BSRN Operations Manual (WCRP)

Total Page:16

File Type:pdf, Size:1020Kb

BSRN Operations Manual (WCRP) WWOORRRLLLDDD INTERNATIONAL MEETTEEORROLLOGIICCAALL OCEANOGRAPHIC COMMISSION METEOROLOGICAL OORRRGGAAANNNIIIZZZAAATTTIIOIONNN OF UNESCO WORLD CLIMATE RESEARCH PROGRAMME BASELINE SURFACE RADIATION NETWORK (BSRN) Operations Manual Version 2.1 L.J.B. McArthur APRIL 2005 WCRP-121 WMO/TD-No. 1274 Acknowledgements The efforts required in creating any document far exceed the capabilities of any one person. This manual has been no exception. I would particularly like to thank the World Meteorological Organization for financial support during the initial drafting of this report and the Atmospheric Environment Service for providing me with the necessary time away from my regular duties to research the manual. I would also like to recognize the support of the International Council for Science and the International Oceanographic Commission of the UNESCO, the other sponsors of the World Climate Research Programme of which the Baseline Surface Radiation Network is part. The first draft was ably reviewed at the Boulder 1996 meeting of the BSRN. While all the participants at the meeting provided input I would especially like to thank the following individuals who acted as group leaders during that process: Klaus Dehne, Bruce Forgan, Roger Newson, Rolf Philipona and Tom Stoffel. Finally, I would like to thank Ellsworth Dutton as manager of the BSRN for his continuous encouragement throughout the production of this work. A number of individuals have graciously allowed manuscripts to be placed in the annexes for easy access. I would encourage readers, if they use these papers, to reference them directly to the original report or journal. I Preface to the First Edition Like all aspects of the Baseline Surface Radiation Network, this manual is in its infancy. The ideas contained within may be new to many, but have been applied successfully at various locations throughout the globe. On the one hand this indicates that these concepts should be considered seriously before being rejected, but on the other hand there may be some that are unworkable because of various climatic or operational factors. I would encourage all those using this manual not to reject any procedures without first carefully attempting to put them into operation. There is an anecdote within the meteorological community that must be overcome if the operation of the BSRN is to be successful. The question is asked, “How long does it take for a new instrument to be accepted as operational?” The answer, “One generation of meteorologists.” Let this not be the case within the BSRN! Some instructions or ideas within the manual may be unclear. If this is the case, I would appreciate having these reported to me as quickly as possible. I believe that everyone who has ever written step-by-step instructions has fallen into the trap of missing a step, or assuming too much. I would encourage scientists and technicians alike who use this manual to also apply “common sense” to the problem to overcome any omissions that I may have made. Although the WMO allowed me a significant amount of travel and opportunity to observe how various stations were operated, I am sure that excellent ideas have been missed within this first version of the manual, even with the significant help of those who reviewed it at the BSRN meeting in August 1996. Although only one person can place ideas on paper (or its virtual counterparts), the contents of this manual must remain a group effort if we are to build a radiation observing system of which we can be proud in our years of retirement. To this end I encourage new ideas be brought forward and new areas suggested for inclusion in the next revision. As paper gives way to electronic publications, the idea of editorial revisions has changed substantially over the last few years. Where once the second edition of a book might be expected a decade after the first printing, our expectations have increased to seeing something new on the WEB every day. It is hoped that minor revisions of the manual (clarifications etc.) can be put into place almost immediately and the revision number of the electronic version of the manual altered to reflect any changes. Major revisions (e.g. new sections) will obviously be less frequent, but will come out not only electronically, but also as a new printed manual. Finally, and again, this manual will improve with the feedback of the users. I urge anyone to contact me with any and all suggestions that might improve this manual.. Bruce McArthur Experimental Studies Division Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario, CANADA M3H 5T4 Telephone: 1 416 739 4464 Facsimile: 1 416 739 4281 Email: [email protected] II Preface to the Second Edition The World Climate Research Programme (WCRP) Baseline Surface Radiation Network (BSRN) has been operating as a network of surface radiation monitoring observatories for over 10 years. During this time period significant progress has been made in the measurement of various radiation quantities. Others have not progressed as rapidly. Observations of other quantities are now being requested by the user community. The process of improving measurements and the requirement for more information about the atmosphere and the radiation budget at the surface will continue indefinitely. The second edition of this manual recognizes the improvements that have been made during the time since the writing of the first edition. This is most evident in the inclusion of a chapter on the measurement of aerosol optical depth. Many advances that one would