Fungi in the Rear Mirror

Total Page:16

File Type:pdf, Size:1020Kb

Fungi in the Rear Mirror The Devonian enigma: Prototaxites. Already during the 19th century, fossils several meters high were detected. Initially, they were interpreted as archaic plants, then as algae, rolled liverworts, or giant lichens (Moore et al., 2011). Recently, evidence has been mounting that they may have been ascomycetes, possibly lichenized (Retallack and Landing, 2014; Honegger et al., 2017). More information on Prototaxites (and much more) can be found in www.davidmoore.org.uk. Painting image courtesy Geoffrey Kibby (British Mycological Society). Fungi in the rear mirror A brief history of the fungi during the last two billion years Hans Halbwachs ABSTRACT of fossils; what evidence we have is fungal evolution on biotic and abiotic Fungal evolution goes back for at least preserved geological strata or amber. environmental circumstances, which two billion years. From flagellate marine Through molecular analysis methods sheds some light on the consequences of Chytridiomycota to terrestrial Asco–and (examining the “molecular clock”), the present degradation of nature. Basidiomycota, fungal speciation–and the fungal pathway through Earth’s the radiation of those species–occurred history can be amended and ancestral Keywords: Basidiomycetes, ascomycetes, through multiple steps that were mainly relationships elucidated. In the following fossils, amber, evolution, symbiosis, triggered by key morphological (often historical review, important, history- Agaricomycotina symbiotic) innovations. The fossil record illuminating fossils are depicted and put Author’s address: Hans Halbwachs, does document such evolutionary steps, into evolutionary context. It also Danziger Str. 20, 63916 Amorbach, albeit incompletely due to the scarcity describes the delicate dependencies of Germany, E-mail: [email protected] 14 FUNGI Volume 13:2 Summer 2020 The mysteries of fungal evolution The sheer magnitude of extant fungal Box 1: How is the molecular clock ticking? diversity, with probably more than 2.2 Each organism is subject to alterations of its DNA and proteins. Mutations also million species, is baffling (Hawksworth occur in neutral sequences, which do not affect the phenotype, i.e., do not and Lücking, 2017). This number underlie selective pressure. Given that the mutation rate of such neutral indicates that fungi are an old kingdom, sequences remains the same through time, they can be used to estimate the point perhaps one of the oldest among when two species diverged in the course of the evolution. eukaryotes (organisms with a distinct Each dash nucleus in their cells). The magic of the symbolizes a fungal kingdom’s diversity becomes mutation (intermittent particularly visible, specifically, in the Agaricales branches are “higher” fungi, with its enormous but omitted here). unevenly distributed phylogenetic and Common Fossils with known morphological diversity. For example, ancestor geological age are why does genus Marasmius includes used to calibrate the approximately 500 species, but Agrocybe Boletales calculated time only 35 (Kirk et al., 2011)? spans. Source: Apart from the question of how Donoghue and fungi emerged, the observed diversity Smith (2003). patterns beg for explanations. In other words, what were (and are) the drivers of If it only were that simple! Sadly, the mutation rates are not so constant as initially assumed (Bromham, 2016). For instance, Beimforde et al. (2014) showed speciation and associated phylogenetic an uncertainty of 100 million years on the divergence of Helvella and Gyromitra peculiarities? This review aims to towards the end of the Cretaceous. Finally, one should realize that cladistic present a synopsis of the evolution of methods are based on statistics, which are inevitably accompanied by fungi as well as to cast a little light onto uncertainties (Nagy et al., 2012). some darker corners of fungal phylogeny. How it (perhaps) began To be clear right from the beginning, Where did these authors get their speciation surges (“radiations”), rather how the first fungi evolved remains data? First of all, fossils are recovered uneventful periods, and extinctions largely unknown. Science is not from sediments and other rocks and, (Boenigk et al., 2015). at all sure what appeared first on notably, from amber; I will come back the evolutionary scene: plant? or to the issue of fossilized fungi in more Diversity and extinction