basal hymenopter- ans, of cenchri (paired oval structures on the metascutum, which can engage the forewing undersides in symphytans); and the presence of volsellae in the male genitalia (other morphological traits are outlined by Vilhelmsen, 2001; Schulmeister, 2003b). Perhaps one of the more interesting, derived traits of the Hymenoptera, and one that plays an important role in kin selection throughout the social line- ages, is a haplodiploid sex determination system, though this also occurs sporadically throughout other groups of 11.2. Parasitoid wasps emerging from their beetle larva host. The order Hymenoptera contains the greatest diversity and numbers of insects. In all members of the order, females have two sets of insect parasitoids, which are largely responsible for regulating popula- chromosomes (i.e., are diploid), being the usual product tions of pest insects and so are used extensively in biocontrol. CY501-C11[407-467].qxd 3/2/05 12:57 PM Page 409 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: HYMENOPTERA: ANTS, BEES, AND OTHER WASPS 409 11.3. Phylogenetic relationships of the sawflies and wood wasps (symphytan Hymenoptera). Numbers refer to some significant characters (see Table 11.1). Based on Vilhelmsen (2001) and Schulmeister (2003b), with fos- sils added. Crosshatching indicates putative ranges which require more careful authentification. the phylogeny and classification of Hymenoptera is presently TABLE 11.1. Significant Characters in the Phylogeny the subject of intense study, and revisions to this long dated of Basal Hymenopteraa system are expected in due course. Rather than adopt a novel 1. Hamuli; protibial spur with velum; haplodiploid subordinal classification in advance of such studies, we shall 2. Forewing Rs not furcate apically, Sc fused to R; Sc absent refer to these imperfect subdivisions but shall
Recommended publications
  • A New Record of Aulacidae (Hymenoptera: Evanioidea) from Korea
    Journal of Asia-Pacific Biodiversity Vol. 6, No. 4 419-422, 2013 http://dx.doi.org/10.7229/jkn.2013.6.4.00419 A New Record of Aulacidae (Hymenoptera: Evanioidea) from Korea Jin-Kyung Choi1, Jong-Chul Jeong2 and Jong-Wook Lee1* 1Department of Life Sciences, Yeungnam University, Gyeongsan, 712-749, Korea 2National Park Research Institute, Korea National Park Service, Namwon, 590-811, Korea Abstract: Pristaulacus comptipennis Enderlein, 1912 is redescribed and illustrated based on a recently collected specimen in Korea. With a newly recorded species, P. comptipennis Enderlein, a total of six Korean aulacids are recognized: Aulacus salicius Sun and Sheng, 2007, Pristaulacus insularis Konishi, 1990, P. intermedius Uchida, 1932, P. kostylevi Alekseyev, 1986, P. jirisani Smith and Tripotin, 2011, and P. comptipennis Enderlein, 1912. A key to species of Korean Aulacidae is provided with, redescription and diagnostic characteristics of Pristaulacus comptipennis. Keywords: Aulacidae, Pristaulacus comptipennis, new record, Korea Introduction of Yeungnam University (YNU, Gyeongsan, Korea). Also, for identification of Korean Aulacidae, type materials of Family Aulacidae currently includes 244 extant species some species were borrowed from NIBR. Images were placed in two genera: Aulacus Jurine, 1807 with 76 species obtained using a stereo microscope (Zeiss Stemi SV 11 and Pristaulacus Kieffer, 1900 with 168 species. Members Apo; Carl Zeiss, Göttingen, Germany). The key characters of this family are distributed in all zoogeographic regions shown in the photographs were produced using a Delta except Antarctica (e.g. Benoit 1984; Lee & Turrisi 2008; imaging system (i-Delta 2.6; iMTechnology, Daejeon, Smith and Tripotin 2011; Turrisi and Smith 2011). The Korea).
