Insects of Larose Forest (Excluding Lepidoptera and Odonates)

Total Page:16

File Type:pdf, Size:1020Kb

Insects of Larose Forest (Excluding Lepidoptera and Odonates) Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata Pine spittlebug Lepyronia quadrangularis Spittlebug Philaenus spumarius Meadow spittlebug* Coccidae Scale Insects and Mealybugs Parthenolecanium corni European fruit lecanium* Coreidae Leaf-footed Bugs Acanthocephala sp. Leaf-footed bug Corixidae Water Boatmen Corixidae sp. Water boatman Derbidae Derbid Planthoppers Apache degeerii Planthopper Cedusa incisa Planthopper Cedusa maculata Planthopper Otiocerus wolfii Planthopper Dictyopharidae Dictyopharid Planthoppers Scolops sulcipes Partridge planthopper Eriococcidae Felt Scales Cryptococcus fagisuga Beech scale Flatidae Flatid Planthoppers Metcalfa pruinosa Planthopper Gerridae Water Striders Gerris sp. Water strider Lygaeidae Seed Bugs Lygaeus kalmii Small milkweed bug Oncopeltus fasciatus Large milkweed bug Membracidae Treehoppers Acutalis tartarea Treehopper Campylenchia sp. Treehopper Carynota marmorata Marbled treehopper Ceresa sp. Buffalo treehopper Ceresa alta Buffalo treehopper Entylia carinata Treehopper Publilia concava Treehopper Miridae Plant Bugs Adelphocoris lineolatus Alfalfa plant bug* Capsus ater Plant bug* Leptopterna dolabrata Plant bug Lopidea media Plant bug Lygus lineolaris Tarnished plant bug Lygus vanduzeei Plant bug Metriorrhynchomiris dislocatus (red form) Plant bug Metriorrhynchomiris dislocatus (black form) Plant bug Miris dolabratus ` Meadow Plant Bug Poecilocapsus lineatus Four-lined plant bug 2 Stenotus binotatus ? Plant bug Trigonotylus sp. ? Plant bug Nabidae Damsel Bugs Nabicula subcoleoptrata Damsel bug Nabis americoferus Damsel bug Pentatomidae Stink Bugs Pentatomidae spp. Stink bugs Apateticus sp. Stink bug Chinavia hilaris Large green stinkbug Cosmopepla bimaculata Two-spotted stink bug Euschistus servus Brown stink bug Euschistus tristigmus Dusky stink bug Picromerus bidens Stink bug* Podisus brevispinus Stink bug Phymatidae Ambush Bugs Phymata sp. Ambush bug Reduviidae Assassin Bugs and Thread-legged Bugs Reduvidae sp. Assassin bug Zelus sp. Assassin bug Rhopalidae Scentless Plant Bugs Stictopleurus punctiventris Scentless Plant Bug PSOCOPTERA Barklice and Booklice Psocidae Barklice Cerastipsocus venosus Common barklice TRICHOPTERA Caddisflies Hydropsychidae Net-spinning Caddisflies Hydropsychidae sp. Net-spinning caddisfly Limnephilidae Northern Caddisflies Limnephilidae sp. Caddisfly NEUROPTERA Nerve-winged Insects Chrysopidae Green Lacewings Chrysoperla sp. Green lacewing Mantispidae Mantisflies Climaciella brunnea Brown mantisfly MEGALOPTERA Dobsonflies, Alderflies, Fishflies Corydalidae Dobsonflies, Fishflies Chauliodes rastricornis Fishfly Nigronia sp. Nigronia Sialidae Alderflies Sialidae sp. Alderfly COLEOPTERA Beetles Buprestidae Metallic Woodborers Agrilus vittaticollis Hawthorn root borer Anthaxia inornata Jewel beetle 3 Brachys aerosus Metallic woodboring beetle Dicera divaricata Flatheaded hardwood borer Eupristocerus cognitans Alder gall beetle Poecilonota cyanipes Common jewel beetle Taphrocerus gracilis Jewel beetle Cantharidae Soldier Beetles Chauliognathus pensylvanicus Pennsylvania leatherwing Podabrus brevicollis Soldier beetle Podabrus intrusus Soldier beetle Podabrus