fungus? (Hedges et al., 2006). Or if detail later on. The second and most As I have noted, the history of the both at the same time? A visionary important source of data are molecular Earth is a turbulent one. Above all, British mycologist even assumed that clocks. Despite some uncertainties volcanic and tectonic forces shaped LUCA (the “Last Universal Common (see Box 1), the method has become a mosaic of land and sea. The period Ancestor“), the forebear of all eukaryotic indispensable for elucidating the when life emerged was particularly living things, was a fungus (Moore, evolutionary pathway of fungi. uncomfortable for sure because of 2013). Widely accepted now is the The more one goes back in time, the frequent meteorite impacts (Boenigk view that ancestral plants and fungi more inherently dubious the inferences, et al., 2015). What we would consider developed in the primeval seas of the because fossils for calibrating the extreme environmental upheaval Precambrian, namely algae and flagellate molecular clock are seldom available. may have contributed to the lack fungi (Chytridiomycota sensu lato) One should not be surprised that the of observable specimens along the (Hedges et al., 2006). The current oldest suggested divergence time between evolutionary path that led to the advent fungal fossil is probably 2.4 billion years basidio- and ascomycetes varies between of fungi. The further evolution can be old (Paleoproterozoic) (Bengtson et al., 900 million (Hedges et al., 2006) and 650 inferred with the help of fossils and the 2017). The first fungal steps on land million years (Tedersoo et al., 2018). molecular clock. It should be noted that took place circa one billion years ago, Back to conquering land. We had during this process, fungi and plants likely before plants (Hedges et al., 2006). unruly times in those days towards the are usually found in association with The still-quite-hostile terrestrial habitat end of the Ordovician (ca. 450 MYA). one another shortly after the “conquest” (little oxygen, intense UV radiation) Wildly oscillating sea levels, high carbon of land (Boenigk et al., 2015). The only allowed an expansion of biocrusts, dioxide concentrations, and fierce somewhat erratic fungal paleohistory is which were composed of heterotrophic volcanic activities (Edwards et al., 2015), presented in Table 1. bacteria and cyanobacteria (Taylor et paradoxically created a concoction The diversity graph (based on the al., 2015). These biocrusts, together with of circumstances that accelerated currently described taxa from amber, see first terrestrial fungi, could have formed speciation through selective forces and Halbwachs, 2019b) in Table 1 depicts the a mutualistic-lifestyle organism similar geographical isolation (Levin, 2004; evolutionary steps only in a flashlight to lichens (Yuan et al., 2005; Strullu- Mayhew, 2006; Schluter, 2017). The fashion. Still, the key events become Derrien et al., 2018). onward march of the fungi is paved with clear. Red bullets flag particularly Summer 2020 FUNGI Volume 13:2 15 16 FUNGI Volume 13:2 Summer 2020 o Table 1. Compilation of fungal evolution in the course of Earth’s history based on innovative developments which, for the fossil and molecular data. In the last column, the accompanying dynamics of fungi most part, resulted in intense radiations. (blue) and plant (green) evolution is schematically depicted. Red arrows denote I want to highlight the first fungus-plant mass extinctions. The color code and the classification follow the International symbioses because they likely triggered Commission on Stratigraphy (www.stratigraphy.org). Sources: Berbee and Taylor co-evolution and thus contributed (2001); Wellman (2003); Wikström et al. (2003); Binder and Hibbett (2006); Matheny to the acceleration of adaptations to et al. (2006); Miller et al. (2006); (2008); Soltis et al. (2008); Bidartondo et al. (2011); changing environmental conditions Krings et al. (2011); Ryberg and Matheny (2011); Bonito et al. (2013); Boenigk et al. (Thompson, 2017). In the same way, the (2015); Taylor et al. (2015); Bengtson et al. (2017); Lutzoni et al. (2018); Seyfullah et emergence of mushrooms ca. 180 MYA al. (2018); Strullu-Derrien et al. (2018); Loron et al. (2019); Varga et al. (2019). sparked explosive radiation of species, possibly due to the lifting of spore Figure 1. Cladogram illustrating mushroom radiation, beginning with the production above the substrate surface, Carboniferous (depicted as root of the phylogenetic tree in the center) (modified making spore dispersal significantly after Varga et al., 2019). The explosive split-ups of the lineages within the more effective (Varga et al., 2019). The Agaricomycotina mainly took place at the beginning of the Paleogene (ca. 60 MYA). staggering diversification becomes The insert in the center shows the diversification rates as hues (the warmer, the evident with a cladogram (Fig. 1). higher). License: Attribution 4.0 International It seems rather remarkable that (CC BY 4.0), Link: creativecommons. mass extinctions did not leave org/licenses/by/4.0/deed.de. visible traces in fungal Summer 2020 FUNGI Volume 13:2 17 Period
Recommended publications
  • Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): Taxonomy and Character Evolution
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/74776 since 2016-10-06T16:59:44Z Published version: DOI:10.1016/j.funbio.2010.09.012 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 23 September 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 115(1), 2011, 10.1016/j.funbio.2010.09.012. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Basidiomycota: Agaricales) Introducing the Ant-Associated Genus Myrmecopterula Gen
    Leal-Dutra et al. IMA Fungus (2020) 11:2 https://doi.org/10.1186/s43008-019-0022-6 IMA Fungus RESEARCH Open Access Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. Caio A. Leal-Dutra1,5, Gareth W. Griffith1* , Maria Alice Neves2, David J. McLaughlin3, Esther G. McLaughlin3, Lina A. Clasen1 and Bryn T. M. Dentinger4 Abstract Pterulaceae was formally proposed to group six coralloid and dimitic genera: Actiniceps (=Dimorphocystis), Allantula, Deflexula, Parapterulicium, Pterula, and Pterulicium. Recent molecular studies have shown that some of the characters currently used in Pterulaceae do not distinguish the genera. Actiniceps and Parapterulicium have been removed, and a few other resupinate genera were added to the family. However, none of these studies intended to investigate the relationship between Pterulaceae genera. In this study, we generated 278 sequences from both newly collected and fungarium samples. Phylogenetic analyses supported with morphological data allowed a reclassification of Pterulaceae where we propose the introduction of Myrmecopterula gen. nov. and Radulomycetaceae fam. nov., the reintroduction of Phaeopterula, the synonymisation of Deflexula in Pterulicium, and 53 new combinations. Pterula is rendered polyphyletic requiring a reclassification; thus, it is split into Pterula, Myrmecopterula gen. nov., Pterulicium and Phaeopterula. Deflexula is recovered as paraphyletic alongside several Pterula species and Pterulicium, and is sunk into the latter genus. Phaeopterula is reintroduced to accommodate species with darker basidiomes. The neotropical Myrmecopterula gen. nov. forms a distinct clade adjacent to Pterula, and most members of this clade are associated with active or inactive attine ant nests.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • A Critique of Phanerozoic Climatic Models Involving Changes in The
    Earth-Science Reviews 56Ž. 2001 1–159 www.elsevier.comrlocaterearscirev A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere A.J. Boucot a,), Jane Gray b,1 a Department of Zoology, Oregon State UniÕersity, CorÕallis, OR 97331, USA b Department of Biology, UniÕersity of Oregon, Eugene, OR 97403, USA Received 28 April 1998; accepted 19 April 2001 Abstract Critical consideration of varied Phanerozoic climatic models, and comparison of them against Phanerozoic global climatic gradients revealed by a compilation of Cambrian through Miocene climatically sensitive sedimentsŽ evaporites, coals, tillites, lateritic soils, bauxites, calcretes, etc.. suggests that the previously postulated climatic models do not satisfactorily account for the geological information. Nor do many climatic conclusions based on botanical data stand up very well when examined critically. Although this account does not deal directly with global biogeographic information, another powerful source of climatic information, we have tried to incorporate such data into our thinking wherever possible, particularly in the earlier Paleozoic. In view of the excellent correlation between CO2 present in Antarctic ice cores, going back some hundreds of thousands of years, and global climatic gradient, one wonders whether or not the commonly postulated Phanerozoic connection between atmospheric CO2 and global climatic gradient is more coincidence than cause and effect. Many models have been proposed that attempt to determine atmospheric composition and global temperature through geological time, particularly for the Phanerozoic or significant portions of it. Many models assume a positive correlation between atmospheric CO2 and surface temperature, thus viewing changes in atmospheric CO2 as playing the critical role in r regulating climate temperature, but none agree on the levels of atmospheric CO2 through time.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]