    [Show full text]
  • Observations on Forced Colony Emigration in Parachartergus Fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom
    Hindawi Publishing Corporation Psyche Volume 2011, Article ID 157149, 8 pages doi:10.1155/2011/157149 Research Article Observations on Forced Colony Emigration in Parachartergus fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom Sidnei Mateus Departamento de Biologia, Faculdade de Filosofia CiˆenciaseLetrasdeRibeir˜ao Preto, Universidade de S˜ao Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeir˜ao Preto, SP, Brazil Correspondence should be addressed to Sidnei Mateus, sidneim@ffclrp.usp.br Received 8 September 2010; Revised 20 December 2010; Accepted 12 February 2011 Academic Editor: Robert Matthews Copyright © 2011 Sidnei Mateus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Five cases of colony emigration induced by removal of nest envelope and combs and a single one by manipulation are described. The disturbance was followed by defensive patterns, buzz running, and adult dispersion. An odor trail created by abdomen dragging, probably depositing venom or Dufour’s gland secretions, connected the original nest to the newly selected nesting place and guided the emigration. The substrate of the selected nesting place is intensely sprayed with venom prior to emigration, and this chemical cue marked the emigration end point. The colony moves to the new site in a diffuse cloud with no temporary clusters formed along the odor trail. At the original nest, scouts performed rapid gaster dragging and intense mouth contacts stimulating inactive individuals to depart. Males were unable to follow the swarm. Individual scouts switched between different behavioral tasks before and after colony emigration.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China
    European Journal of Taxonomy 733: 146–159 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1229 www.europeanjournaloftaxonomy.eu 2021 · Zheng Y. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:043C9407-7E8A-4E8F-9441-6FC43E5A596E New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China Yan ZHENG 1,*, Haiyan HU 2, Dong CHEN 3, Jun CHEN 4, Haichun ZHANG 5 & Alexandr P. RASNITSYN 6,* 1,4 Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China. 1,4,5 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, East Beijing Road, Nanjing 210008, China. 2 School of Agronomy and Environment, Weifang University of Science and Techonoly, Jinguang Road, Shouguang, 262700, China. 3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China. 6 Palaeontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia. 6 Natural History Museum, London SW7 5BD, UK. * Corresponding authors: [email protected], [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:28EB8D72-5909-4435-B0F2-0A48A5174CF9 2 urn:lsid:zoobank.org:author:91B2FB61-31A9-449B-A949-7AE9EFD69F56 3 urn:lsid:zoobank.org:author:51D01636-EB69-4100-B5F6-329235EB5C52 4 urn:lsid:zoobank.org:author:8BAB244F-8248-45C6-B31E-6B9F48962055 5 urn:lsid:zoobank.org:author:18A0B9F9-537A-46EF-B745-3942F6A5AB58 6 urn:lsid:zoobank.org:author:E7277CAB-3892-49D4-8A5D-647B4A342C13 Abstract.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • Solanaceae) Flower–Visitor Network in an Atlantic Forest Fragment in Southern Brazil
    diversity Article Bee Diversity and Solanum didymum (Solanaceae) Flower–Visitor Network in an Atlantic Forest Fragment in Southern Brazil Francieli Lando 1 ID , Priscila R. Lustosa 1, Cyntia F. P. da Luz 2 ID and Maria Luisa T. Buschini 1,* 1 Programa de Pós Graduação em Biologia Evolutiva da Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, Vila Carli, Guarapuava 85040-080, Brazil; [email protected] (F.L.); [email protected] (P.R.L.) 2 Research Centre of Vascular Plants, Palinology Research Centre, Botanical Institute of Sao Paulo Government, Av. Miguel Stéfano, 3687 Água Funda, São Paulo 04045-972, Brazil; [email protected] * Correspondence: [email protected] Received: 9 November 2017; Accepted: 8 January 2018; Published: 11 January 2018 Abstract: Brazil’s Atlantic Forest biome is currently undergoing forest loss due to repeated episodes of devastation. In this biome, bees perform the most frequent pollination system. Over the last decade, network analysis has been extensively applied to the study of plant–pollinator interactions, as it provides a consistent view of the structure of plant–pollinator interactions. The aim of this study was to use palynological studies to obtain an understanding of the relationship between floral visitor bees and the pioneer plant S. didymum in a fragment of the Atlantic Forest, and also learn about the other plants that interact to form this network. Five hundred bees were collected from 32 species distributed into five families: Andrenidae, Apidae, Colletidae, Megachilidae, and Halictidae. The interaction network consisted of 21 bee species and 35 pollen types.
