The Ventricles

Total Page:16

File Type:pdf, Size:1020Kb

The Ventricles Guest Editorial Evolution of the Ventricles Solomon Victor, FRCS, FRCP We studied the evolution of ventricles by macroscopic examination of the hearts of Vijaya M. Nayak, MS marine cartilaginous and bony fish, and by angiocardiography and gross examination of Raveen Rajasingh, MPhil the hearts of air-breathing freshwater fish, frogs, turtles, snakes, and crocodiles. A right-sided, thin-walled ventricular lumen is seen in the fish, frog, turtle, and snake. In fish, there is external symmetry of the ventricle, internal asymmetry, and a thick- walled left ventricle with a small inlet chamber. In animals such as frogs, turtles, and snakes, the left ventricle exists as a small-cavitied contractile sponge. The high pressure generated by this spongy left ventricle, the direction of the jet, the ventriculoarterial ori- entation, and the bulbar spiral valve in the frog help to separate the systemic and pul- monary circulations. In the crocodile, the right aorta is connected to the left ventricle, and there is a complete interventricular septum and an improved left ventricular lumen when compared with turtles and snakes. The heart is housed in a rigid pericardial cavity in the shark, possibly to protect it from changing underwater pressure. The pericardial cavity in various species permits move- ments of the heart-which vary depending on the ventriculoarterial orientation and need for the ventricle to generate torque or spin on the ejected blood- that favor run-off into the appropriate arteries and their branches. In the lower species, it is not clear whether the spongy myocardium contributes to myocardial oxygenation. In human beings, spongy myocardium constitutes a rare form of congenital heart disease. (Tex Heart Inst J 1999;26:168-75) W e describe our macroscopic and angiocardiographic findings related to the evolution ofthe cardiac ventricles in fish, frogs, snakes, turtles, and crocodiles. In addition, we discuss ways in which the ventricular devel- opment in these animals relates to that in human beings. Materials and Methods The anatomical terms are applied herein as they are in human anatomy and can be envisioned by imagining the animal held head-up with the belly facing the observ- er. Fish. The hearts of 24 marine cartilaginous fish (12 hammerhead sharks, 6 dog sharks, and 6 tiger sharks) and 6 marine bony fish (Scomberemorus commersonii) were studied by laying each fish on its back and opening the pericardial cavity by Key words: Animal; evolution; heart/anatomy; means of a vertical midline incision. The truncus was divided longitudinally and heart ventricle; myocardium; the incision was continued caudally into the right-sided lumen of the ventricle. regional blood flow; Transverse and coronal sections of the ventricles were examined macroscopically. ventricle, single; ventricle, spongy The heart was studied similarly in 6 air-breathing freshwater fish, Channa striata, which can survive outside water due to an accessory nongill respiratory appara- tus. Each of these freshwater fish was anesthetized with ketamine, after which oxy- From: The Department of Cardiovascular Surgery, gen was insufflated into the oral cavity. Angiocardiography was performed using a The Heart Institute, digital computerized imaging system, with contrast medium injected through the Chennai- 600 010, India duct of Cuvier. Later, the heart was dissected in the same manner as were those of the marine fish. Address for reprints: Frogs. Twelve frogs were anesthetized with the use of ether, and anesthesia was Solomon Victor, FRCS, maintained with oxygen and ether. The frogs were intubated and were manually FRCF? 15 East Street, Kilpauk Garden Colony, ventilated by digital closing and opening of a hole in the inlet tube. Each frog was Chennai - 600 010, India laid on its back, and its heart was explored through a ventral midline incision in the chest wall and pericardium. Angiocardiography was performed by injecting C 1999 by the Texas Hearts contrast medium into the ventral abdominal vein, hepatocardiac channel, sinus Institute, Houston venosus, pulmocutaneous branch, and left atrium. Later, the truncus and bulbus 168 Evolution of the Ventricles Volume 26, Number 3, 1999 were incised longitudinally, and the incision was ventricle and is caudal to the row of craniad semilu- continued along the inferior border ofthe heart into nar valves. Downward extension of the longitudinal the lumen of the ventricle. Coronal and transverse arteriotomy opens the bulbus, which has 3 longitu- sections ofthe heart were examined macroscopically. dinal ridges. Caudal to the bulbus, there is a ventric- Turtles and Snakes. Six pond turtles and 4 rat ular lumen in the right side of the externally snakes were anesthetized with the use of ether in- symmetrical heart. This lumen is the morphologic halation, followed by intubation and ventilation as equivalent of the human right ventricle. Its inner was done in the frogs. The heart was exposed by wall has a curvilinear band with anterior trabecula- removing