rugosulus Soldier beetle Podabrus tricostatus Soldier beetle Rhaxonycha carolina Soldier beetle Carabidae Ground Beetles Cicindela duodecimguttata Twelve-spotted tiger beetle Cicindela punctulata Tiger beetle Cicindela repanda Bronzed tiger beetle Cicindela scutellaris Tiger beetle Cicindela sexguttata Six-spotted tiger beetle cindela tranquebarica Tiger beetle Lebia sp. Ground beetle Cerambycidae Long-horned Beetles Analeptura lineola Long-horned beetle Bellamira scalaris Long-horned beetle Clytus marginicollis Long-horned beetle Clytus ruricola Long-horned beetle Desmocerus palliatus Elderberry borer Microgoes oculatus Long-horned beetle Monochamus scutellatus White-spotted pine sawyer Saperda candida Round-headed apple tree borer Strangalepta abbreviata Long-horned beetle Tetraopes tetrophthalmus Milkweed Beetle Trachysida mutabilis Long-horned beetle Trigonarthris minnesotana Flower long-horn Typocercus velutinus Flower long-horn Chrysomelidae Leaf Beetles Anisostena nigrita Leaf beetle Bassareus mammifer Case-bearing leaf beetle Calligrapha sp. Calligraphic beetle Calligrapha alni Russet alder leaf beetle Calligrapha californica Calligraphic beetle Calligrapha multipunctata Common willow calligrapher Calligrapha philadelphica Dogwood calligrapher Charidotella sexpunctata bicolor Golden tortoise beetle Chrysomela mainensis Alder leaf beetle Chyrysomela scripta Cottonwood leaf beetle Chrysocus auratus Dogbane beetle Deloyala guttata Tortoise beetle Diabrotica barberi Northern corn rootworm Diabrotica undecimpunctata Spotted cucumber beetle Disonycha pensylvanica Flea beetle Donacia spp. Aquatic leaf beetles Galerucella calmariensis* Loosestrife leaf beetle Labidomera clivicollis Milkweed leaf beetle Microrhopala excavata Leaf beetle Neochlamisus sp . Leaf beetle Ophraella conferta Leaf beetle Plagiodera versicolora Willow leaf beetle* 4 Plagiometriona clavata Clavate tortoise beetle Plateumaris sp. Aquatic leaf beetle Trirhabda canadensis Goldenrod leaf beetle Zygogramma suturalis Ragweed leaf beetle Cleridae Checkered Beetles Trichodes sp. Checkered beetle Coccinellidae Lady Beetles Anatis mali Eye-spotted lady beetle Brachiacantha sp. Lady beetle Chilocorus sp. Lady beetle Coccinella septempunctata Seven-spotted lady beetle* Coleomegilla maculata lengi Spotted lady beetle Cycloneda munda Lady beetle Harmonia axyridis Asian lady beetle* Hippodamia convergens Convergent lady beetle Propylea quatuordecimpunctata Fourteen-spotted lady beetle* Curculionidae Weevils Aphrastus taeniatus Weevil Dirabius rectirostris Weevil Phyllobius oblongus European snout weevil Pissodes strobi White pine weevil Mononychus vulpeculus Weevil Phyllobius oblongus Weevil Polydrusus formosus Green immigrant leaf weevil* Polydrusus impressifons Green weevil* Rhododobaenus quinquepunctatus Weevil Rhododobaenus tredecimpunctatus Cocklebur weevil Rhyssomatus lineaticollis Milkweed stem weevil Trypodendron betulae Weevil Dytiscidae Predacious Diving Beetles Dytiscus verticalis Predacious Diving beetle Elateridae Click Beetles, Wireworms Agriotes fucosus Click beetle Ampedus mixtus Click beetle Ctenicera triundulata Click beetle Dalopius vagus Click beetle Limonius confusus Click beetle Limonius aeger Click beetle Selatosomus pulcher Click beetle Elmidae Riffle Beetles Elmidae sp. Riffle beetle Erotylidae Pleasing Fungus