anticipate in a manual of this type have yet to be included, however, because questions remain about the veracity of these, they have not been left for a later addition until they prove themselves. In a number of cases, the thermal offset problem being the most notable, suggestions have been included in the hope that more research will proceed in these areas, especially in the various climatic regions of the network. Overall, the manual has been updated in a variety of places, rearranged where it was believed the flow could be improved and the Annexes that were considered dated removed. In turn, several new Annexes were included to provide the users of the manual more information on instruments and methods of observation. It is hoped that readers of this second version will find the overall presentation improved and therefore more useful. Bruce McArthur Experimental Studies Division Meteorological Service of Canada 4905 Dufferin Street Downsview, Ontario, CANADA M3H 5T4 Telephone: 1 416 739 4464 Facsimile: 1 416 739 4281 Email: [email protected] III Table of Contents Acknowledgements...................................................................... I Preface to the First Edition ................................................................ II Preface to the Second Edition ............................................................ III 1.0 Introduction......................................................................1 1.1 Overall goals and purpose of the BSRN ........................................2 1.2 Purpose and scope of the operations manual . 3 1.3 Specific objectives and research activities . 5 2.0 Sampling Frequency and Accuracy Requirements for BSRN Stations . 8 2.1 Sampling Frequency .......................................................8 2.1.1 Sampling Frequency of Radiation Measurements . 8 2.1.2 Sampling Frequency of Ancillary Measurements . 9 2.2 Uncertainty of Measurements ................................................9 2.2.1 Uncertainty in Radiation Measurements . 9 2.2.1.1 Direct Solar Irradiance ........................................9 2.2.1.2 Diffuse Radiation ............................................11 2.2.1.3 Global Radiation ............................................12 2.2.1.4 Reflected Solar Radiation.....................................12 2.2.1.5 Downwelling Infrared Radiation . 12 2.2.1.6 Upwelling Infrared Radiation ..................................13 2.2.2 Accuracy of Meteorological Measurements . 13 2.3 Accuracy of Data Acquisition Equipment ......................................13 2.3.1 Time......................................................13 2.3.2 Data Acquisition System Accuracy ....................................15 3.0 The BSRN Site..................................................................16 3.1 Geographic Location of Site ................................................16 3.1.1 General Considerations .............................................16 3.1.2 Horizon ..........................................................17 3.1.3 Latitude, Longitude, Elevation ........................................17 3.1.4 General site description for the Archive . 18 3.2. BSRN Station Information Document .........................................18 3.2.1 General Description ................................................19 3.2.2 Site Description....................................................19 3.2.3 Station Description .................................................19 3.3 Instrument Exposure ......................................................21 3.4. Additional Station Requirements .............................................21 3.4.1 Ease of Access ....................................................21 3.4.2 Electrical Power ...................................................21 3.4.3 Communication ...................................................22 3.4.4 Security ..........................................................24 3.5 Site Preparation ..........................................................24
Recommended publications
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • Radiation and Climate
    m ^ <(. -Zc'.^.^Z l INTERNATIONAL COUNCIL OF WORLD METEOROLOGICAL SCIENTIFIC UNIONS ORGANIZATION RADIATION AND CLIMATE SECOND WORKSHOP ON IMPLEMENTATION OF THE BASELINE SURFACE RADIATION NETWORK (Davos, Switzerland, 6-9 August 1991) NOVEMBER 1991 WCRP-64 WMO/TD-No. 453 ) i t 'I The World Climate Programme launched by the World Meteorological Organization (WMO) includes four components: The World Climate Data and Monitoring Programme The World Climate Applications and Services Programme The World Climate Impact Assessment and Response Strategies Programme The World Climate Research Programme The World Climate Research Programme is jointly sponsored by the WMO and the International Council of Scientific Unions. I NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organizaüon concerning the legal status of any country, territory, city or area, or of its authoriues, or concerning the delimitation of its frontiers or boundaries. This report has been produced without editorial revision by the WMO Secretariat. It is not an official publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. R. t; TABLE OF CONTENTS Page No. l. OBJECTIVES OF WORKSHOP l 2. REPORTS ON INSTRUMENTATION AND MEASUREMENT UNCERTAINTY STUDIES 2 3. RECOMMENDATIONS FOR DETERMINATION OF BASIC BSRN PARAMETERS AND BSKN OPERATIONAL PROCEDURES 8 '9^ 3.l Instruments and methods 8 •i:'K.'"- 3.2 Calibration procedures 11 3.3 Data acquisition 12 3.4 Measurement uncertainty techniques 13 3.5 Preparation of operations manual for the BSRN 13 4.