the ventral plate of each turtle and by a tions, resembling the trabecula septomarginalis seen ventral midline incision in each snake. The peri- in the right ventricular surface of the mammalian cardium was then opened. Angiocardiography was and human interventricular septum. This band bor- performed with the contrast medium injected man- ders a ventricular septal defect that leads through an ually into the right or left atrium, and images were oblique passage, craniad to the leftwardly situated obtained by digital computerized imaging. The pul- common atrioventricular orifice. The left side of the monary artery was incised longitudinally, and the ventricle consists of spongy myocardium with no incision was extended into the right ventricle. A lumen except for a small chamber beneath the com- coronal section of the ventricle was then obtained mon atrioventricular orifice. This chamber commu- through the ventricular septal defect. Anterior and nicates with the right ventricular lumen through the posterior flaps of the ventricle, thus created, facili- ventricular septal defect. The common atrioventric- tated macroscopic inspection of the ventricular lu- ular orifice has 2 bridging leaflets connected to men and wall, related arteries, and valves. primitive papillary muscles on either side, with in- Crocodiles. Two crocodiles were anesthetized with tervening chordae tendineae. ketamine, followed by intubation and manual venti- Marine Bony Fish. In the marine bony fish lation. Each heart was exposed through a ventral (Scomberemorus commersonii), the heart is median midline incision. Angiocardiography was performed and symmetrical. The pericardial sac is fibrous all by manual injection of contrast material into the around and is detached from the chest wall. The right or left atrium with the use ofdigital computer- hepatic veins drain directly from the liver into the ized imaging. Later, the right ventricle was examined sinus venosus without an interposed venous sac. through a longitudinal incision, which was begun in Craniad to the ventricular chamber is an onion- the pulmonary artery and extended into the lumen bulb-shaped chamber that is the conus, separated of the right ventricle. The left ventricle was exposed from the ventricle by a tricuspid semilunar valve. We through a long-axis incision close and parallel to the use the term conus to denote a chamber that is crani- anterior descending coronary artery; the left ventric- ad to the semilunar truncal valve and has no intrin- ular wall and the mitral and aortic valves were exam- sic contractility. Caudal to the semilunar valve is a ined macroscopically. pitted bulbar septum. There is no trabecula sep- tomarginalis. The common atrioventricular orifice Findings with 2 bridging leaflets is nearly flush with the inner wall of the ventricular lumen, which is right sided. Marine Cartilaginous Fish. The heart ofthe marine The left wall of this chamber and the apex of the cartilaginous fish (hammerhead shark, dog shark, ventricle are thick walled and without a lumen, and tiger shark) is housed in a pericardial cavity with except for a tiny inlet chamber that communicates a ventral wall that also serves as a cartilaginous chest with the right ventricular lumen. The conus contin- wall. The heart is symmetrical, with 2 ducts of ues as a truncus, which is devoid of the lateral Cuvier. There is a large venous sinus under the sep- branches evident in the marine cartilaginous fish, tum transversum between each lobe of the liver and except near its termination. the corresponding hepatic vein. The sinus venosus is Air-Breathing Freshwater Fish. The heart ofthe air- triangular, and its caudal wall is adherent to the breathing freshwater fish is externally symmetrical. transverse septum. There is a common atrium that A median dorsal ridge develops inside the sinus bears isomeric appendages on either side. Externally, venosus at the junction ofthe 2 ducts ofCuvier. The the ventricle has right and left faces separated by an sinus venosus is less dominant than that seen in anterior ridge, along which runs a coronary artery marine fish. A common atrium with 2 appendages that resembles morphologically the left anterior des- opens through a left-sided common atrioventricular cending coronary artery in a human being. orifice into the right-sided lumen in the ventricle. A conical bulbar chamber leads craniad to a trun- The left wall of this ventricular lumen is thick and cus arteriosus. We use the term bulbus to refer to this spongy. There is a left-sided inlet chamber that is chamber, which is visibly demarcated from the main small and smooth (Fig. lA). During angiocardiogra- Texas Heart Institutejournal Evolution of the Ventricles 169 phy, not only the right-sided lumen but also the bulb. The conus is distended during ventricular sys- spongy left wall of the ventricle fills with contrast tole and is emptied during ventricular diastole. medium (Fig. 1 B). The contrast from the lumen and Frog. The frog heart is asymmetrical, due to a D- the spongy wall is ejected into the truncus, which loop.
