Dr. Weyrich G06: Heart and Middle Mediastinum Reading: 1. Gray's Anatomy for Students, Chapter 3 Objectives: 1. Subdivisions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological Classification of the Moderator Band and Its Relationship with the Anterior Papillary Muscle
Original Article https://doi.org/10.5115/acb.2019.52.1.38 pISSN 2093-3665 eISSN 2093-3673 Morphological classification of the moderator band and its relationship with the anterior papillary muscle Ju-Young Lee1, Mi-Sun Hur2 1Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung, 2Department of Anatomy, Catholic Kwandong University College of Medicine, Gangneung, Korea Abstract: This study investigated and classified the various types of moderator band (MB) in relation to the anterior papillary muscle, with the aim of providing anatomical reference information and fundamental knowledge for use when repairing the congenital defects and understanding the conduction system. The study investigated 38 formalin-fixed human hearts of both sexes obtained from donors aged 38–90 years. The MB was evident in 36 of the 38 specimens (94.7%). The morphology of the MB and its connection with the APM took various forms. The MBs that had a distinct shape were classified into three types according to their shape: cylindrical column, long and thin column, and wide and flat column. Types 2 and 3 were the most common, appearing in 15 (41.7%) and 14 (38.9%) of the 36 specimens, respectively, while type 1 was observed in seven specimens (19.4%). Type 3 was divided into subtypes based on their length. The MB usually originated from a single root (91.7%), with the remainder exhibiting double roots. The pairs of roots in the latter cases had different shapes. The originating point of the MB ranged from the supraventricular crest to the apex of the ventricle. -
Chapter Xi the Circulatory System and Blood
CHAPTER XI THE CIRCULATORY SYSTEM AND BLOOD Page General characterlstlcs______ __ __ _ __ __ __ __ __ __ _ 239 of these organs are independent of the beating of The pericardium ___ __ __ __ 239 the principal heart, and their primary function is The heart. _____ __ __ 240 Physiology of the heart.______________________________________________ 242 to oscillate the blood within the pallial sinuses. Automatism of heart beat. _ 242 The pacemaker system_ 245 THE PERICARDIUM Methods of study of heart beat_____________________________________ 247 Frequency of beat___ __ __ _ 248 Extracardlac regulatlon____ __ __ _ 250 The heart is located in the pericardium, a thin Effects of mineral salts and drugs___________________________________ 251 Blood vessels_ __ ___ _ 253 walled chamber between the visceral mass and the The arterial system______ __ __ ___ __ __ __ __ __ 253 adductor muscle (fig. 71). In a live oyster the The venous system_________________________________________________ 254 location of the heart is indicated by the throbbing The accessory heart._____________ 258 The blood______ __ __ __ __ __ __ __ 259 of the wall of the pericardium on the left side. Color of blood_ __ __ 261 Here the pericardium wall lies directly under the The hyaline cells___________________________________________________ 261 The granular cells .______________________________________ 262 shell. On the right side the promyal chamber Specific gravity of blood____________________________________________ 265 extends down over the heart region and the mantle Serology ___ __________ __________________ ____ __ ______________________ 265 Bibliography __ __ __ __ __ __ __ 266 separates the pericardium wall from the shell. The cavity in which the heart is lodged is slightly A heart, arteries, veins, and open sinuses form asymmetrical; on the right side it extends farther the circulatory system of oysters and other bi along the anterior part of the adductor muscle valves. -
A Direct Examination of Papillary Muscle Function in the Canine Left Ventricle
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1968 A Direct Examination of Papillary Muscle Function in the Canine Left Ventricle Robert Emmet Cronin Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Medicine and Health Sciences Commons Recommended Citation Cronin, Robert Emmet, "A Direct Examination of Papillary Muscle Function in the Canine Left Ventricle" (1968). Master's Theses. 2081. https://ecommons.luc.edu/luc_theses/2081 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1968 Robert Emmet Cronin A DIRECT EXAMINATION OF PAPILLARY MUSCLE FUNCTION IN THE CANINE LEFT VENTRICLE by Robert Emmet Cronin A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Master of Science June 1968 LIFE Robert E. Cronin was born in Chicago, Illinois, on March 26, 1942. He attended St. Ignatius High School, in Chicago, Illinois, and then Holy Cross College in Worcester, Massachusetts, where he received his Bachelor of Arts degree in 1964. Since September, 1964, he has been a medical student at Loyola Uni versity, Stritch School of Medicine, and will receive his M.D. degree in June, 1968. For the past three years he has been enrolled in the combined Master of Science - Medical . -
