Porcini Mushrooms (Boletus Sect. Boletus) from China

Total Page:16

File Type:pdf, Size:1020Kb

Porcini Mushrooms (Boletus Sect. Boletus) from China Fungal Diversity DOI 10.1007/s13225-015-0336-7 Porcini mushrooms (Boletus sect. Boletus)fromChina Yang-Yang Cui 1,3 & Bang Feng1 & Gang Wu1 & Jianping Xu2 & Zhu L. Yang1 Received: 3 November 2014 /Accepted: 17 April 2015 # School of Science 2015 Abstract Porcini mushrooms (Boletus sect. Boletus)haveboth importance (Arora 2008; Sitta and Floriani 2008; Sitta and economic and ecological importance. Recent molecular phylo- Davoli 2012). This group of fungi can form ectomyrrizhal genetic study has uncovered rich species diversity of this group symbiosis with plants of several families, such as Pinaceae, of fungi from China. In this study, the Chinese porcini were Fagaceae and Dipterocarpaceae. Meanwhile, porcini mush- characterized by both morphological and molecular phylogenetic rooms are very famous wild edible mushrooms which are evidence. 15 species were recognized, including nine new spe- consumed worldwide (Arora 2008; Sitta and Floriani 2008; cies, namely B. botryoides, B. fagacicola, B. griseiceps, Dentinger et al. 2010;Fengetal.2012; Sitta and Davoli 2012; B. monilifer, B. sinoedulis, B. subviolaceofuscus, Dentinger and Suz 2014). B. tylopilopsis, B. umbrinipileus and B. viscidiceps. Three previ- Since the establishment of the generic name Boletus L. ously described species, viz. B. bainiugan, B. meiweiniuganjun (Linnaeus 1753), many mycologists have contributed to the and B. shiyong, were revised, and B. meiweiniuganjun is treated taxonomic studies of porcini and their allies, either suggesting as a synonym of B. bainiugan.AkeytotheChineseporcini keep the genus Boletus in the broad sense that would represent mushrooms was provided. the currently accepted whole family Boletaceae or split it into small subgenara/sections or different genera (e.g. Gilbert Keywords Boletes . Taxonomy . Morphology . Phylogeny . 1931;Chiu1948, 1957; Singer 1965, 1967, 1986; Watling Wild edible mushrooms 1970; Snell and Dick 1970; Smith and Thiers 1971; Corner 1972;Alessio1985;Zang2006;Horak2005, 2011). Several molecular phylogenetic studies have indicated that the genus Introduction Boletus in the broad sense is polyphyletic (Binder and Hibbett 2006; Dentinger et al. 2010; Feng et al. 2012; Nuhn et al. 2013;Wuetal.2014). However, B. sect. Boletus, the porcini Porcini (Boletus edulis and its allies) are one of the most im- group, typified by B. edulis Bull., is monophyletic (Dentinger portant fungal groups due to their ecological and economic et al. 2010;Fengetal.2012;Nuhnetal.2013;Wuetal.2014). Yang-Yang Cui and Bang Feng contributed equally to this work. This group shares the following common features: the surface of the immature poroid hymenophore is covered with a layer * Zhu L. Yang of tangled white hyphae (referred as Bstuffed pores^, [email protected] Fig. 19a), stipe is more or less reticulated, and the whitish to white flesh is without color change when cut (Coker and Beers 1943; Smith and Thiers 1971; Corner 1972; Singer 1986; 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Horak 2005; Halling et al. 2014). Heilongtan, Kunming 650201, China Numerous studies have been conducted to address the tax- 2 Department of Biology, McMaster University, Hamilton, ON L8S onomic issue of porcini mushrooms from different continents. 4K1, Canada In comparison with the taxa from other continents, the porcini 3 University of Chinese Academy of Sciences, No.19A Yuquan Road, from Europe and North America have drawn much more at- Beijing 100049, China tention for a very long time and a more comprehensive Fungal Diversity understanding about them has been reached from both mor- by species epithet. Both macro- and microscopic descriptions phological and molecular phylogenetic views (Singer 1965, are provided for each species. Macroscopic features are based 1967, 1986; Watling 1970; Smith and Thiers 1971;Alessio on detailed field notes and photographs. Microscopic struc- 1985; Bessette et al. 2000; Horak 2005, 2011; Binder and tures were observed on dried material with light microscopy. Hibbett 2006; Beugelsdijk et al. 2008; Dentinger et al. Methods for microscopic studies followed those in Zeng et al. 2010). To date, including stipitate-pileate and sequestrate taxa, (2013), Li et al. (2011, 2014) and Wu et al. (2015). Authors of about 50 species were described and arranged in B. sect. the fungal names listed in Table 1 will not appear in the text. Boletus wordwide (Berkeley 1852; Peck 1888, 1905; Corner 1972;Hongo1973;Horak1980, 2005, 2011;Singer1986; Molecular phylogenetics Both 1993;Nagasawa1994; Zang 2006; Ortiz-Santana et al. 2007; Dentinger 2013;Nuhnetal.2013; Halling et al. 2014; Sequences of three gene makers, the internal transcribed spac- Zeng et al. 2014). Recent molecular phylogenetic analyses er (ITS), the large nuclear ribosomal RNA subunit (nrLSU) indicated that the species diversity of porcini mushrooms and the largest subunit of RNA polymerase II (rpb1), were was heavily under-estimated in East Asia