Beetles Triplax sp. Pleasing fungus beetle Gyrinidae Whirligig Beetles Gyrinus sp. Whirligig beetle Lampyridae Fireflies Ellychnia corrusca Winter firefly Photinus sp. Firefly Photuris sp. Firefly Pyropyga sp? Firefly Lycidae Net-winged Beetles 5 Calopteron reticulatum Net-winged beetle Calopteron terminale Net-winged beetle Meloidae Blister Beetles Epicauta sp. Blister beetle Meloe angusticollis Short-winged blister beetle Nemognatha nemorensis Blister beetle Melyridae Soft-winged Flower Beetles Collops sp. Soft-winged flower beetle Mordellidae Tumbling Flower Beetles Mordellidae sp. Tumbling flower beetle sp. Pyrochroidae Fire-colored Beetles Dendroides concolor Fire-colored beetle Pedilus sp. Fire-colored beetle Scarabaeidae Dung Beetles, Tumblebugs Dichelonyx sp. Chafer beetle Macrodactylus subspinosus Rose chafer Phyllophaga anxia Cranberry white grub Popillia Japonica Japanese beetle* Serica georgiana May beetle Serica intermixta May beetle Trichiotinus affinis Flower scarab Silphidae Carrion Beetles Necrophila americana American carrion beetle Nicrophorus defodiens Carrion beetle Nicrophorus orbicollis Carrion beetle Oiceoptoma novaboracense Carrion beetle Staphylinidae Rove Beetles Lordithon sp. Rove beetle Ontholestes cingulatus Rove beetle DIPTERA Flies Agromyzidae Leaf-mining Flies Agromyzidae spp. Leaf miners Asilidae Robber Flies Asilus sericeus Robber fly Laphria posticata Robber fly Laphria sadales Robber fly Laphria sericea Robber fly Proctacanthus milbertii Robber fly Bombyliidae Bee Flies Bombylius sp. Bee
Recommended publications
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • [The Pond\. Odonatoptera (Odonata)]
    Odonatological Abstracts 1987 1993 (15761) SAIKI, M.K. &T.P. LOWE, 1987. Selenium (15763) ARNOLD, A., 1993. Die Libellen (Odonata) in aquatic organisms from subsurface agricultur- der “Papitzer Lehmlachen” im NSG Luppeaue bei al drainagewater, San JoaquinValley, California. Leipzig. Verbff. NaturkMus. Leipzig 11; 27-34. - Archs emir. Contam. Toxicol. 16: 657-670. — (US (Zur schonen Aussicht 25, D-04435 Schkeuditz). Fish & Wildl. Serv., Natn. Fisheries Contaminant The locality is situated 10km NW of the city centre Res. Cent., Field Res, Stn, 6924 Tremont Rd, Dixon, of Leipzig, E Germany (alt, 97 m). An annotated CA 95620, USA). list is presented of 30 spp., evidenced during 1985- Concentrations of total selenium were investigated -1993. in plant and animal samplesfrom Kesterson Reser- voir, receiving agricultural drainage water (Merced (15764) BEKUZIN, A.A., 1993. Otryad Strekozy - — Co.) and, as a reference, from the Volta Wildlife Odonatoptera(Odonata). [OrderDragonflies — km of which Area, ca 10 S Kesterson, has high qual- Odonatoptera(Odonata)].Insectsof Uzbekistan , pp. ity irrigationwater. Overall,selenium concentrations 19-22,Fan, Tashkent, (Russ.). - (Author’s address in samples from Kesterson averaged about 100-fold unknown). than those from Volta. in and A rather 20 of higher Thus, May general text, mentioning (out 76) spp. Aug. 1983, the concentrations (pg/g dry weight) at No locality data, but some notes on their habitats Kesterson in larval had of 160- and vertical in Central Asia. Zygoptera a range occurrence 220 and in Anisoptera 50-160. In Volta,these values were 1.2-2.I and 1.1-2.5, respectively. In compari- (15765) GAO, Zhaoning, 1993.