The Ventricles
Guest Editorial Evolution of the Ventricles Solomon Victor, FRCS, FRCP We studied the evolution of ventricles by macroscopic examination of the hearts of Vijaya M. Nayak, MS marine cartilaginous and bony fish, and by angiocardiography and gross examination of Raveen Rajasingh, MPhil the hearts of air-breathing freshwater fish, frogs, turtles, snakes, and crocodiles. A right-sided, thin-walled ventricular lumen is seen in the fish, frog, turtle, and snake. In fish, there is external symmetry of the ventricle, internal asymmetry, and a thick- walled left ventricle with a small inlet chamber. In animals such as frogs, turtles, and snakes, the left ventricle exists as a small-cavitied contractile sponge. The high pressure generated by this spongy left ventricle, the direction of the jet, the ventriculoarterial ori- entation, and the bulbar spiral valve in the frog help to separate the systemic and pul- monary circulations. In the crocodile, the right aorta is connected to the left ventricle, and there is a complete interventricular septum and an improved left ventricular lumen when compared with turtles and snakes. The heart is housed in a rigid pericardial cavity in the shark, possibly to protect it from changing underwater pressure. The pericardial cavity in various species permits move- ments of the heart-which vary depending on the ventriculoarterial orientation and need for the ventricle to generate torque or spin on the ejected blood- that favor run-off into the appropriate arteries and their branches. In the lower species, it is not clear whether the spongy myocardium contributes to myocardial oxygenation. In human beings, spongy myocardium constitutes a rare form of congenital heart disease. -
Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School
Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School This guide is for middle and high school students participating in AIMS Anatomy of the Human Heart and Pig Heart Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human heart by observing, studying, and examining human specimens. The primary focus is on the anatomy and flow of blood through the heart. Those students participating in Pig Heart Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. National Science Education (NSES) Content Standards for grades 9-12 • Content Standard:K-12 Unifying Concepts and Processes :Systems order and organization; Evidence, models and explanation; Form and function • Content Standard F, Science in Personal and Social Perspectives: Personal and community health • Content Standard C, Life Science: Matter, energy and organization of living systems • Content Standard A Science as Inquiry National Science Education (NSES) Content Standards for grades 5-8 • Content Standard A Science as Inquiry • Content Standard C, Life Science: Structure and function in living systems; Diversity and adaptations of organisms • Content Standard F, Science in Personal and Social Perspectives: Personal Health Show Me Standards (Science and Health/Physical Education) • Science 3. Characteristics and interactions of living organisms • Health/Physical Education 1. Structures of, functions of and relationships among human body systems Objectives: The student will be able to: 1. -
Readingsample
Integrating Cardiology for Nuclear Medicine Physicians A Guide to Nuclear Medicine Physicians Bearbeitet von Assad Movahed, Gopinath Gnanasegaran, John Buscombe, Margaret Hall 1. Auflage 2008. Buch. xiv, 544 S. Hardcover ISBN 978 3 540 78673 3 Format (B x L): 21 x 27,9 cm Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete > Nuklearmedizin, Radiotherapie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter The Heart: Anatomy, Physiology and 1 Exercise Physiology Syed Shah, Gopinath Gnanasegaran, Jeanette Sundberg-Cohon, and John R Buscombe Contents 1.1 Introduction 1.1 Introduction . 3 1.2 Anatomy of the Heart . 3 The impact of anatomy on medicine was first recognised 1.2.1 Chamber and Valves . 4 by Andreas Vesalius during the 16th century [1] and 1.2.2 Cardiac Cell and Cardiac Muscle ......... 4 from birth to death, the heart is the most talked about 1.2.3 Coronary Arteries and Cardiac Veins . 6 organ of the human body. It is the centre of attraction 1.2.4 Venous Circulation ..................... 6 for people from many lifestyles, such as philosophers, 1.2.5 Nerve Supply of the Heart ............... 9 artists, poets and physicians/surgeons. The heart is one 1.2.6 Conduction System of the Heart . 10 of the most efficient organs in the human body and 1.3 Physiology of the Heart . -
4B. the Heart (Cor) 1