and 15 new phylo- generated for newly added samples following Feng et al. genetic species (fourteen from China) were uncovered (Feng (2012). ITS sequences were also generated for the Bstufffed et al. 2012). Four of them were subsequently described as pores^ of two specimens from B. bainiugan and B. shiyong, B. shiyong, B. bainiugan, B. meiweiniuganjun and respectively. Detailed information about these newly generat- B. orientialbus (Dentinger 2013;Zengetal.2014), while the ed sequences is provided in Table 2. These sequences were remaining species have not been documented yet. combined with the sequences of the representatives of porcini Overall, eight species, viz. B. bainiugan, B. edulis, mushrooms which were used in Dentinger et al. (2010), Feng B. hiratsukae, B. meiweiniuganjun, B. orientialbus, et al. (2012), Nuhn et al. (2013) and Wu et al. (2014) for B. reticuloceps, B. shiyong and B. violaceofuscus, were phylogenetic analyses. Two data matrices, the combined reported from East Asia (Chiu 1948, 1957;Zangetal.1993; dataset of nrLSU and rpb1, and the ITS dataset, were analyzed Nagasawa 1994; Li and Song 2003; Wang and Yao 2005; for different purposes following Feng et al. (2012). However, Dentinger 2013;Zengetal.2014). different from those in the Feng et al. (2012), the current B ^ In porcini, the feature stuffed pores (Fig. 19a; Coker and analyses included the introns of rpb1, while the ambiguously Beers 1943; Smith and Thiers 1971;Singer1986) has been aligned sequences of nrLSU and rpb1 were deleted by using used as one of the key characters to distinguish porcini mush- Gblocks0.91b with the default setting. The procedures for rooms from other boletes. Sitta et al. (2007) and Sitta and constructing the phylogenetic trees were the same as those Davoli (2012), however, pointed out that the white mycelia used in Feng et al. (2012), except that the 3.0 version of would be the result of infection by fungi of the genus MrBayes was used in this study. Hypomyces based on their morphological observations. This strongly argues the validity to use the Bstuffed pores^ as one of the key diagnostic characteristics for porcini mushrooms. To verify the nature of the white mycelia, molecular techniques Results may provide useful evidence. The aim of this study are: 1) to characterize the all known Phylogenetic analyses species of porcini from China; 2) to document the new species of porcini in China using morphological features, molecular Fourteen, eleven and eighteen new sequences were generated evidence and ecological data; and 3) to illustrate the nature of for ITS, nrLSU and rpb1, respectively. Phylogenetic tree gen- the Bstuffed pores^ using molecular data. erated from ITS database (Fig. 1) clustered all newly added samples into the phylogenetic species recognized by Feng et al. (2012). Furthermore, phylogenetic analyses based on Material and methods the combined nrLSU-rpb1 dataset identified one additional new phylogenetic species (B. tylopilopsis in Fig. 2). These Morphological studies undecribed species were compared with known species using macro- and micro- morphological characteristics, geographi- The examined materials were collected from many subtropical cal distribution patterns and ecological preferences. and temperate parts of China and are deposited in the Cryptogamic Herbarium of Kunming Institute of Botany, Taxonomy Chinese Academy of Sciences (HKAS). Color codes indicat- ed in the descriptions are from Kornerup and Wanscher 1. Boletus bainiugan Dentinger, Index Fungorum 29: 1 (1981). The descriptions of species are in alphabetical order (2013) (Figs. 1, 2, 3 and 4) Fungal Diversity Table 1 Currently known Chinese porcini species identified Species Type location Corresponding species in by molecular data Feng et al. (2012) B. bainiugan Dentinger (including Yunnan, China B.sp.6–7 B. meiweiniuganjun Dentinger) B. botryoides B. Feng et al. Hunan, China B.sp.2 B. edulis Bull. Europe B. edulis B. fagacicola B. Feng et al. Hunan, China B.sp.9 B. griseiceps B. Feng et al. Fujian, China B. sp. HKAS 71346 B. monilifer B. Feng et al. Yunnan, China B.sp.1 B. orientialbus N.K. Zeng & Zhu L. Yang Fujian, China B.sp.14 B. subviolaceofuscus B. Feng et al. Yunnan, China B. violaceofuscus-2 B. reticuloceps (M. Zang et al.) Q.B.Wang & Sichuan, China B. reticuloceps Y. J. Yao B. shiyong Dentinger Yunnan, China B.sp.5 B. sinoedulis B. Feng et al. Sichuan, China B.sp.10 B. tylopilopsis B. Feng et al. Yunnan, China This study B. umbrinipileus B. Feng et al. Yunnan, China B.sp.3 B. violaceofuscus W.F. Chiu Yunnan, China B. violaceofuscus-1 B. viscidiceps B. Feng et al. Yunnan, China B. sp. 4-1 B. sp. 4-2 Yunnan, China B. sp. 4-2, immature B.sp.8 Hunan,China B. sp. 8, only a single collection available B. sp. 11 Shandong, China B. sp. 11, only a single collection available B. sp. 12 Jiangsu, China B. sp. 12, only a single collection available Synonym: Boletus meiweiniuganjun Dentinger, Index 5 μmlong.Hymenophoral trama boletoid and bilateral-diver- Fungorum 29: 1 (2013) gent, composed of hyphae 4–16 μmindiam.Pleurocystidia Basidioma medium-sized to large.