    [Show full text]
  • Lidar Supplied to Brazil Calibrating the Italian Air Force Brewer Network
    News Letter 8 Lidar supplied to Brazil Calibrating the Italian Air Force Brewer Network LAS helps to improve Water Management in Australia A Special Sun Tracker Application in the Arctic Exciting Things coming Are you the next Kipp & Zonen award winner? up this Spring Every year, during the EMS Meeting, we grant the award to an outstanding research paper on Boundary Layer Following the article on the development of the new Meteorology by a young aspiring scientist. Go to our CNR 4 net radiometer in the previous newsletter, I am newspage on www.kippzonen.com for more information. happy to confirm that it is now available for ordering. The interest from customers is very promising and we have high expectations. Read all about the light weight, optional integrated ventilation, standard PT-100 and Content April 2009 thermistor temperature sensors, and other innovative features, on page 3 or the CNR 4 product page at www.kippzonen.com. P2: Ben’s Column Exciting Things coming up this Spring You will have seen our completely new website last year and we are continuing to improve it and add extra functionalities. For P3: News update example, we recently launched a new tool to speed up product CNR 4 Net Radiometer inquiries and quotation requests. Future possibilities include AMS 2009 in Phoenix sub-sites focussed on specific markets and language options. Lidar supplied to Brazil Behind the scenes, we have also made some changes and you P4: Calibrating the Italian Air Force Brewer Network may have noticed the benefits already. We have completed the integration of a new ERP system that allows us to plan production P5: Kipp & Zonen LAS helps to improve and manage logistics better.
    [Show full text]
  • Measuring Routines of Ice Accretion for Wind Turbine Applications
    Measuring routines of ice accretion for Wind Turbine applications The correlation of production losses and detection of ice Viktor Carlsson Viktor Carlsson Ht 2009 Master thesis, 30 hp Master of Science programme in Engineering Physics, 180 hp Master thesis in engineering physics 2010-11-18 Abstract Wind power will play a major role in the future energy system in Sweden. Most of the major wind parks are planned to be built in sites where the cold climate and atmospheric icing can cause serious problems. This underlines the importance of addressing these issues. The major cause of these problems is in-cloud icing of the rotor blades due to super cooled liquid droplets of clouds. The droplets freeze upon impact with the rotor blade and form hard rime ice. This rime ice causes disruption in the aerodynamics that leads to production losses, extra loads on the rotor blades and when the ice is shed it poses a safety risk to people in the near environment. This master thesis focuses on how to measure the accretion of ice and the correlation between measured ice and production losses of two wind parks in northern Sweden. The results show a good correlation between the ice accretion on a stationary sensor and the production loss from a wind turbine. In most icing events the icing of the sensor and large production losses from the wind turbine correlated clearly. Attempts to quantify the production losses at a certain ice rate measured with the stationary sensors was done, however no clear results was produced. The reason for this is that the wind turbines often stop completely during an icing event and that the time series analyzed was too short to be able to quantify the losses at certain wind speed and ice rates.
