Another Fossil Agaric from Dominican Amber

Total Page:16

File Type:pdf, Size:1020Kb

Another Fossil Agaric from Dominican Amber Mycologia, 95(4), 2003, pp. 685–687. ᭧ 2003 by The Mycological Society of America, Lawrence, KS 66044-8897 Another fossil agaric from Dominican amber David S. Hibbett1 Etymology. The generic name means ‘‘golden mush- Manfred Binder room’’; the epithet refers to the collection locality. Zheng Wang Pileus 3 mm broad, convex, with a broad raised Department of Biology, Clark University, 950 Main center, glabrous or minutely textured, yellow-brown; St., Worcester, Massachusetts 01610 margin incurved, striated. Lamellae subdistant; mar- gins smooth; lamellulae or anastomoses absent; at- Yale Goldman tachment not observed. Stipe central, 0.8 ϫ 7 mm, 86 Dunne Ave., Collinsville, Connecticut 06019 cylindric, smooth; annulus, volva and rhizoids absent. Basidiospores 3.5–4.4 ϫ 3.0–3.5 ␮m, broadly elliptic. HOLOTY PE: DOMINICAN REPUBLIC: El Valle, Abstract: We report the discovery of a fossil agari- Yanigua mine. In the private collection of Yale Gold- coid homobasidiomycete from Dominican amber (ca man (s.n.). 15–20 Ma). Aureofungus yaniguaensis appears to be a Aureofungus yaniguaensis is an agaricoid homoba- member of the euagarics clade, but its precise taxo- sidiomycete. The vast majority of such forms occur nomic placement is obscure. This is the fourth in the euagarics clade (ϭ Agaricales pro parte), known fossil agaric and the third from Dominican which contains about 8500 described species (Hawk- amber. sworth et al 1995, Hibbett and Thorn 2001). The Key words: Agaricales, Aureofungus yaniguaensis, shape and stature of the fruiting body suggest that A. euagarics clade, paleomycology yaniguaensis might be related to the smaller pale- spored genera traditionally classified as Tricholoma- taceae (e.g., Collybia (Fr.) Staude, Mycena (Pers.) Three fossil agarics are known to science. Coprinites Roussel, Marasmius Fr., Marasmiellus Murrill), or dominicana Poinar and Singer and Protomycena electra perhaps certain non-deliquescent, dusky-spored taxa Hibbett, Grimaldi and Donoghue are both from Do- (e.g., Coprinellus disseminatus (Pers. : Fr.) J. E. minican amber and are 15–20 million years old (Ma), Lange). Unfortunately, the anatomical characters while Archaeomarasmius leggeti Hibbett, Grimaldi and that would be needed to resolve the placement of A. Donoghue is from Atlantic Coastal Plain amber and is yaniguaensis could not be observed. Because of the 90–94 Ma (Grimaldi, Beck and Boon 1989, Poinar and thickness of the amber it was not possible to view the Singer 1990, Hibbett et al 1995, 1997, Iturralde-Vinent specimen with greater than a 10 ϫ objective, which and MacPhee 1996). Here, we report the discovery of made it difficult to assess the ornamentation of the a fourth fossil agaric (FIGS. 1–5), which was collected spores and the surface textures of the pileus and in the Yanigua mine in the eastern Dominican Re- stipe. The spores appear to be pigmented (FIG. 3), public and purchased from an amber dealer living in which would suggest a relationship to extant chro- the town of El Valle in August 2000. A single fruiting mosporic groups, but this could be an artifact of pres- body is present (FIGS. 1–2, 4), as well as many basid- ervation or an optical effect of the amber. Lacking iospores that are laid down in masses, suggesting that evidence of its precise taxonomic placement, we sug- they were produced by the fruiting body in the amber gest that A. yaniguaensis should be classified as incer- (FIGS. 3, 5). Based on comparisons to Coprinites Poinar tae sedis among the Agaricales, euagarics clade. and Singer, Protomycena Hibbett, Grimaldi and Don- Although it is not possible to precisely place A. oghue and Archaeomarasmius Hibbett, Grimaldi and yaniguaensis, sufficient characters can be seen to dis- Donoghue, we conclude that the fossil represents a tinguish it from Coprinites dominicana, Protomycena previously undescribed genus and species. electra and Archaeomarasmius leggeti. The pileus of Co- Aureofungus yaniguaensis Hibbett, Binder and prinites dominicana (Poinar and Singer 1990) was de- Wang, gen. et sp. nov. scribed as squamulose-pectinate with a pleated or grooved margin and a small depression in the center, Accepted for publication September 8, 2002. whereas that of A. yaniguaensis is smooth or glabres- 1 Corresponding author. E-mail: [email protected] cent, with faint striae and a broad raised central area. 685 686 MYCOLOGIA FIGS. 4–5. Aureofungus yaniguaensis. 