American Museum Novitates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Adaptation of Immature Stages of Hemipteran Insects
© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes. -
Historical Biogeography of an Emergent Forest Pest, Matsucoccus Macrocicatrices
Received: 19 April 2019 | Revised: 7 August 2019 | Accepted: 12 August 2019 DOI: 10.1111/jbi.13702 RESEARCH PAPER Native or non‐native? Historical biogeography of an emergent forest pest, Matsucoccus macrocicatrices Thomas D. Whitney1,2 | Kamal J. K. Gandhi1 | Rima D. Lucardi2 1Puyallup Research and Extension Center, Washington State University, Abstract Puyallup, WA 98371, USA Aim: A historically benign insect herbivore, Matsucoccus macrocicatrices, has re‐ 2 USDA Forest Service, Southern Research cently been linked to dieback and mortality of eastern white pine (Pinus strobus L.). Station, 320 E. Green Street, Athens, GA 30602, USA Previous reports indicated that its native range was restricted to New England, USA and southeastern Canada. Now, the insect occurs throughout an area extending from Correspondence Thomas D. Whitney, Puyallup Research the putative native range, southward to Georgia, and westward to Wisconsin. Our and Extension Center, Washington State goal was to evaluate whether its current distribution was due to recent introduc‐ University, Puyallup, WA 98371, USA. Email: [email protected] tions consistent with invasion processes. We considered two hypotheses: (a) if recent expansion into adventive regions occurred, those populations would have reduced Funding information USDA Forest Service, Southern genetic diversity due to founder effect(s); alternatively (b) if M. macrocicatrices is na‐ Research Station, Grant/Award tive and historically co‐occurred with its host tree throughout the North American Number: 13‐CA‐11330129‐056 and 16‐ CS‐11330129‐045; Southern Region (8)‐ range, then populations would have greater overall genetic diversity and a population Forest Health Protection; USDA Agricultural structure indicative of past biogeographical influences. -
<I>Palaeococcus Fuscipennis</I>
Folia biologica (Kraków), vol. 53 (2005), No 1-2 Ultrastructural Studies of the Ovary of Palaeococcus fuscipennis (Burmeister) (Insecta, Hemiptera, Coccinea: Monophlebidae)* Teresa SZKLARZEWICZ, Katarzyna KÊDRA and Sylwia NI¯NIK Accepted January 25, 2005 SZKLARZEWICZ T., KÊDRA K., NI¯NIK S. 2005. Ultrastructural studies of the ovary of Palaeococcus fuscipennis (Burmeister) (Insecta, Hemiptera, Coccinea: Monophlebidae). Folia biol. (Kraków) 53: 45-50. Ovaries of Palaeocoocus fuscipennis are composed of about 100 telotrophic ovarioles that are devoid of terminal filaments. In the ovariole a tropharium (=trophic chamber) and vitellarium can be distinguished. The tropharium contains 7 trophocytes. A single oocyte develops in the vitellarium. The oocyte is surrounded by follicular cells that do not undergo diversification into subpopulations. The obtained results are discussed in a phylogenetic context. Key words: Oogenesis, ovariole, phylogeny, scale insects, ultrastructure. Teresa SZKLARZEWICZ, Katarzyna KÊDRA, Sylwia NI¯NIK, Department of Systematic Zoology and Zoogeography, Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Kraków, Poland. E: mail: [email protected] Scale insects (coccids, coccoids) are the most tive scale insects into two families, Ortheziidae specialized hemipterans. In view of the fact that and Margarodidae s. l. The latter has been subdi- they are chararacterized by numerous synapomor- vided into five subfamilies, i.e., the Margarodinae, phies, their monophyletic origin is widely ac- Monophlebinae, Coelostomidiinae, Xylococcinae cepted by entomologists (e.g., KOTEJA 1974 a, and Steingeliinae. While the monyphyly of the MILLER 1984, DANZIG 1986, FOLDI 1997, COOK family Ortheziidae is well documented (KOTEJA et al. 2002). Scale insects are usually divided into 1974 a, GULLAN &SJAARDA 2001, COOK et al. -
Insetos Do Brasil
COSTA LIMA INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS A. DA COSTA LIMA Professor Catedrático de Entomologia Agrícola da Escola Nacional de Agronomia Ex-Chefe de Laboratório do Instituto Oswaldo Cruz INSETOS DO BRASIL 2.º TOMO CAPÍTULO XXII HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 CONTEUDO CAPÍTULO XXII PÁGINA Ordem HEMÍPTERA ................................................................................................................................................ 3 Superfamília SCUTELLEROIDEA ............................................................................................................ 42 Superfamília COREOIDEA ............................................................................................................................... 79 Super família LYGAEOIDEA ................................................................................................................................. 97 Superfamília THAUMASTOTHERIOIDEA ............................................................................................... 124 Superfamília ARADOIDEA ................................................................................................................................... 125 Superfamília TINGITOIDEA .................................................................................................................................... 132 Superfamília REDUVIOIDEA ........................................................................................................................... -