  • Species Recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): Morphology, Geography and Phylogeny
    Mycol Progress (2011) 10:453–479 DOI 10.1007/s11557-010-0716-z ORIGINAL ARTICLE Species recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): morphology, geography and phylogeny Alfredo Justo & Andrew M. Minnis & Stefano Ghignone & Nelson Menolli Jr. & Marina Capelari & Olivia Rodríguez & Ekaterina Malysheva & Marco Contu & Alfredo Vizzini Received: 17 September 2010 /Revised: 22 September 2010 /Accepted: 29 September 2010 /Published online: 20 October 2010 # German Mycological Society and Springer 2010 Abstract The phylogeny of several species-complexes of the P. fenzlii, P. phlebophorus)orwithout(P. ro me lli i) molecular genera Pluteus and Volvopluteus (Agaricales, Basidiomycota) differentiation in collections from different continents. A was investigated using molecular data (ITS) and the lectotype and a supporting epitype are designated for Pluteus consequences for taxonomy, nomenclature and morpho- cervinus, the type species of the genus. The name Pluteus logical species recognition in these groups were evaluated. chrysophlebius is accepted as the correct name for the Conflicts between morphological and molecular delimitation species in sect. Celluloderma, also known under the names were detected in sect. Pluteus, especially for taxa in the P.admirabilis and P. chrysophaeus. A lectotype is designated cervinus-petasatus clade with clamp-connections or white for the latter. Pluteus saupei and Pluteus heteromarginatus, basidiocarps. Some species of sect. Celluloderma are from the USA, P. castri, from Russia and Japan, and apparently widely distributed in Europe, North America Volvopluteus asiaticus, from Japan, are described as new. A and Asia, either with (P. aurantiorugosus, P. chrysophlebius, complete description and a new name, Pluteus losulus,are A. Justo (*) N. Menolli Jr. Biology Department, Clark University, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, 950 Main St., Rua Pedro Vicente 625, Worcester, MA 01610, USA São Paulo, SP 01109-010, Brazil e-mail: [email protected] O.
    [Show full text]
  • Download Chapter
    2 State of the World’s Fungi State of the World’s Fungi 2018 2. Fungal tree of life Ester Gayaa , Pepijn W. Kooija , Bryn T. M. Dentingerb, Igor V. Grigorievc, László G. Nagyd, Jason Stajiche, Timothy Cokera, Ilia J. Leitcha a Royal Botanic Gardens, Kew, UK; b Natural History Museum of Utah & School of Biological Sciences, University of Utah, USA; c U.S. Department of Energy Joint Genome Institute, USA; d Biological Research Centre, Hungarian Academy of Sciences, Hungary; e University of California-Riverside, USA 12 Describing the world’s fungi Fungal tree of life How are different species of fungi related to each other? What do we know about the major steps in fungal evolution and when they occurred? What are we doing about filling the knowledge gaps in the fungal tree of life? stateoftheworldsfungi.org/2018/fungal-tree-of-life.html Fungal tree of life 13 DNA data are providing new insights into the major steps that have taken place over the last 1 BILLION YEARS of fungal evolution 14 Describing the world’s fungi phyla[5], which we follow in this volume. In addition, these HOW ARE DIFFERENT SPECIES RELATED data are providing new insights into the major steps that have TO EACH OTHER? THIS SIMPLE YET taken place over the last 1 billion years of fungal evolution[5–7] (see Figure 1). CRITICALLY IMPORTANT QUESTION, 1. The earliest fungi. The earliest fungi are thought to have WHICH IS ROUTINELY ASKED ABOUT evolved around 1 billion years ago and to have been simple, single-celled organisms living in water and reproducing using SPECIES IN ALL KINGDOMS OF LIFE, motile asexual spores (zoospores) propelled by a posterior IS ONE OF THE MOST DIFFICULT TO whip-like structure called the flagellum[8,9].