    [Show full text]
  • Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition
    Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition Edited by Manajit Sengupta,1 Aron Habte,1 Christian Gueymard,2 Stefan Wilbert,3 Dave Renné,4 and Thomas Stoffel5 1 National Renewable Energy Laboratory 2 Solar Consulting Services 3 German Aerospace Center (DLR) 4 Dave Renné Renewables, LLC 5 Solar Resource Solutions, LLC This update was prepared in collaboration with the International Energy Agency Solar Heating and Cooling Programme: Task 46 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-68886 December 2017 Contract No. DE-AC36-08GO28308 Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition Edited by Manajit Sengupta,1 Aron Habte,1 Christian Gueymard,2 Stefan Wilbert,3 Dave Renné,4 and Thomas Stoffel5 1 National Renewable Energy Laboratory 2 Solar Consulting Services 3 German Aerospace Center (DLR) 4 Dave Renné Renewables, LLC 5 Solar Resource Solutions, LLC Prepared under Task No. SETP.10304.28.01.10 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-68886 Golden, CO 80401 December 2017 303-275-3000 • www.nrel.gov Contract No.
    [Show full text]
  • Weather Station XET C3VP
    GPM Ground Validation Environment Canada (EC) Weather Station XET C3VP Introduction The GPM Ground Validation Environment Canada (EC) Weather Station XET C3VP dataset consists of surface meteorological data collected at the Environment Canada (EC) XET station at the Centre for Atmospheric Research Experiments (CARE) during the Canadian CloudSat/CALIPSO Validation Project (C3VP) field campaign. The campaign took place in southern Canada in support of multiple science missions, including the NASA GPM mission, in order to improve the modeling and remote sensing of winter precipitation. The XET C3VP dataset file includes temperature, pressure, wind speed and direction, relative humidity, solar radiation, grass temperature, soil temperature, snow depth, sunshine, and precipitation measurements from October 4, 2006 through March 31, 2007 in ASCII-csv format. Citation Rodriguez, Peter. 2020. GPM Ground Validation Environment Canada (EC) Surface Meteorological Station C3VP [indicate subset used]. Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, U.S.A. doi: http://dx.doi.org/10.5067/GPMGV/C3VP/METSTATION/DATA201 Keywords: NASA, GHRC, EC, C3VP, CARE, XET, air temperature, air pressure, wind speed/direction, relative humidity, solar radiation, sunshine, soil temperature, grass temperature, snow depth, precipitation Campaign The Global Precipitation Measurement mission Ground Validation (GPM GV) campaign used a variety of methods for validation of GPM satellite constellation measurements prior to and after launch of the GPM Core Satellite, which launched on February 27, 2014. The instrument validation effort included numerous GPM-specific and joint agency/international external field campaigns, using state of the art cloud and precipitation observational infrastructure (polarimetric radars, profilers, rain gauges, and disdrometers).