Henry Gray (1821–1865). Anatomy of the Human Body. 1918. 4b. The Heart (Cor) 1 The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium (Fig. 490). It is placed obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and projects farther into the left than into the right half of the thoracic cavity, so that about one-third of it is situated on the right and two-thirds on the left of the median plane. Size.—The heart, in the adult, measures about 12 cm. in length, 8 to 9 cm. in breadth at the 2 broadest part, and 6 cm. in thickness. Its weight, in the male, varies from 280 to 340 grams; in the female, from 230 to 280 grams. The heart continues to increase in weight and size up to an advanced period of life; this increase is more marked in men than in women. Component Parts.—As has already been stated (page 497), the heart is subdivided by 3 septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers, viz., right and left atria, and right and left ventricles. The division of the heart into four cavities is indicated on its surface by grooves. The atria 4 are separated from the ventricles by the coronary sulcus (auriculoventricular groove); this contains the trunks of the nutrient vessels of the heart, and is deficient in front, where it is crossed by the root of the pulmonary artery. -
Blood Vessels
BLOOD VESSELS Blood vessels are how blood travels through the body. Whole blood is a fluid made up of red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), and plasma. It supplies the body with oxygen. SUPERIOR AORTA (AORTIC ARCH) VEINS & VENA CAVA ARTERIES There are two basic types of blood vessels: veins and arteries. Veins carry blood back to the heart and arteries carry blood from the heart out to the rest of the body. Factoid! The smallest blood vessel is five micrometers wide. To put into perspective how small that is, a strand of hair is 17 micrometers wide! 2 BASIC (ARTERY) BLOOD VESSEL TUNICA EXTERNA TUNICA MEDIA (ELASTIC MEMBRANE) STRUCTURE TUNICA MEDIA (SMOOTH MUSCLE) Blood vessels have walls composed of TUNICA INTIMA three layers. (SUBENDOTHELIAL LAYER) The tunica externa is the outermost layer, primarily composed of stretchy collagen fibers. It also contains nerves. The tunica media is the middle layer. It contains smooth muscle and elastic fiber. TUNICA INTIMA (ELASTIC The tunica intima is the innermost layer. MEMBRANE) It contains endothelial cells, which TUNICA INTIMA manage substances passing in and out (ENDOTHELIUM) of the bloodstream. 3 VEINS Blood carries CO2 and waste into venules (super tiny veins). The venules empty into larger veins and these eventually empty into the heart. The walls of veins are not as thick as those of arteries. Some veins have flaps of tissue called valves in order to prevent backflow. Factoid! Valves are found mainly in veins of the limbs where gravity and blood pressure VALVE combine to make venous return more 4 difficult. -
Euler's Elastica-Based Biomechanics of the Papillary Muscle
materials Article Euler’s Elastica-Based Biomechanics of the Papillary Muscle Approximation in Ischemic Mitral Valve Regurgitation: A Simple 2D Analytical Model Francesco Nappi 1,*, Angelo Rosario Carotenuto 2, Sanjeet Singh Avtaar Singh 3, Christos Mihos 4 and Massimiliano Fraldi 2 1 Centre Cardiologique du Nord de Saint-Denis, Paris 36 Rue des Moulins Gmeaux, 93200 Saint-Denis, France 2 Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy; [email protected] (A.R.C.); [email protected] (M.F.) 3 Department of Cardiac Surgery, Golden Jubilee National Hospital, Clydebank G81 4DY, UK; [email protected] 4 Columbia University Division of Cardiology at the Mount Sinai Heart Institute, Miami Beach, FL 33140, USA; [email protected] * Correspondence: [email protected]; Tel.: +33-149-334-104; Fax: +33-149-334-119 Received: 16 March 2019; Accepted: 30 April 2019; Published: 9 May 2019 Abstract: Ischemic mitral regurgitation (IMR) occurs as an adverse consequence of left ventricle remodeling post-myocardial infarction. A change in mitral valve configuration with an imbalance between closing and tethering forces underlie this pathological condition. These abnormalities lead to impaired leaflet coaptation and a variable degree of mitral regurgitation, which can in turn influence the ventricular filling status, the heart rhythm and the afterload regardless of the residual ischemic insult. The IMR correction can be pursued through under-sizing mitral annuloplasty and papillary muscle approximation to restore the mitral valve and left ventricle physiological geometry to, consequently, achieve normalization of the engaged physical forces. Because the structures involved undergo extremely large deformations, a biomechanics model based on the Euler’s Elastica –the mitral leaflet– interlaced with nonlinear chordae tendineae anchored on papillary muscles has been constructed to elucidate the interactions between closing and tethering forces. -
MORPHOMETRIC and MORPHOLOGICAL STUDY on the SEPTO- MARGINAL TRABECULA Shrikanya M Shet *1, Kuldeep M D 2, Sheela G Nayak 3, V S Pare 4, Jyothi S R 5 , M P Shenoy 6