    [Show full text]
  • Roosevelt Wild Life Bulletins the Roosevelt Wild Life Station
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Roosevelt Wild Life Bulletins The Roosevelt Wild Life Station 1926 Roosevelt Wild Life Bulletin Charles C. Adams SUNY College of Environmental Science and Forestry Follow this and additional works at: https://digitalcommons.esf.edu/rwlsbulletin Part of the Animal Sciences Commons, Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Adams, Charles C., "Roosevelt Wild Life Bulletin" (1926). Roosevelt Wild Life Bulletins. 23. https://digitalcommons.esf.edu/rwlsbulletin/23 This Book is brought to you for free and open access by the The Roosevelt Wild Life Station at Digital Commons @ ESF. It has been accepted for inclusion in Roosevelt Wild Life Bulletins by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. VOLUME 4 OCTOBER, 1926 NUMBER 1 Roosevelt Wild Life Bulletin OF THE Roosevelt Wild Life Forest Experiment Station OF The New York State College of Forestry AT Syracuse University RELATION OF BIRDS TO WOODLOTS CONTENTS OF ROOSEVELT WILD LIFE BULLETIN (To obtain these publications see announcement on back of title page.) Roosevelt Wild Life Bulletin, Vol. i, No. i. December, 192 1. 1. Foreword Dr. George Bird Grinnell. 2. Roosevelt Wild Life State Memorial Dr. Charles C. Adams. 3. Appropriateness and Appreciation of the Roosevelt Wild Life Memorial Dr. Charles C. Adams. 4. Suggestions for Research on North American Big Game and Fur- Bearing Animals Dr. Charles C. Adams. 5. Theodore Roosevelt Sir Harry H. Johnston. 6. Roosevelt's Part in Forestry Dr.
    [Show full text]
  • Institut Royal Des Sciences Koninklijk Belgisch Instituut Voor
    Institut royal des Sciences Koninklijk Belgisch Instituut naturelles de Belgique voor Natuurwetenschappen BULLETIN MEDEDELINGEN Tome XXVIII. n° 26. Deel XXVIII, nr 26. Bruxelles, mars 1952. Brussel, Maart 1952. CONTRIBUTIONS A L'ÉTUDE DES COLÉOPTÈRES OARABID2E DU CONGO BELGE. V. — Note sur des Carabiques recueillis dans l'Ubangi. par Pierre Basilewsky (Tervuren). Bien qne F étude de la faune carabidologique de notre Colonie ait fait des progrès considérables pendant ces dernières années et que cette faune soit la mieux connue de tout le Continent Noir, bien des lacunes restent encore à combler et bien des régions ne nous ont livré qu'une documentation très fragmen¬ taire. L'Ubangi, notamment, n'a pas encore été exploré, au point de vue entomologiquej d'une manière aussi approfondie que d'autres régions du Congo Belge. Aussi, les récoltes de MM. R. Crémek et M. Neeman, d'août 1917 à mars 1918, pré¬ sentent-elles un intérêt particulier, et je crois utile de publier une liste complète des espèces qu'ils ont recueillies dans cette région. Beaucoup de formes ont été capturées sur les berges îles cours d'eau, tant de jour, sous le sable, que de nuit, à l'aide de lampes. Cette dernière méthode a permis de recueillir de nombreuses espèces ripicoles dont la répartition géogra¬ phique est toujours intéressante. Sur 1.810 Carabiques rapportés et répartis en 125 espèces différentes, deux se sont avérées nouvelles pour la Science 2 p. basilewsky. — contributions a l'étude (Tachyura ubangiensis et T. Vangèlei), une nouvelle pour le Congo Belge (.Menigius congoensis Bânninger), et 29 nouvelles pour l'Ubangi.