Recommended publications
  • ESS 345 Ichthyology
    ESS 345 Ichthyology Evolutionary history of fishes 12 Feb 2019 (Who’s birthday?) Quote of the Day: We must, however, acknowledge, as it seems to me, that man with all his noble qualities... still bears in his bodily frame the indelible stamp of his lowly origin._______, (1809-1882) Evolution/radiation of fishes over time Era Cenozoic Fig 13.1 Fishes are the most primitive vertebrate and last common ancestor to all vertebrates They start the branch from all other living things with vertebrae and a cranium Chordata Notochord Dorsal hollow nerve cord Pharyngeal gill slits Postanal tail Urochordata Cephalochordata Craniates (mostly Vertebrata) Phylum Chordata sister is… Echinodermata Synapomorphy – They are deuterostomes Fish Evolutionary Tree – evolutionary innovations in vertebrate history Sarcopterygii Chondrichthyes Actinopterygii (fish) For extant fishes Osteichthyes Gnathostomata Handout Vertebrata Craniata Figure only from Berkeley.edu Hypothesis of fish (vert) origins Background 570 MYA – first large radiation of multicellular life – Fossils of the Burgess Shale – Called the Cambrian explosion Garstang Hypothesis 1928 Neoteny of sessile invertebrates Mistake that was “good” Mudpuppy First Vertebrates Vertebrates appear shortly after Cambrian explosion, 530 MYA – Conodonts Notochord replaced by segmented or partially segmented vertebrate and brain is enclosed in cranium Phylogenetic tree Echinoderms, et al. Other “inverts” Vertebrate phyla X Protostomes Deuterostomes Nephrozoa – bilateral animals First fishes were jawless appearing
    [Show full text]
  • PERCEVAL SUTURELESS AORTIC HEART VALVE Instructions for Use
    HVV_LS-850-0002 Rev X03 PERCEVAL SUTURELESS AORTIC HEART VALVE Instructions for Use CAUTION: Federal Law (USA) restricts the device to sale by or on the order of a physician. SYMBOLS CAUTION: SEE MANUAL FOR INSTRUCTIONS/WARNINGS CONTENTS STERILIZED USING ASEPTIC PROCESSING TECHNIQUE USE BY STORE BETWEEN 5°C AND 25°C SINGLE USE ONLY DO NOT RESTERILIZE CATALOGUE NUMBER SERIAL NUMBER SIZE MANUFACTURER QUANTITY INCLUDED IN PACKAGE DO NOT USE IF PACKAGE IS DAMAGED THIS WAY UP MR CONDITIONAL 1. DESCRIPTION Perceval is a bioprosthetic valve designed to replace a diseased native or a malfunctioning prosthetic aortic valve via open heart surgery, with the unique characteristic of allowing sutureless positioning and anchoring at the implant site. The choice of materials and configuration ensures the device biocompatibility and hemocompatibility. The Perceval prosthesis consists of a tissue component made from bovine pericardium and a self-expandable Nitinol stent, which has the dual role of supporting the valve and fixing it in place. Perceval tissue heart valve is supplied unmounted. Prior to implantation the prosthesis diameter is reduced to a suitable size for loading it on the holder. The valve is then positioned and released in the aortic root, where the stent design and its ability to apply a radial force to the annulus allow stable anchoring of the device. 2. AVAILABLE MODELS The Perceval aortic model is available in four sizes: size S, size M, size L, and size XL. The prosthesis height is 31.0, 33.0, 35.5, and 37.5 mm, respectively. Each size is suitable for a range of aortic annuli and sinotubular junction (STJ) diameters.