    [Show full text]
  • News and Notes
    Bulletin American Meteorological Society Miller, L. Jay, 1972: Dual-Doppler radar observations of Snider, J. B., 1972: Ground-based sensing of temperature circulation in snow conditions. Proc. 15th Radar Meteor. profiles from angular and multi-spectral emission measure- Conf., Amer. Meteor. Soc. ments. J. Appl. Meteor11, 958-967. Owens, J. C., 1969: Optical Doppler measurement of micro- scale wind velocity. Proc. IEEE, 57, 530-536. Strauch, R. G., V. E. Derr, and R. E. Cupp, 1971: Atmo- Richter, J. H., 1969: High resolution tropospheric radar spheric temperature measurement using Raman lidar. sounding. Radio Sci., 4, 1261-1268. Appl Opt., 10, 2665-1669. Salzman, J. A., W. J. Masica, and T. A. Coney, 1971: Deter- V. E. Derr, and R. E. Cupp, 1972: Atmospheric water mination of gas temperatures from laser-Raman scattering. vapor meaesurement using Raman lidar. Remote Sensing NASA TN D-6336. of Environment (in press). Schotland, R. M., 1969: Some aspects of remote atmospheric sensing by laser radar. Rept. of Remote Atrnos. Probing Wyngaard, J. E., Y. Izumi, and S. A. Collins, Jr., 1971: Be- Panel, Committee on Atrnos. Sci., Nat'l Acad, of Sci-Natl havior of the refractive-index-structure parameter near the Res. Council, 2, 179-200. ground. J. Opt. Soc. Amer., 61, 1646-1650. news and notes Lightning suppression by seeding with two chaff dispensers and field mills to measure electric field strength. Flying below cloud level, the NOAA scientists During a six-week long experiment, scientists from the waited until their instruments registered a field greater than National Oceanic and Atmospheric Administration attempted 30,000 volts per meter, a magnitude at which corona dis- to suppress lightning by seeding thunderstorms with fine charge will occur, When this happens the chaff dispensers aluminized fibers over a 200 mis area of northeastern Colo- are activated and the threadlike fibers are carried into the rado.
    [Show full text]
  • Research Areas in Space
    RESPOND & AI Capacity Building Programme Office ISRO HQ, Bengaluru RESPOND & AI Capacity Building Programme Office ISRO HQ, Bengaluru RESEARCH AREAS IN SPACE A Document for Preparing Research Project Proposals RESPOND & AI Capacity Building Programme Office ISRO HQ, Bengaluru January 2021 Technical Guidance Dr. M A Paul, Associate Director, RESPOND & AI, ISRO HQ Technical Support and Compilation Smt Nirupama Tiwari, Sci/Engr SE, CBPO, ISRO HQ Shri K Mahesh, Sr. Asst, CBPO, ISRO HQ Technical Guidance Dr. M A Paul, Associate Director, RESPOND & AI, ISRO HQ For any queries please contact Director, Capacity Building Programme Office (CBPO) Technical Support and Compilation Indian Space Research Organisation HQ Smt Nirupama Tiwari, Sci/Engr SE, CBPO, ISRO HQ Department of Space Shri K Mahesh, Sr. Asst, CBPO, ISRO HQ Government of India Antariksh Bhavan New BEL Road For any queries please contact Bangalore 560094 E-mail: [email protected] Director, Capacity Building Programme Office (CBPO) Indian Space Research Organisation HQ Department of Space Associate Director, RESPOND & Academic Interface Government of India Indian Space Research Organisation HQ Antariksh Bhavan Department of Space New BEL Road Government of India Bangalore 560094 Antariksh Bhavan E-mail: [email protected] New BEL Road Bangalore 560094 Associate Director, RESPOND & Academic Interface E-mail: [email protected] Indian Space Research Organisation HQ Department of Space Government of India Antariksh Bhavan New BEL Road Bangalore 560094 E-mail: [email protected] CONTENTS
    [Show full text]
  • Remote and Autonomous Measurements of Precipitation for the Northwest Ross Ice Shelf, Antarctica Mark W
    Discussions https://doi.org/10.5194/essd-2021-163 Earth System Preprint. Discussion started: 24 June 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data Remote and Autonomous Measurements of Precipitation for the Northwest Ross Ice Shelf, Antarctica Mark W. Seefeldt1, Taydra M. Low2, Scott D. Landolt3, Thomas H. Nylen4 1National Snow Ice and Data Center, University of Colorado Boulder, Boulder, CO, 80303, USA 5 2Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA 3Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, 80301, USA 4Technical University of Denmark, Copenhagen, 2800, Denmark Correspondence to: Mark W. Seefeldt ([email protected]) Abstract. The Antarctic Precipitation System project deployed and maintained four sites across the northwest Ross Ice Shelf 10 in Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica spanning a duration of two years, an improvement in the understanding of precipitation events across the Ross Ice Shelf, and the ability to validate precipitation data from atmospheric numerical models. At each of the four sites the precipitation was measured with an OTT Pluvio2 precipitation gauge. Additionally, snow accumulation at the site was measured with a sonic ranging sensor and using GPS-Interferometry Reflectivity. 15 Supplemental observations of temperature, wind speed, particle count, particle size and speed, and images and video from a camera, were collected to provide context to the precipitation measurements. The collected dataset represents some of the first year-round observations of precipitation in Antarctic at remote locations using an autonomous measurement system.