    [Show full text]
  • (Heteroptera: Miridae) A
    251 CHROMOSOME NUMBERS OF SOME NORTH AMERICAN MIRIDS (HETEROPTERA: MIRIDAE) A. E. AKINGBOHUNGBE Department of Plant Science University of Ife lie-Ife, Nigeria Data are presented on the chromosome numbers (2n) of some eighty species of Miridae. The new information is combined with existing data on some Palearctic and Ethiopian species and discussed. From it, it is suggested that continued reference to 2n - 32A + X + Y as basic mirid karyotype should be avoided and that contrary to earlier suggestions, agmatoploidy rather than poly- ploidy is a more probable mechanism of numerical chromosomal change. Introduction Leston (1957) and Southwood and Leston (1959) gave an account of the available information on chromosome numbers in the Miridae. These works pro- vided the first indication that the subfamilies may show some modalities that might be useful in phylogenetic analysis in the family. Kumar (1971) also gave an ac- count of the karyotype in some six West African cocoa bryocorines. In the present paper, data will be provided on 80 North American mirids, raising to about 131, the number of mirids for which the chromosome numbers are known. Materials and Methods Adult males were collected during the summer of 1970-1972 in Wisconsin and dissected soon after in 0.6% saline solution. The dissected testes were preserved in 3 parts isopropanol: 1 part glacial acetic acid and stored in a referigerator until ready for squashing. Testis squashes were made using Belling's iron-acetocarmine tech- nique as reviewed by Smith (1943) and slides were ringed with either Bennett's zut or Sanford's rubber cement.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Golden Tortoise Beetle
    Pest Profile Photo credit: Larva: Steve Nanz- BugGuide.net - Creative Commons Adult: Ilona Loser Common Name: Golden tortoise beetle Scientific Name: Charidotella sexpunctata Order and Family: Coleoptera; Chrysomelidae Size and Appearance: Length (mm) Appearance Egg 1 mm -White, oval and flattened -Attached singly to the underside of leaves or on stems Larva Up to 9 mm -Yellowish to reddish-brown in color -Larvae are broad and flattened and adorned with branched spines -Display the habit of carrying their cast skins and fecal material attached to spines -Mature larvae attach themselves to leaves by their anal end and pupate. Adult 5 to 7 mm -Margins of the prothorax and elytra are expanded, largely concealing the head and appendages -Expanded margins are nearly transparent instead of pigmented - Orange colored, often golden metallic Adult cont. Pupa 5 to 8 mm -Brownish -Bare spines Type of feeder: Chewing (both adults and larvae) Host plants: The golden tortoise beetle is associated with sweet potato and related species such as morning glory, Ipomoea spp.; and bindweed, Convolvulus spp. Only plants in the family Convolvulaceae are hosts, but golden tortoise beetles have been found on eggplant. Description of Damage: Both larvae and adults feed on foliage, and typically create numerous small to medium-sized irregular holes. Both stages usually inhabit the lower surface but eat entirely through the foliage. Rarely are tortoise beetles abundant enough to be considered damaging. References: Golden tortoise beetle - Charidotella bicolor (Fabricius). (n.d.). Retrieved February 08, 2016, from http://entnemdept.ufl.edu/creatures/veg/potato/golden_tortoise_beetle.htm Tortoise Beetles. (n.d.). Retrieved February 08, 2016, from http://ipm.ncsu.edu/AG295/html/tortoise_beetles.htm .
    [Show full text]
  • The Corixidae (Hemiptera) of Oklahoma KURT F
    BIOLOGICAL SCIENCES 71 The Corixidae (Hemiptera) of Oklahoma KURT F. SCHAEFER, Panhandle State Colle.e, Goodwell The Corixidae or water boatman family is a commonly collected fam­ ily taken in a variety of aquatic habitats and frequently at lights at night or on shiny surfaces during the day. Hungerford's 1948 monograph on the world corixids is an important contribution, essential to a serious collector. My paper is an attempt to make the identification of state fonns easier and to supply descriptions and distribution data for the corixids of the state. Schaefer and Drew (1964) reported 18 species and Ewing (1964) added one for the state. Five addi­ tional species are included because information of their known ranges in­ dicates that they will probably be found in Oklahoma when more collecting is done. Each pair of legs is modified for a different function. The anterior pair is short with the tenninal segment (pala) often more or less spoon­ shaped and fringed with bristles for food gathering. Both adults and nymphs feed mainly on algae and protozoa, obtained from bottom ooze (Usinger, 1956). The middle pair of legs, used for anchorage and support, is long and slender, tenninating with two long claws. The hind pair, for swimming, is stouter, laterally flattened and fringed with hairs. The principal dimorphic structures used as key characters are as fol­ lows: males, usually smaller, with vertex of the head otten more produced and frons concavely depressed. Fonn and chaetotaxy of the male palae, front tarsi, are much used characters. The female abdomen is bilaterally symmetrical, while the asymmetry of male may be either to the right (dextral) or left (stnistral).