    [Show full text]
  • Cardiovascular System ANS 215 Physiology and Anatomy of Domesticated Animals
    Cardiovascular System ANS 215 Physiology and Anatomy of Domesticated Animals I. Structure and Function A. Heart is a cone-shaped, hollow, muscular structure located in the thorax. B. Larger arteries and veins are continuous with the heart as its base. 1. Base is directed upward (dorsal) and forward (cranial). 2. Opposite end of the cone is known as the apex C. Membrane around the heart is known as the pericardium 1. Membrane next to hear fuses with the heart muscle and is called the visceral pericardium or epicardium 2. outer membrane is parietal pericardium 3. apex is free 4. Inflammation of the pericardium is called pericarditis. a. increase in fluid in pericardium b. traumatic pericarditis (hardware) disease in cattle 1 Left view of bovine thorax and abdomen showing location of the heart relative to the stomach. Foreign objects (nails, wire), sometimes ingested by cattle, accumulate in the reticulum ( one of the bovine forestomachs). Contraction of the reticulum can force pointed objects through the reticulum wall and the diaphragm, causing final penetration of the pericardium and subsequent inflammation (pericarditis). 2 D. Myocardium 1. Muscular part of the heart which forms the walls for the chambers 2. Heart chambers (4) divided into left and right side of the heart a. Each side has an atrium and ventricle. b. Each atrium has an extension known as the auricle. c. Atria receive blood from veins and ventricles receive blood from atria. Computer image of a cross sectional view of the heart at the ventricular level showing the chordae tendinae and the relative thickness of the myocardium.
    [Show full text]
  • Growth and Remodeling of Atrioventricular Heart Valves: a Potential Target for Pharmacological Treatment? Manuel K
    Available online at www.sciencedirect.com Current Opinion in ScienceDirect Biomedical Engineering Growth and remodeling of atrioventricular heart valves: A potential target for pharmacological treatment? Manuel K. Rausch Abstract backflow or regurgitation of blood. These vital functions Atrioventricular heart valves, that is, the mitral valve and the depend on a well-orchestrated interplay between the tricuspid valve, play vital roles in our cardiovascular system. valves’ components, that is, the valve leaflets, the valve Disease of these valves is, therefore, a significant source of annulus, the chordae tendineae, and the papillary morbidity and mortality. Unfortunately, current treatment op- muscles, refer Figure 1a. In this role, their central tions are suboptimal with significant rates of failure. It was only components, the valve leaflets, are exposed to hemo- recently that we have begun to appreciate that the atrioven- dynamic shear stresses, radial tensile forces at the tricular heart valve leaflets are not just passive flaps, but chordal insertion sites, circumferential tensile forces at actively (mal)adapting tissues. This discovery sheds new light their annular insertion, biaxial stretch due to the on disease mechanisms and provides, thus, possible path- transvalvular pressure, and compressive forces in the ways to new treatments. In this current opinion piece, we coaptation zone. This complex loading regime is cycli- examine the state of our knowledge about the (mal)adaptive cally repeated with every heartbeat for billions of times mechanisms (physiological and pathological growth and throughout our lifetime [1,2]. Ostensibly, these loading remodeling) of the atrioventricular heart valves. Furthermore, modes determine the valves’ microstructure and we review the evidence that suggests that valve maladaptation consequently their mechanical properties [3].
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • 4B. the Heart (Cor) 1
    Henry Gray (1821–1865). Anatomy of the Human Body. 1918. 4b. The Heart (Cor) 1 The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium (Fig. 490). It is placed obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and projects farther into the left than into the right half of the thoracic cavity, so that about one-third of it is situated on the right and two-thirds on the left of the median plane. Size.—The heart, in the adult, measures about 12 cm. in length, 8 to 9 cm. in breadth at the 2 broadest part, and 6 cm. in thickness. Its weight, in the male, varies from 280 to 340 grams; in the female, from 230 to 280 grams. The heart continues to increase in weight and size up to an advanced period of life; this increase is more marked in men than in women. Component Parts.—As has already been stated (page 497), the heart is subdivided by 3 septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers, viz., right and left atria, and right and left ventricles. The division of the heart into four cavities is indicated on its surface by grooves. The atria 4 are separated from the ventricles by the coronary sulcus (auriculoventricular groove); this contains the trunks of the nutrient vessels of the heart, and is deficient in front, where it is crossed by the root of the pulmonary artery.