    [Show full text]
  • A Preliminary Detective Survey of Hymenopteran Insects at Jazan Lake Dam Region, Southwest of Saudi Arabia
    Saudi Journal of Biological Sciences 28 (2021) 2342–2351 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia Hanan Abo El-Kassem Bosly 1 Biology Department - Faculty of Science - Jazan University, Saudi Arabia article info abstract Article history: A preliminary detective survey for the hymenopteran insect fauna of Jazan Lake dam region, Southwest Received 16 November 2020 Saudi Arabia, was carried out for one year from January 2018 to January 2019 using mainly sweep nets Revised 6 January 2021 and Malaise traps. The survey revealed the presence of three hymenopteran Superfamilies (Apoidea, Accepted 12 January 2021 Vespoidea and Evanioidea) representing 15 species belonging to 10 genera of 6 families (Apidae, Available online 28 January 2021 Crabronidae, Sphecidae, Vespidae, Mutillidae, and Evaniidae). The largest number of species has belonged to the family Crabronidae is represented by 6 species under 2 genera. While the family Apidae, is repre- Keywords: sented by 2 species under 2 genera. Family Vespidae is represented by 2 species of one genus. While, the Survey rest of the families Sphecidae, Mutillida, and Evaniidae each is represented by only one species and one Insect fauna Hymenoptera genus each. Eleven species are predators, two species are pollinators and two species are parasitics. Note Jazan for each family was provided, and species was provided with synonyms and general and taxonomic Saudi Arabia remarks and their worldwide geographic distribution and information about their economic importance are also included.
    [Show full text]
  • Carpenter Bees
    E-252-W Household and Structural Department of Entomology CARPENTER BEES Timothy J. Gibb, Extension Entomologist Large, black bees hovering around and drilling holes into Holes are created by the female carpenter bee when homes, out-buildings, wooden furniture and decks during May it selects an appropriate site and begins to chew. Tunnel and June are carpenter bees. They resemble, and are often entrances are approximately ½ inch in diameter, just large mistaken for bumble bees but the most apparent difference is enough for the bee to enter. that the carpenter bee has a black, shiny abdomen, compared to the hairy and often yellowish abdomen of the bumble bee. Tunnels usually consist of an entrance hole that penetrates into the wood ½ to 1 inch across the grain of the wood and Behavior then turns at a right angle to follow the wood grain for 6 – 8 inches. After tunneling is completed the bee will create indi- Behaviorally, carpenter bees also are quite unique. They vidual cells using bits of sawdust and frass along the length are most often noticed as they bore into wood and create of the tunnel. Each cell is provisioned with a pollen ball into tunnels for egg laying and for protection during the winter. which she will lay an individual egg before sealing it off. As Most commonly carpenter bees select bare, unpainted and the eggs hatch in mid summer, the larvae feed on the pol- weathered softwoods including redwood, cedar, cypress and Beginning of hole that will eventually become nearly per- Carpenter bee boring into wood.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Phylogenetic Analysis of the Corbiculate Bee Tribes Based on 12 Nuclear Protein-Coding Genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S
    Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik To cite this version: Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik. Phylogenetic anal- ysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, Springer Verlag, 2008, 39 (1), pp.163-175. hal-00891935 HAL Id: hal-00891935 https://hal.archives-ouvertes.fr/hal-00891935 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 163–175 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007046 Original article Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae)* Atsushi Kawakita1, John S. Ascher2, Teiji Sota3,MakotoKato 1, David W. Roubik4 1 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan 2 Division of Invertebrate Zoology, American Museum of Natural History, New York, USA 3 Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan 4 Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Received 2 July 2007 – Revised 3 October 2007 – Accepted 3 October 2007 Abstract – The corbiculate bees comprise four tribes, the advanced eusocial Apini and Meliponini, the primitively eusocial Bombini, and the solitary or communal Euglossini.