4. Fruiting body. 5. Basidiospores. Scale bars: 4 ϭ 100 ␮m, 5 ϭ 4 ␮m. previously described fossil agarics, there are no char- acters (synapomorphies) that provide positive sup- port for such a relationship. Therefore, we think it is appropriate to classify A. yaniguaensis in a new genus. FIGS. 1–2. Aureofungus yaniguaensis fruiting body. Scale Fossil evidence (Archaeomarasmius) indicates that bar ϭ 100 ␮m. the euagarics clade is at least 90 million years old (Hibbett et al 1995), and molecular clock studies sug- gest that the basidiomycetes as a whole could be any- In addition, the hymenophore of Coprinites is re- where from 500 million years to 1.2 billion years old ported to have lamellulae, which are absent in A. yan- (Berbee and Taylor 2001, Heckman et al 2001). Itur- iguaensis. Finally, the spores of Coprinites differ from ralde-Vinent and MacPhee (1996) suggested that all those of A. yaniguaensis in being larger (6–7 ␮m Dominican amber was formed in a single sedimen- long) and oblong-elliptic. Protomycena electra (Hib- tary basin during a 5 million year interval in the Mio- bett et al 1997) differs from A. yaniguaensis in having cene (15–20 Ma; contra Poinar and Singer 1990). a more campanulate pileus with a reflexed margin, Thus, A. yaniguaensis does not affect the minimum and more distant lamellae with lamellulae and anas- age estimates for either the euagarics clade or the tomoses. Archaeomarasmius leggeti (Hibbett et al basidiomycetes. Nevertheless, fossil fungi in Domini- 1995, 1997) differs from A. yaniguaensis in having a can amber, such as A. yaniguaensis, are of value for more strongly sulcate pileus and larger spores (6.5– understanding the ecology of Miocene ecosystems in 8.3 ϫ 4.0–5.2 ␮m). The differences described above the Caribbean and could help evaluate certain his- certainly warrant recognition of A. yaniguaensis as a torical biogeographic hypotheses (see Hibbett 2001 new species. While we cannot rule out the possibility for an example). The discovery of a third fossil agaric that A. yaniguaensis is closely related to any of the from Dominican amber suggests that many more such finds might lie in store. ACKNOWLEDGMENTS We are grateful to David Grimaldi, who examined the spec- imen and commented on its authenticity, and Scott Red- head, who made valuable editorial suggestions. LITERATURE CITED Berbee ML, Taylor JW. 2001. Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA, eds. The mycota VII sys- tematics and evolution. Part B. Berlin: Springer-Verlag. p 229–245. FIG. 3. Aureofungus yaniguaensis basidiospores. Scale Grimaldi D, Beck CW, Boon JJ. 1989. Occurrence, chemical bar ϭ 10 ␮m. characteristics and paleontology of the fossil resins HIBBETT ET AL: FOSSIL AGARIC FROM DOMINICAN AMBER 687 from New Jersey. American Museum Novitates 2948:1– cetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA, 27. eds. The mycota VII systematics and evolution. Part B. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Dic- Berlin: Springer-Verlag. p 121–168. tionary of the fungi. 8th ed. Wallingford: CAB Inter- ———, Grimaldi D, Donoghue MJ. 1995. Cretaceous mush- national. 616 p. rooms in amber. Nature 377:487. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos ———, ———, ———. 1997. Fossil mushrooms from Mio- cene and Cretaceous ambers and the evolution of hom- NL, Hedges SB. 2001. Molecular evidence for the early obasidiomycetes. Am J Bot 84:981–991. colonization of land by fungi and plants. Science 293: Iturralde-Vinent MA, MacPhee RDE. 1996. Age and paleo- 1129–1133. geographical origin of Dominican amber. Science 273: Hibbett DS. 2001. Shiitake mushrooms and molecular 1850–1852. clocks: historical biogeography of Lentinula. J Biogeogr Poinar GO Jr., Singer R. 1990. Upper Eocene gilled mush- 28:231–241. room from the Dominican Republic. Science 248: ———, Thorn RG. 2001. Basidiomycota: Homobasidiomy- 1099–1101..