    [Show full text]
  • RV Investigator Voyage Plan IN2016 V02
    RV Investigator Voyage Plan IN2016_V02 SOTS: Southern Ocean Time Series automated moorings for climate and carbon cycle studies southwest of Tasmania CAPRICORN: Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean Eddy: Linking eddy physics and biogeochemistry in the Antarctic Circumpolar Current south of Tasmania - 2 - VOYAGE MANAGER Name Tegan Sime Title MNF Operations Officer Email [email protected] PRINCIPAL INVESTIGATOR Name and title Dr Tom Trull, Chief Scientist Affiliation CSIRO Oceans and Atmosphere Contact details [email protected] office: 03 6232 5069 mobile: 04 4779 5735 Name and title Dr. Eric Schulz, Co-Chief Scientist Affiliation Bureau of Meteorology Contact details [email protected] office: 03 9669 4618 ITINERARY Mobilisation: Hobart, Friday-Monday, 11-14 March 2016 Depart: Hobart, ASAP within mobilisation period, targeting Sunday 13 March 10:00, which will allow procedural tests in Storm Bay that day and arrival at SOTS before first light to start mooring deployments. Return: Hobart, Wednesday, 13 April 2015 Targeting 16:00. Demobilisation: Hobart, Thursday, 14 April 2016 IN2015_V01 – Professor Tom Trull - 3 - This voyage combines work from three proposals. The objectives are listed separately for each. Scientific objectives SOTS The Southern Ocean has a predominant role in the movement of heat and carbon dioxide into the ocean interior moderating Earth’s average surface climate. SOTS uses a set of three automated moorings to measure these processes under extreme conditions, where they are most intense and have been least studied. The atmosphere-ocean exchanges occur on many timescales, from daily insolation cycles to ocean basin decadal oscillations and thus high frequency observations sustained over many years are required.
    [Show full text]
  • Instrument Development Inquiry (Sixth Edition)
    WORLD METEOROLOGICAL ORGANIZATION INSTRUMENTS AND OBSERVING METHODS R E P O R T No. 71 Instrument Development Inquiry (Sixth Edition) by J.P. van der Meulen Netherlands WMO/TD No. 878 1998 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or its authorities, or concerning the limitation of the frontiers or boundaries. This report has been produced without editorial revision by the Secretariat. It is not an official WMO publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed FOREWORD The provision of compatible measurements of high quality is fundamental for the operational and research programmes of Members of the World Meteorological Organization. Therefore, the development and use of new technology for effective and economical acquisition of data and, in particular, for the automation of observations is considered to be of great importance. The Twelfth Congress of WMO urged that Members continue and, to the extent possible, increase their programmes for the development of new data acquisition systems, sensors and instruments, including those for monitoring the composition of the atmosphere. This is often now done in close collaboration with instrument manufacturers and designers in the private sector. WMO, and particularly the Commission for Instruments and Methods of Observation (CIMO), has for a long time been publishing information 0fl new developments in instrumentation and data acquisition systems. Since 1968 five editions of publication with the title of "Instruments Development lnquiry" have been published.
    [Show full text]
  • TECHNICAL WORKSHOP Enhancing Ocean Observations and Research
    TECHNICAL WORKSHOP Enhancing ocean observations and research, and the free exchange of data, to foster services for the safety of life and property (Ocean-Safe) A contribution to the planning phase (2019–2020) of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) Geneva, Switzerland, 5 to 6 February 2019 FINAL REPORT (Rev. 2) COPYRIGHT AND DISCLAIMER © World Meteorological Organization, 2019 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]