    [Show full text]
  • Last Meal Reflects Spiral-Shaped Intestine 6 January 2016
    Last meal reflects spiral-shaped intestine 6 January 2016 performed statistical analyses that revealed unknown patterns of distribution of the intestinal structure", explains Marcelo Sánchez. All of this led to the finding that Saurichthys had a straight stomach and a spiral valve. Energetic lifestyle The findings by the Zurich-based paleontologists unveil previously unexpected convergences with the gastrointestinal anatomy of present-day sharks and rays. "The anatomy of the gastrointestinal tract of Saurichthys, in particular the many windings in Extinct predatory fish Saurichthys. Credit: UZH the spiral valve, show the most original digestion organs of earlier fishes", says Thodoris Argyriou, a PhD student at the Paleontological Institute and Museum of the University of Zurich. The spiral A last meal provides new insights: The fossilized valve of Saurichthys indicates an energy-laden food remains of the extinct predatory fish lifestyle that was adjusted to the predatory and Saurichthys reflect its spiral-shaped intestine. The reproductive behavior of the genus. "The large spiral valve in fossils from Southern Switzerland is number of windings increased the surface area for similar to that of sharks and rays. Paleontologists digestion, which is sure to have provided the fish from the University of Zurich have thus closed a with more energy", says Thodoris Argyriou. gap in the knowledge concerning the evolution of the gastrointestinal tract in vertebrates. More information: Thodoris Argyriou et al. Exceptional preservation reveals gastrointestinal A last supper has provided some interesting anatomy and evolution in early actinopterygian findings. The digested and undigested remains of fishes, Scientific Reports (2016). DOI: the last meal eaten by a Saurichthys, a Triassic 10.1038/srep18758 bony fish, were discovered in a extraordinary case of preservation that paleontologists at the University of Zurich were quick to take advantage of.
    [Show full text]
  • Endocardial Cushion and Myocardial Defects After Cardiac Myocyte-Specific Conditional Deletion of the Bone Morphogenetic Protein Receptor ALK3
    Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3 Vinciane Gaussin*†, Tom Van de Putte‡, Yuji Mishina§, Mark C. Hanks¶, An Zwijsen‡, Danny Huylebroeck‡, Richard R. Behringerʈ, and Michael D. Schneider*,** *Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030; ‡Flanders Interuniversity Institute for Biotechnology (VIB07), K.U. Leuven, 3000 Leuven, Belgium; §National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; ¶Procter and Gamble Pharmaceuticals Health Care Research Center, 8700 Mason Montgomery Road, Mason, OH 45040; and ʈUniversity of Texas–M. D. Anderson Cancer Center, Houston, TX 77030 Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved December 31, 2001 (received for review July 26, 2001) Receptors for bone morphogenetic proteins (BMPs), members of velopment, whereas ALK6 is absent from the heart at mid- the transforming growth factor-␤ (TGF␤) superfamily, are persis- gestation (17). The developing heart also expresses ALK2͞ tently expressed during cardiac development, yet mice lacking type ActRIA (5, 18), which can function as a type I BMP receptor II or type IA BMP receptors die at gastrulation and cannot be used with preference for BMP6 and -7 (19). ALK3, ALK2, and to assess potential later roles in creation of the heart. Here, we BMPR-II are each essential for gastrulation and mesoderm used a Cre͞lox system for cardiac myocyte-specific deletion of the formation (18, 20, 21); mice lacking just BMP4 also fail to type IA BMP receptor, ALK3. ALK3 was specifically required at progress, typically, beyond the egg cylinder stage (22).