Recommended publications
  • Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): Taxonomy and Character Evolution
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/74776 since 2016-10-06T16:59:44Z Published version: DOI:10.1016/j.funbio.2010.09.012 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 23 September 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 115(1), 2011, 10.1016/j.funbio.2010.09.012. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Basidiomycota: Agaricales) Introducing the Ant-Associated Genus Myrmecopterula Gen
    Leal-Dutra et al. IMA Fungus (2020) 11:2 https://doi.org/10.1186/s43008-019-0022-6 IMA Fungus RESEARCH Open Access Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. Caio A. Leal-Dutra1,5, Gareth W. Griffith1* , Maria Alice Neves2, David J. McLaughlin3, Esther G. McLaughlin3, Lina A. Clasen1 and Bryn T. M. Dentinger4 Abstract Pterulaceae was formally proposed to group six coralloid and dimitic genera: Actiniceps (=Dimorphocystis), Allantula, Deflexula, Parapterulicium, Pterula, and Pterulicium. Recent molecular studies have shown that some of the characters currently used in Pterulaceae do not distinguish the genera. Actiniceps and Parapterulicium have been removed, and a few other resupinate genera were added to the family. However, none of these studies intended to investigate the relationship between Pterulaceae genera. In this study, we generated 278 sequences from both newly collected and fungarium samples. Phylogenetic analyses supported with morphological data allowed a reclassification of Pterulaceae where we propose the introduction of Myrmecopterula gen. nov. and Radulomycetaceae fam. nov., the reintroduction of Phaeopterula, the synonymisation of Deflexula in Pterulicium, and 53 new combinations. Pterula is rendered polyphyletic requiring a reclassification; thus, it is split into Pterula, Myrmecopterula gen. nov., Pterulicium and Phaeopterula. Deflexula is recovered as paraphyletic alongside several Pterula species and Pterulicium, and is sunk into the latter genus. Phaeopterula is reintroduced to accommodate species with darker basidiomes. The neotropical Myrmecopterula gen. nov. forms a distinct clade adjacent to Pterula, and most members of this clade are associated with active or inactive attine ant nests.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]
  • Species Recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): Morphology, Geography and Phylogeny
    Mycol Progress (2011) 10:453–479 DOI 10.1007/s11557-010-0716-z ORIGINAL ARTICLE Species recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): morphology, geography and phylogeny Alfredo Justo & Andrew M. Minnis & Stefano Ghignone & Nelson Menolli Jr. & Marina Capelari & Olivia Rodríguez & Ekaterina Malysheva & Marco Contu & Alfredo Vizzini Received: 17 September 2010 /Revised: 22 September 2010 /Accepted: 29 September 2010 /Published online: 20 October 2010 # German Mycological Society and Springer 2010 Abstract The phylogeny of several species-complexes of the P. fenzlii, P. phlebophorus)orwithout(P. ro me lli i) molecular genera Pluteus and Volvopluteus (Agaricales, Basidiomycota) differentiation in collections from different continents. A was investigated using molecular data (ITS) and the lectotype and a supporting epitype are designated for Pluteus consequences for taxonomy, nomenclature and morpho- cervinus, the type species of the genus. The name Pluteus logical species recognition in these groups were evaluated. chrysophlebius is accepted as the correct name for the Conflicts between morphological and molecular delimitation species in sect. Celluloderma, also known under the names were detected in sect. Pluteus, especially for taxa in the P.admirabilis and P. chrysophaeus. A lectotype is designated cervinus-petasatus clade with clamp-connections or white for the latter. Pluteus saupei and Pluteus heteromarginatus, basidiocarps. Some species of sect. Celluloderma are from the USA, P. castri, from Russia and Japan, and apparently widely distributed in Europe, North America Volvopluteus asiaticus, from Japan, are described as new. A and Asia, either with (P. aurantiorugosus, P. chrysophlebius, complete description and a new name, Pluteus losulus,are A. Justo (*) N. Menolli Jr. Biology Department, Clark University, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, 950 Main St., Rua Pedro Vicente 625, Worcester, MA 01610, USA São Paulo, SP 01109-010, Brazil e-mail: [email protected] O.