    [Show full text]
  • Diversity of Entomopathogens Fungi: Which Groups Conquered
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 4, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • A New Species of Bird's Nest Fungi: Characterisation of <I>Cyathus Subglobisporus</I>
    Persoonia 21, 2008: 71–76 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X370578 A new species of bird’s nest fungi: characterisation of Cyathus subglobisporus sp. nov. based on morphological and molecular data R.-L. Zhao1, D.E. Desjardin 2, K. Soytong 3, K.D. Hyde 4, 5* Key words Abstract Recent collections of bird’s nest fungi (i.e. Crucibulum, Cyathus, Mycocalia, Nidula, and Nidularia species) in northern Thailand resulted in the discovery of a new species of Cyathus, herein described as C. subglobisporus. bird’s nest fungi This species is distinct by a combination of ivory-coloured fruiting bodies covered with shaggy hairs, plications on gasteromycetes the inner surface of the peridium and subglobose basidiospores. Phylogenetic analyses based on ITS and LSU new species ribosomal DNA sequences using neighbour-joining, maximum likelihood and weighted maximum parsimony sup- phylogeny port Cyathus subglobisporus as a distinct species and sister to a clade containing C. annulatus, C. renweii and rDNA C. stercoreus in the Striatum group. Article info Received: 24 June 2008; Accepted: 8 September 2008; Published: 23 September 2008. INTRODUCTION Cyathus striatus as representatives of the Nidulariaceae. Their phylogenetic reconstruction indicated that the Nidulariaceae The genus Cyathus along with the genera Crucibulum, Myco- was sister to the Cystodermateae (represented by Cystoderma calia, Nidula, and Nidularia are known as the bird’s nest fungi amianthinum). Together these two clades appear sister to the because of their small vase-shaped or nest-like fruiting bodies Agaricaceae s.l. but without bootstrap support. A phylogenetic containing lentil-shaped or egg-like peridioles.
    [Show full text]
  • Allescheria Boydii Shear
    OBSERVATIONS ON THE MORPHOLCGY, PHYSIOLCGY, AND LIFE HISTORY OF ALLESCHERIA BOYDII SHEAR. by Robert Denton Flory A Thesis Presented to the Graduate School of the University of Richmond in Partial Fulfillment of the Requirements for the Degree of Master of Arts University of Richmond June, 1956 LlBRARY UNIVERSITY OF RICHMOND VIRGINIA ACKNOWLEDGEMENTS To those individuals who have contributed to the success of this thesis, I wish to express rrry sincere appreciation. I am especially grateful to Dr. R. F. Smart, who made possible for me the opportunity to study at the University of Richmond, and for his constant guidance throughout the preparation of this thesis. I am also greatly indebted to the other members of the faculty at the University of Richmond Biology Department for their advice and for the many considerations they have shown. It is a pleasure to acknowledge the aid of Dr. C. W. Emmons of the National Institute of Health for making available many strains of the fungus studied. Grateful acknowledgement is made to Dr. R. F. Smart, Dr •. J. D. Burke, Mr. A.H. O'Bier, Jr. and Mr. R. F. Moore,Jr,. for their assistance with the photographic plates of this thesis. LIBRARY °lJNlVERSlTY OF RICHMOND VIRGINIA II CONTENTS page ACl<l'iOWI.EDG~S. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • II IN'rRODUCTI ON •• ·• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 ~I.AI.iS .AND J.i:E'rHODS. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 RESULTS OF MORPHOLOGIC.AL .AND CYTOLOGICAL STUDY ••••••••••• 6 Colony Characteristics ••••••••••••••.••••••••••••••• 6 Vegetative Hyphae •••.•.•••••.••••.••.•••.••••••••••. 8 Asexual Reprod.uction. • . • . • • . • • • • • . • • • • • . • • • • • • • • . • • l2 Sexual Reproduction ••••.•••••••••••••••• 18 PHYSIC.AL EFFECTS OF ENVIRONMENT UPON GROWTH. • . • • • • • • • • • • • 28 NUTRITIONAL STUDIES .AND OCCURRENCE IN NATURE •••••..•••.•• 32 LIFE HISTORY, SEXUALITY, .AND TAXONOMY Life History •• .
    [Show full text]