Zootaxa,Phylogeny and Higher Classification of the Scale Insects
Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier. -
The <I>Matsucoccus</I> Cockerell, 1909 of Florida (Hemiptera
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 9-30-2020 The Matsucoccus Cockerell, 1909 of Florida (Hemiptera: Coccomorpha: Matsucoccidae): Potential pests of Florida pines Muhammad Z. Ahmed Charles H. Ray Matthew R. Moore Douglass R. Miller Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. InsectaA journal of world insect systematics Mundi 0810 The Matsucoccus Cockerell, 1909 of Florida Page Count: 31 (Hemiptera: Coccomorpha: Matsucoccidae): Potential pests of Florida pines Muhammad Z. Ahmed Florida State Collection of Arthropods Division of Plant Industry, Florida Department of Agriculture and Consumer Services 1911 SW 34th Street Gainesville, FL 32608, USA [email protected] Charles H. Ray Department of Entomology and Plant Pathology Auburn University Museum of Natural History Room 301, Funchess Hall Auburn University, AL 36849, USA Matthew R. Moore Molecular Diagnostics Laboratory Division of Plant Industry, Florida Department of Agriculture and Consumer Services 1911 SW 34th Street Gainesville, FL 32608, USA Douglass R. Miller Florida State Collection of Arthropods Division of Plant Industry, Florida Department of Agriculture and Consumer Services 1911 SW 34th Street Gainesville, FL 32608, USA Date of issue: October 30, 2020 Center for Systematic Entomology, Inc., Gainesville, FL Ahmed MZ, Ray CH, Moore MR, Miller DR. -
A Survey of Scale Insects in Soil Samples from Europe (Hemiptera, Coccomorpha)
A peer-reviewed open-access journal ZooKeys 565: 1–28A survey (2016) of scale insects in soil samples from Europe (Hemiptera, Coccomorpha) 1 doi: 10.3897/zookeys.565.6877 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A survey of scale insects in soil samples from Europe (Hemiptera, Coccomorpha) Mehmet Bora Kaydan1,2, Zsuzsanna Konczné Benedicty1, Balázs Kiss1, Éva Szita1 1 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15 H-1022 Budapest, Hungary 2 Çukurova Üniversity, Imamoglu Vocational School, Adana, Turkey Corresponding author: Éva Szita ([email protected]) Academic editor: R. Blackman | Received 17 October 2015 | Accepted 31 December 2015 | Published 17 February 2016 http://zoobank.org/50B411DB-C63F-4FA4-8D1F-C756B304FBD7 Citation: Kaydan MB, Konczné Benedicty Z, Kiss B, Szita É (2016) A survey of scale insects in soil samples from Europe (Hemiptera, Coccomorpha). ZooKeys 565: 1–28. doi: 10.3897/zookeys.565.6877 Abstract In the last decades, several expeditions were organized in Europe by the researchers of the Hungarian Natural History Museum to collect snails, aquatic insects and soil animals (mites, springtails, nematodes, and earthworms). In this study, scale insect (Hemiptera: Coccomorpha) specimens extracted from Hun- garian Natural History Museum soil samples (2970 samples in total), all of which were collected using soil and litter sampling devices, and extracted by Berlese funnel, were examined. From these samples, 43 scale insect species (Acanthococcidae 4, Coccidae 2, Micrococcidae 1, Ortheziidae 7, Pseudococcidae 21, Putoidae 1 and Rhizoecidae 7) were found in 16 European countries. In addition, a new species belong- ing to the family Pseudococcidae, Brevennia larvalis Kaydan, sp. -
San Jose Scale and Its Natural Enemies: Investigating Natural Or Augmented Controls
California Tree Fruit Agreement Research Report 2002 SAN JOSE SCALE AND ITS NATURAL ENEMIES: INVESTIGATING NATURAL OR AUGMENTED CONTROLS Project Leaders: Kent M. Daane Cooperators: Glenn Y. Yokota, Walter J. Bentley, Karen Sime, and Brian Hogg ABSTRACT San Jose scale (SJS) and its natural enemies were studied from 1999 through 2002. Natural populations were followed in stone fruit and almond blocks, with orchard management practices divided into “conventional” and “sustainable” practices, based on dormant and in-season insecticide use. Results generally show higher fruit damage at harvest-time in sustainably managed fields, although, these results are not consistent among orchards and exceptions to this pattern were found. In