    [Show full text]
  • On the Evolutionary History of Uleiella Chilensis, a Smut Fungus Parasite of Araucaria Araucana in South America: Uleiellales Ord
    RESEARCH ARTICLE On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes Kai Riess1, Max E. Schön1, Matthias Lutz1, Heinz Butin2, Franz Oberwinkler1, Sigisfredo Garnica1* 1 Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany, 2 Am Roten Amte 1 H, 38302, Wolfenbüttel, Germany * [email protected] Abstract The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilen- OPEN ACCESS sis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. Citation: Riess K, Schön ME, Lutz M, Butin H, DNA sequences from multiple gene regions and morphology were analysed and compared Oberwinkler F, Garnica S (2016) On the Evolutionary to other members of the Basidiomycota to determine the phylogenetic placement of smut History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal ord. nov. in Ustilaginomycetes. PLoS ONE 11(1): orders diversified during the Triassic–Jurassic period. However, the origin and relationships e0147107. doi:10.1371/journal.pone.0147107 of several orders remain uncertain. The most recent common ancestor between Uleiella chi- Editor: Jonathan H. Badger, National Cancer lensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons
    [Show full text]
  • Mycophagous Rove Beetles Highlight Diverse Mushrooms in the Cretaceous
    ARTICLE Received 25 Sep 2016 | Accepted 8 Feb 2017 | Published 16 Mar 2017 DOI: 10.1038/ncomms14894 OPEN Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous Chenyang Cai1,2, Richard A.B. Leschen3, David S. Hibbett4, Fangyuan Xia5 & Diying Huang2 Agaricomycetes, or mushrooms, are familiar, conspicuous and morphologically diverse Fungi. Most Agaricomycete fruiting bodies are ephemeral, and their fossil record is limited. Here we report diverse gilled mushrooms (Agaricales) and mycophagous rove beetles (Staphylinidae) from mid-Cretaceous Burmese amber, the latter belonging to Oxyporinae, modern members of which exhibit an obligate association with soft-textured mushrooms. The discovery of four mushroom forms, most with a complete intact cap containing distinct gills and a stalk, suggests evolutionary stasis of body form for B99 Myr and highlights the palaeodiversity of Agaricomycetes. The mouthparts of early oxyporines, including enlarged mandibles and greatly enlarged apical labial palpomeres with dense specialized sensory organs, match those of modern taxa and suggest that they had a mushroom feeding biology. Diverse and morphologically specialized oxyporines from the Early Cretaceous suggests the existence of diverse Agaricomycetes and a specialized trophic interaction and ecological community structure by this early date. 1 Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3 Landcare Research, New Zealand Arthropod Collection, Private Bag 92170, Auckland, New Zealand. 4 Department of Biology , Clark University, Worcester, Massachusetts 01610, USA. 5 Lingpoge Amber Museum, Shanghai 201108, China.