    [Show full text]
  • Hymenoptera, Ichneumonidae, Ctenopelmatinae)
    JHR 31: 97–104 (2013) Biology of Seleucus cuneiformis Holmgren 97 doi: 10.3897/JHR.31.4204 RESEARCH ARTICLE www.pensoft.net/journals/jhr Notes on the biology of Seleucus cuneiformis Holmgren (Hymenoptera, Ichneumonidae, Ctenopelmatinae) Cornelis van Achterberg1, Ewald Altenhofer2 1 Department of Terrestrial Zoology, Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands 2 Etzen 39, 3920 Gross Gerungs, Austria Corresponding author: Cornelis van Achterberg ([email protected]) Academic editor: G. Broad | Received 28 October 2012 | Accepted 21 January 2013 | Published 20 March 2013 Citation: Achterberg C van, Altenhofer E (2013) Notes on the biology of Seleucus cuneiformis Holmgren (Hymenoptera, Ichneumonidae, Ctenopelmatinae). Journal of Hymenoptera Research 31: 97–104. doi: 10.3897/JHR.31.4204 Abstract The biology of the monotypic genus Seleucus Holmgren, 1860 (Ichneumonidae: Ctenopelmatinae) is re- ported for the first time. Seleucus cuneiformis Holmgren, 1860, was reared from Blasticotoma filiceti Klug, 1834 (Hymenoptera: Blasticotomidae). Seleucus cuneiformis Holmgren is new to the fauna of Austria. Keywords Seleucus, Blasticotoma, biology, distribution Introduction The second author reared for the first time a species of Ichneumonidae from the fern sawfly Blasticotoma filiceti Klug, 1834 (Tenthredinoidea: Blasticotomidae) in Austria. Blasticotomidae form a small and rarely collected family of small wasps (6-9 mm) main- ly restricted to the Palaearctic region and the border with the Oriental region (Taeger et al. 2010), with only one European species, Blasticotoma filiceti Klug, 1834. The family is considered to be one of the oldest extant families of Tenthredinoidea (Rasnitsyn 1988, 2002) and the blasticotomid lineage probably separated from the rest of Tenthredi- noidea as early as 280 Ma (Ronquist et al.
    [Show full text]
  • Visual Ecology of Indian Carpenter Bees II: Adaptations of Eyes and Ocelli to Nocturnal and Diurnal Lifestyles
    J Comp Physiol A (2009) 195:571–583 DOI 10.1007/s00359-009-0432-9 ORIGINAL PAPER Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles Hema Somanathan Æ Almut Kelber Æ Renee M. Borges Æ Rita Walle´n Æ Eric J. Warrant Received: 11 December 2008 / Revised: 25 February 2009 / Accepted: 4 March 2009 / Published online: 11 April 2009 Ó Springer-Verlag 2009 Abstract Most bees are diurnal, with behaviour that is Keywords Apposition compound eyes Á Bees Á largely visually mediated, but several groups have made Ocelli Á Optical sensitivity Á Xylocopa evolutionary shifts to nocturnality, despite having apposi- tion compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes Introduction and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly The apposition compound eye is the predominant eye diurnal X. leucothorax and the occasionally crepuscular X. design in most diurnal insects including bees (Land and tenuiscapa. The ocelli of the nocturnal X. tranquebarica Nilsson 2002). In these eyes, each visual unit, or omma- are unusually large (diameter ca. 1 mm) and poorly tidium, consists of a corneal lens, a crystalline cone and focussed. Moreover, their apposition eyes show specific photoreceptor cells surrounded by screening pigment that visual adaptations for vision in dim light, including large absorbs incoming off-axis light. The rhabdom, the light- size, large facets and very wide rhabdoms, which together sensitive portion of the photoreceptor cells, receives only make these eyes 9 times more sensitive than those of X.
    [Show full text]