    [Show full text]
  • Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris Lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae)
    Journal of Chemical Ecology (2021) 47:525–533 https://doi.org/10.1007/s10886-021-01273-y Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae) Sándor Koczor1 & József Vuts2 & John C. Caulfield2 & David M. Withall2 & André Sarria2,3 & John A. Pickett2,4 & Michael A. Birkett2 & Éva Bálintné Csonka1 & Miklós Tóth1 Received: 24 November 2020 /Revised: 2 March 2021 /Accepted: 7 April 2021 / Published online: 19 April 2021 # The Author(s) 2021 Abstract The sex pheromone composition of alfalfa plant bugs, Adelphocoris lineolatus (Goeze), from Central Europe was investigated to test the hypothesis that insect species across a wide geographical area can vary in pheromone composition. Potential interactions between the pheromone and a known attractant, (E)-cinnamaldehyde, were also assessed. Coupled gas chromatography- electroantennography (GC-EAG) using male antennae and volatile extracts collected from females, previously shown to attract males in field experiments, revealed the presence of three physiologically active compounds. These were identified by coupled GC/ mass spectrometry (GC/MS) and peak enhancement as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. A ternary blend of these compounds in a 5.4:9.0:1.0 ratio attracted male A. lineolatus in field trials in Hungary. Omission of either (E)-2- hexenyl-butyrate or (E)-4-oxo-2-hexenal from the ternary blend or substitution of (E)-4-oxo-2-hexenal by (E)-2-hexenal resulted in loss of activity. These results indicate that this Central European population is similar in pheromone composition to that previously reported for an East Asian population.
    [Show full text]
  • Diverse New Scale Insects (Hemiptera, Coccoidea) in Amber
    AMERICAN MUSEUM NOVITATES Number 3823, 80 pp. January 16, 2015 Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea ISABELLE M. VEA1'2 AND DAVID A. GRIMALDI2 ABSTRACT Coccoids are abundant and diverse in most amber deposits around the world, but largely as macropterous males. Based on a study of male coccoids in Lebanese amber (Early Cretaceous), Burmese amber (Albian-Cenomanian), Cambay amber from western India (Early Eocene), and Baltic amber (mid-Eocene), 16 new species, 11 new genera, and three new families are added to the coccoid fossil record: Apticoccidae, n. fam., based on Apticoccus Koteja and Azar, and includ¬ ing two new species A.fortis, n. sp., and A. longitenuis, n. sp.; the monotypic family Hodgsonicoc- cidae, n. fam., including Hodgsonicoccus patefactus, n. gen., n. sp.; Kozariidae, n. fam., including Kozarius achronus, n. gen., n. sp., and K. perpetuus, n. sp.; the first occurrence of a Coccidae in Burmese amber, Rosahendersonia prisca, n. gen., n. sp.; the first fossil record of a Margarodidae sensu stricto, Heteromargarodes hukamsinghi, n. sp.; a peculiar Diaspididae in Indian amber, Nor- markicoccus cambayae, n. gen., n. sp.; a Pityococcidae from Baltic amber, Pityococcus monilifor- malis, n. sp., two Pseudococcidae in Lebanese and Burmese ambers, Williamsicoccus megalops, n. gen., n. sp., and Gilderius eukrinops, n. gen., n. sp.; an Early Cretaceous Weitschatidae, Pseudo- weitschatus audebertis, n. gen., n. sp.; four genera considered incertae sedis, Alacrena peculiaris, n. gen., n. sp., Magnilens glaesaria, n. gen., n. sp., and Pedicellicoccus marginatus, n. gen., n. sp., and Xiphos vani, n.
    [Show full text]