    [Show full text]
  • 118 Palaeodiversity of Agaricales: Evidence from Mushrooms And
    BCAS Vol.31 No.2 2017 Earth Sciences Palaeodiversity of Agaricales: Evidence from Mushrooms and Mycophagous Beetles in Amber ushrooms, or Agaricomycetes, are common, Diying reported a diversity of gilled mushrooms and conspicuous and morphologically diverse mycophagous rove beetles from Burmese amber, revealing Mfungi. Most agaricomycete fruiting bodies the latter belonged to Oxyporinae, modern members of are ephemeral, so they are extremely rare in fossils. which exhibit an obligate association with soft-textured Up to now, all described species of gilled mushrooms, mushrooms. or Agaricales, have been known exclusively from All the mushrooms they studied are very well- amber. Among them, two forms are from the Mesozoic, preserved and can be grouped in four forms. A stalk including the earliest mushrooms, Palaeoagaracites and a complete intact cap containing distinct gills are antiquus from 99-million-year-old Burmese amber, and the slightly younger Archaeomarasmius leggetti from New Jersey amber (about 90 million years old). The remaining three species are known from early Miocene Dominican amber, some 20-million-year-old. Evidence indicating the origin and early diversification of Agaricomycetes is very limited. This landscape, however, was revised by a recent discovery by a team at the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS). th In their paper published in Nature Communications on 16 Diverse mushrooms in 99-million-year-old Burmese amber March, 2017, a group of researchers led by Prof. HUANG (Image by Cai et al.) Ecological reconstructions of Cretaceous mushrooms and mycophagous beetles. (Image by Cai et al.) 118 Bulletin of the Chinese Academy of Sciences Vol.31 No.2 2017 Science Watch Earth Sciences visible in most of these amber mushrooms.
    [Show full text]
  • Megaphylogeny Resolves Global Patterns of Mushroom Evolution
    Lawrence Berkeley National Laboratory Recent Work Title Megaphylogeny resolves global patterns of mushroom evolution. Permalink https://escholarship.org/uc/item/0tx3k9hc Journal Nature ecology & evolution, 3(4) ISSN 2397-334X Authors Varga, Torda Krizsán, Krisztina Földi, Csenge et al. Publication Date 2019-04-01 DOI 10.1038/s41559-019-0834-1 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Europe PMC Funders Group Author Manuscript Nat Ecol Evol. Author manuscript; available in PMC 2019 September 18. Published in final edited form as: Nat Ecol Evol. 2019 April ; 3(4): 668–678. doi:10.1038/s41559-019-0834-1. Europe PMC Funders Author Manuscripts Megaphylogeny resolves global patterns of mushroom evolution A full list of authors and affiliations appears at the end of the article. Abstract Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfill diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom- forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations, and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk, and gills (pileate-stipitate morphology).
    [Show full text]
  • Looking for Lepiota Psalion Huijser & Vellinga (Agaricales, Agaricaceae)
    A peer-reviewed open-access journal MycoKeys 52: 45–69 (2019) Looking for Lepiota psalion Huijser & Vellinga 45 doi: 10.3897/mycokeys.52.34021 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Looking for Lepiota psalion Huijser & Vellinga (Agaricales, Agaricaceae) Alfredo Vizzini1,2, Alessia Tatti3, Henk A. Huijser4, Jun F. Liang5, Enrico Ercole1 1 Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125, Torino, Italy 2 Institute for Sustainable Plant Protection (IPSP)-CNR, Viale P.A. Mattioli 25, I-10125, Torino, Italy 3 Department of Environmental and Life Science, Section Botany, University of Cagliari, Viale S. Ignazio 1, I-09123, Cagliari, Italy 4 Frederikstraat 6, 5671 XH Nuenen, The Netherlands5 Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China Corresponding author: Alfredo Vizzini ([email protected]) Academic editor: T. Lumbsch | Received 21 February 2019 | Accepted 11 April 2019 | Published 9 May 2019 Citation: Vizzini A, Tatti A, Huijser HA, Liang JF, Ercole E (2019) Looking for Lepiota psalion Huijser & Vellinga (Agaricales, Agaricaceae). MycoKeys 52: 45–69. https://doi.org/10.3897/mycokeys.52.34021 Abstract Lepiota psalion is fully described based on a recent collection from Sardinia (Italy) and the holotype. NrITS- and nrLSU-based phylogeny demonstrates that sequences deposited in GenBank as “L. psalion” and generated from two Dutch and one Chinese collections are not conspecific with the holotype and represent two distinct, undescribed species. These species are here proposed asLepiota recondita sp. nov. and Lepiota sinorecondita ad int. Keywords Agaricomycetes, Basidiomycota, cryptic species, hymeniform pileus covering, taxonomy Introduction Recent molecular analyses have indicated that the genus Lepiota (Pers.) Gray is a para- phyletic assemblage that is monophyletic only if it is considered together with spe- cies of Cystolepiota Singer, Echinoderma (Locq.