International Journal of Anatomy and Research, Int J Anat Res 2018, Vol 6(3.1):5458-63. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2018.238 MORPHOMETRIC AND MORPHOLOGICAL STUDY ON THE SEPTO- MARGINAL TRABECULA Shrikanya M Shet *1, Kuldeep M D 2, Sheela G Nayak 3, V S Pare 4, Jyothi S R 5 , M P Shenoy 6. *1 Student, 1st MBBS, K V G Medical College, Sullia, Rajiv Gandhi University Of Health Sciences, Karnataka. 2 Student, 1st MBBS, K V G Medical College, Sullia, Rajiv Gandhi University Of Health Sciences, Karnataka. 3 Dean Academics, K V G Medical College, Sullia, Rajiv Gandhi University Of Health Sciences, Karnataka. 4 Professor and HOD, Department Of Anatomy, K V G Medical College, Sullia, Rajiv Gandhi Univer- sity Of Health Sciences, Karnataka. 5,6 Assistant Professor, Department Of Anatomy, K V G Medical College, Sullia, Rajiv Gandhi University Of Health Sciences, Karnataka. ABSTRACT Background and objectives: Moderator band is a specialized bridge present between the base of the anterior papillary muscle and interventricular septum. It carries the right branch of the bundle of HIS with it. The band is known to prevent the over distension of the right ventricle during the diastolic phase. There is a need of lot of research and studies on the septomarginal trabecula as it proves to be important clinically. Here we measured the length, breadth, height, angle with the interventricular septum, and the superficial marking of Moderator band on the sternocostal surface of the right ventricle is done. This paper describes the morphological variations found in its origin and insertion. -
Endocardial Cushion and Myocardial Defects After Cardiac Myocyte-Specific Conditional Deletion of the Bone Morphogenetic Protein Receptor ALK3
Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3 Vinciane Gaussin*†, Tom Van de Putte‡, Yuji Mishina§, Mark C. Hanks¶, An Zwijsen‡, Danny Huylebroeck‡, Richard R. Behringerʈ, and Michael D. Schneider*,** *Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030; ‡Flanders Interuniversity Institute for Biotechnology (VIB07), K.U. Leuven, 3000 Leuven, Belgium; §National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; ¶Procter and Gamble Pharmaceuticals Health Care Research Center, 8700 Mason Montgomery Road, Mason, OH 45040; and ʈUniversity of Texas–M. D. Anderson Cancer Center, Houston, TX 77030 Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved December 31, 2001 (received for review July 26, 2001) Receptors for bone morphogenetic proteins (BMPs), members of velopment, whereas ALK6 is absent from the heart at mid- the transforming growth factor- (TGF) superfamily, are persis- gestation (17). The developing heart also expresses ALK2͞ tently expressed during cardiac development, yet mice lacking type ActRIA (5, 18), which can function as a type I BMP receptor II or type IA BMP receptors die at gastrulation and cannot be used with preference for BMP6 and -7 (19). ALK3, ALK2, and to assess potential later roles in creation of the heart. Here, we BMPR-II are each essential for gastrulation and mesoderm used a Cre͞lox system for cardiac myocyte-specific deletion of the formation (18, 20, 21); mice lacking just BMP4 also fail to type IA BMP receptor, ALK3. ALK3 was specifically required at progress, typically, beyond the egg cylinder stage (22). -
Journal of Medical and Health Sciences
ISSN: 2319–9865 Research and Reviews: Journal of Medical and Health Sciences A Morphometric Study on the Septomarginal Trabeculae in South Indian Cadavers Mamatha H, Divya Shenoy, Antony Sylvan D’ Souza, Prasanna LC, and Suhani Sumalatha* Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, Karnataka, India. Article Received: 27/03/2013 ABSTRACT Revised: 10/04/2013 Accepted: 15/04/2013 Most of the human hearts presents a specialized bridge known as Septomarginal trabecula which extends from the right side of the ventricular septum to *For Correspondence the base of anterior papillary muscle. For the present study we took 30 human hearts. We studied the thickness of the septomarginal trabecula, the height of its attachment to Department of Anatomy, Kasturba the ventricular wall by considering the supraventricular crest as the landmark, length of Medical College, Manipal septomarginal trabecula and type of attachment to the septal wall. We found that in most University, Manipal, Karnataka, of the cases, the septomarginal trabecula originated about upper or middle third of the ventricular wall. The thickness varied from less than 1mm to more than 5mm. We also India. found variation in the way of attachment of the septomarginal trabecula to the ventricular wall. Some of the septomarginal trabecula branched before attaching to the Keywords: Septomarginal trabeculae, base of the anterior papillary muscle. We decided to study this because of its role in the papillary muscles, haemodynamics and conduction of electric impulses in heart. INTRODUCTION The trabeculae carneae (fig 1) is a constant feature of the anatomy of human heart, which connects interventricular septum and anterior wall of the right ventricle.