    [Show full text]
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • Ventricular Septal Defect (VSD)
    Ventricular Septal Defect (VSD) Ventricular Septal Defect. Flow of blood through a normal heart. What is a Ventricular Septal Defect?Your pet has been diagnosed with a Ventricular Septal Defect (VSD). A VSD is a malformation of the wall (interventricular septum) between the two pumping chambers (ventricles) allowing an abnormal communication. A VSD is a type of congenital defect, which means it is present from birth. VSDs are classified based upon whether they are restrictive or non-restrictive. In order to understand how this disease may affect your dog, it is important to understand normal circulation in the heart. Blood drains from the body into the right collecting chamber (called “atrium”) where it passes through the tricuspid valve and into the right pumping chamber (called “ventricle”). From here, blood is pumped into the pulmonary artery and subsequently to the lungs where it picks up oxygen. The oxygenated blood then drains passively into the left atrium, through the mitral valve, and into the left ventricle. The left ventricle then pumps the blood through the aorta and back to the body. Restrictive VSD: A restrictive VSD is a smaller diameter VSD that provides resistance of blood flow. These are the most common VSDs that we diagnose in dogs and cats. Due to normally higher pressures in the left side of the heart compared to the right side of the heart, most have blood flow from left-to-right through the hole. The amount of blood shunted depends on size of the VSD and the pressure difference across the VSD. Therefore, restrictive VSDs are further classified based on whether they are “hemodynamically significant” or not.
    [Show full text]
  • Heart Valve Disease: Mitral and Tricuspid Valves
    Heart Valve Disease: Mitral and Tricuspid Valves Heart anatomy The heart has two sides, separated by an inner wall called the septum. The right side of the heart pumps blood to the lungs to pick up oxygen. The left side of the heart receives the oxygen- rich blood from the lungs and pumps it to the body. The heart has four chambers and four valves that regulate blood flow. The upper chambers are called the left and right atria, and the lower chambers are called the left and right ventricles. The mitral valve is located on the left side of the heart, between the left atrium and the left ventricle. This valve has two leaflets that allow blood to flow from the lungs to the heart. The tricuspid valve is located on the right side of the heart, between the right atrium and the right ventricle. This valve has three leaflets and its function is to Cardiac Surgery-MATRIx Program -1- prevent blood from leaking back into the right atrium. What is heart valve disease? In heart valve disease, one or more of the valves in your heart does not open or close properly. Heart valve problems may include: • Regurgitation (also called insufficiency)- In this condition, the valve leaflets don't close properly, causing blood to leak backward in your heart. • Stenosis- In valve stenosis, your valve leaflets become thick or stiff, and do not open wide enough. This reduces blood flow through the valve. Blausen.com staff-Own work, CC BY 3.0 Mitral valve disease The most common problems affecting the mitral valve are the inability for the valve to completely open (stenosis) or close (regurgitation).
    [Show full text]
  • The Histology of the Digestive Tract of the Chimaroid Fish, Hydrolagus
    'PRE HISTOLOGY OF THE DIGEST IVE TRACT OF THE CHIMAEROID FISH, HYDROLA.GUS COLLIE! (LAY AND BENN:&rT) by GALEN EDWARD CLOTHIER A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1957 IIFBOTST Redacted for Privacy Frofeasor o,f BooI"oilr 0baLrrsn of $epartuant of Zoology & 0harst of XaJor Redacted for Privacy Cha,Lruaa Sob,oo1 0mduatr Oonntttec Redacted for Privacy Dcen ef Sraduato Sohool Date thccls te Brosoated tJrpcd by largaret $loth!.tr ACKNOWLEDGMENTS I would like to express my appreciation and gratitude to my major professor, Dr . Ernst J. Dornfeld , for the training, advice , assistance and encouragement given me during this investigation. Dr . Alfred Owczarzak of Oregon State College deserves special thanks for assistance and advice concerning t he photographs which accompany this thesis . I would like also to express my gratitude to Dr . Paul Ilg and his staff at the Friday Harbor Laboratories for collecting the fish used in this study. '!'ABLE OF CONTENTS Page INTRODUCTION • • • • • • • • • • • • . .. • • • .l MATERIALS AND METHODS • • • • • • • • • • • • 6 OBSERVATIONS • • • • • • • • • • • • • • • • • • 8 Gross anatomical features • • • • • • • • • 8 Microscopic anatomy • • • • • • • • • • • • ll DISCUSSION • • • • • • • • • . .. • • • • • • • 23 SUMMARY AND COUCLUSIONS • • • • • • • • • • • • 29 BJELIOGRAPHY • • • • • • • • • • • • • • • • • • 31 APPENDIX EXPLANATION OP PLATES • • • •• • • • • • • • • • 35 Plate I • • • • • • • • • • • • • • • . .
    [Show full text]