    [Show full text]
  • Britt A. Bunyard Onto the Scene Around 245 MYA
    Figure 1. Palaeoagaracites antiquus from Burmese amber, 100 MYA. This is the oldest-known fossilized mushroom. Photo courtesy G. Poinar. Britt A. Bunyard onto the scene around 245 MYA. Much of what we know of extinct ow old are the oldest fungi? fungi comes from specimens found How far back into the geological in amber. Amber is one medium that record do fungi go … and how preserves delicate objects, such as fungal Hdo we know this? They surely do not bodies, in exquisite detail (Poinar, 2016). fossilize, right? This is due to the preservative qualities It turns out that although soft fleshy of the resin when contact is made with fungi do not fossilize very well, we do entrapped plants and animals. Not only have a fossil record for them. (Indeed, I does the resin restrict air from reaching can recommend an excellent book, Fossil the fossils, it withdraws moisture from Fungi by Taylor et al.; 2014; Academic the tissue, resulting in a process known Press.) The first fungi undoubtedly as inert dehydration. Furthermore, originated in water; estimates of their age amber not only inhibits growth of mostly come from “molecular clocks” microbes that would decay organic and not so much from fossils. Based on matter, it also has properties that kill fossil record, fungi are presumed to have microbes. Antimicrobial compounds in Figure 2. Coprinites dominicana from been present in Late Proterozoic (900- the resin destroy microorganisms and Dominican amber, 20 MYA. Photo 570 MYA) (Berbee and Taylor, 1993). “fix” the tissues, naturally embalming courtesy G. Poinar. The oldest “fungus” microfossils were anything that gets trapped there by a found in Victoria Island shale and date to process of polymerization and cross- around 850M-1.4B years old (Butterfield, bonding of the resin molecules (Poinar 2005), though the jury is still out on if and Hess, 1985).
    [Show full text]
  • Ten Previously Unreported Basidiomycota Macrofungi from Salahadin Governorate Including Five New Records to Iraq
    Int. J. Curr. Res. Biosci. Plant Biol. (2018) 5(6), 11-24 International Journal of Current Research in Biosciences and Plant Biology Volume 5 ● Number 6 (June-2018) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2018.506.002 Ten Previously Unreported Basidiomycota Macrofungi from Salahadin Governorate Including Five New Records to Iraq Talib O. Al-Khesraji* Department of Biology, College of Education for Pure Sciences, Tikrit University, Iraq *Corresponding author. Article Info ABSTRACT Date of Acceptance: Macrofungi specimens were collected from Tikrit and Dujail districts of Salahadin 09 May 2018 Governorate (North Central Iraq) between 2017 and 2018. Ten Basidiomycota macrofungal species (Agrocybe praecox, Clitocybe flavidella, Conocybe deliquescens, Date of Publication: Coprinopsis romagnesiana, Lentinus tigrinus, Panaeolus papilionaceus, Parasola plicatilis, 06 June 2018 Psathyrella candolleana, P. spadiceogrisea, Volvopluteus gloiocephalus) belonging to 9 K e yw or ds genera, 6 families and 2 orders were recorded. Five of these species are new to macromycota of Iraq. Macroscopic and microscopic characteristics of the recorded Agaricales fungal taxa are given. Macrofungi Basidiomycota Polyporales Introduction few species are plant pathogens (Devi and Shrivastava, 2016). Macrofungi are among the Macrofungi (or macromycetes) are fungi that most important organisms on the planet (Mueller produce fruiting bodies visible to naked eye and Bills, 2004). They perform a vital role in both (Mueller et al., 2007) and can also be defined as agro and natural ecosystems (Ex.: in cycling of fungi that form macroscopic fruiting bodies nutrients, decomposing of plant and animal (Hawksworth et al., 1995; Bates, 2006) or fungi remains, as biofertilizers and in bioremediation) with fruiting bodies greater than one centimeter in (Redhead, 1997; Gadd, 2001).
    [Show full text]