conventionally managed blocks, later harvest dates resulted in higher SJS fruit damage, although this did not hold true in sustainably managed orchards. Results from SJS pheromone-baited traps show a predominant seasonal pattern of SJS densities progressively increasing and parasitoid (Encarsia perniciosi) densities progressively decreasing. These data are discussed with respect to SJS fruit damage and parasitoid establishment and efficiency. SJS and parasitoid sampling methodology and distribution were investigated. Comparing SJS pheromone trap data to numbers of crawlers on double-sided sticky tape and SJS infested fruit at harvest show a significant correlation between pheromone trap counts of SJS males and numbers of SJS crawlers. Results suggest that there is a small window in the season (April-May) when sticky tape provides important information on crawler abundance and damage. Results show a negative correlation between the early season abundance of Encarsia (as measured by pheromone traps) and SJS damage at harvest. These results suggest that early-season ratios of parasitoid : SJS can not be used to predict fruit damage or biological control (these data require more analysis). -
The Genus Orthezia Bosc (Hemiptera: Ortheziidae) in Turkey, with 2 New Records
Turkish Journal of Zoology Turk J Zool (2015) 39: 160-167 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1403-9 The genus Orthezia Bosc (Hemiptera: Ortheziidae) in Turkey, with 2 new records 1,2, 2 2 Mehmet Bora KAYDAN *, Zsuzsanna Konczné BENEDICTY , Éva SZITA 1 İmamoğlu Vocational School, Çukurova University, Adana, Turkey 2 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary Received: 06.03.2014 Accepted: 26.05.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: This study aimed to identify the ground ensign scale insects in 5 provinces (Ağrı, Bitlis, Hakkari, Iğdır, and Van) in eastern Anatolia, Turkey. In order to achieve this goal, Ortheziidae species were collected from natural and cultivated plants in the 5 provinces listed above between 2005 and 2008. A total of 3 species were found, among them 2 species (Orthezia maroccana Kozár & Konczné Benedicty and Orthezia yashushii Kuwana) that are new records for the Turkish scale insect fauna. Key words: Coccoidea, Ortheziidae, scale insects, fauna, Turkey 1. Introduction that became adapted to living in the soil developed fossorial- The scale insects, Coccoidea (Hemiptera: Sternorrhyncha), type legs adapted for digging (1 claw, 1 segmented tarsus, are small, sap-sucking true bugs, sister species to functional tibiotarsal articulation); the females lost their Aphidoidea, Aleyrodoidea, and Psylloidea (Gullan and wings and became paedomorphic, while the males became Martin, 2009). According to Koteja (1974) and Gullan dipterous and polymorphic without functional mouthparts and Cook (2007), the superfamily Coccoidea is divided and with a different life cycle (with prepupal and pupal into 2 major informal groups, namely archaeococcoids stages) (Koteja, 1985). -
A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids. -
The Entomofauna on Eucalyptus in Israel: a Review
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 450–460, 2019 http://www.eje.cz doi: 10.14411/eje.2019.046 REVIEW The entomofauna on Eucalyptus in Israel: A review ZVI MENDEL and ALEX PROTASOV Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeTzion 7528809, Israel; e-mails: [email protected], [email protected] Key words. Eucalyptus, Israel, invasive species, native species, insect pests, natural enemies Abstract. The fi rst successful Eucalyptus stands were planted in Israel in 1884. This tree genus, particularly E. camaldulensis, now covers approximately 11,000 ha and constitutes nearly 4% of all planted ornamental trees. Here we review and discuss the information available about indigenous and invasive species of insects that develop on Eucalyptus trees in Israel and the natural enemies of specifi c exotic insects of this tree. Sixty-two phytophagous species are recorded on this tree of which approximately 60% are indigenous. The largest group are the sap feeders, including both indigenous and invasive species, which are mostly found on irrigated trees, or in wetlands. The second largest group are wood feeders, polyphagous Coleoptera that form the dominant native group, developing in dying or dead wood. Most of the seventeen parasitoids associated with the ten invasive Eucalyptus-specifi c species were introduced as biocontrol agents in classical biological control projects. None of the polyphagous species recorded on Eucalyptus pose any threat to this tree. The most noxious invasive specifi c pests, the gall wasps (Eulophidae) and bronze bug (Thaumastocoris peregrinus), are well controlled by introduced parasitoids. -
Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.