Recommended publications
  • Covered in Phylloboletellus and Numerous Clamps in Boletellus Fibuliger
    PERSOONIA Published by the Rijksherbarium, Leiden Volume 11, Part 3, pp. 269-302 (1981) Notes on bolete taxonomy—III Rolf Singer Field Museum of Natural History, Chicago, U.S.A. have Contributions involving bolete taxonomy during the last ten years not only widened the knowledge and increased the number of species in the boletes and related lamellate and gastroid forms, but have also introduced a large number of of new data on characters useful for the generic and subgeneric taxonomy these is therefore timely to fungi,resulting, in part, in new taxonomical arrangements. It consider these new data with a view to integratingthem into an amended classifi- cation which, ifit pretends to be natural must take into account all observations of possible diagnostic value. It must also take into account all sufficiently described species from all phytogeographic regions. 1. Clamp connections Like any other character (including the spore print color), the presence or absence ofclamp connections in is neither in of the carpophores here nor other groups Basidiomycetes necessarily a generic or family character. This situation became very clear when occasional clamps were discovered in Phylloboletellus and numerous clamps in Boletellus fibuliger. Kiihner (1978-1980) rightly postulates that cytology and sexuality should be considered wherever at all possible. This, as he is well aware, is not feasible in most boletes, and we must be content to judgeclamp-occurrence per se, giving it importance wherever associated with other characters and within a well circumscribed and obviously homogeneous group such as Phlebopus, Paragyrodon, and Gyrodon. (Heinemann (1954) and Pegler & Young this is (1981) treat group on the family level.) Gyroporus, also clamp-bearing, considered close, but somewhat more removed than the other genera.
    [Show full text]
  • Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): Taxonomy and Character Evolution
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/74776 since 2016-10-06T16:59:44Z Published version: DOI:10.1016/j.funbio.2010.09.012 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 23 September 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 115(1), 2011, 10.1016/j.funbio.2010.09.012. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–870/2014/16–3–489–497 http://www.fspublishers.org Full Length Article Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan Samina Sarwar * and Abdul Nasir Khalid Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54950, Pakistan *For correspondence: [email protected] Abstract Suillus (Boletales; Basidiomycota) is an ectomycorrhizal genus, generally associated with Pinaceae. Coniferous forests of Pakistan are rich in mycodiversity and Suillus species are found as early appearing fungi in the vicinity of conifers. This study reports the diversity of Suillus collected during a period of three (3) years (2008-2011). From 32 basidiomata of Suillus collected, 12 species of this genus were identified. These basidiomata were characterized morphologically, and phylogenetically by amplifying and sequencing the ITS region of rDNA. © 2014 Friends Science Publishers Keywords: Moist temperate forests; PCR; rDNA; Ectomycorrhizae Introduction adequate temperature make the environment suitable for the growth of mushrooms in these forests. Suillus (Suillaceae, Basidiomycota, Boletales ) forms This paper described the diversity of Suillus (Boletes, ectomycorrhizal associations mostly with members of the Fungi) with the help of the anatomical, morphological and Pinaceae and is characterized by having slimy caps, genetic analyses as little knowledge is available from forests glandular dots on the stipe, large pore openings that are in Pakistan. often arranged radially and a partial veil that leaves a ring or tissue hanging from the cap margin (Kuo, 2004). This genus Materials and Methods is mostly distributed in northern temperate locations, although some species have been reported in the southern Sporocarp Collection hemisphere as well (Kirk et al ., 2008).
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Basidiomycota: Agaricales) Introducing the Ant-Associated Genus Myrmecopterula Gen
    Leal-Dutra et al. IMA Fungus (2020) 11:2 https://doi.org/10.1186/s43008-019-0022-6 IMA Fungus RESEARCH Open Access Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. Caio A. Leal-Dutra1,5, Gareth W. Griffith1* , Maria Alice Neves2, David J. McLaughlin3, Esther G. McLaughlin3, Lina A. Clasen1 and Bryn T. M. Dentinger4 Abstract Pterulaceae was formally proposed to group six coralloid and dimitic genera: Actiniceps (=Dimorphocystis), Allantula, Deflexula, Parapterulicium, Pterula, and Pterulicium. Recent molecular studies have shown that some of the characters currently used in Pterulaceae do not distinguish the genera. Actiniceps and Parapterulicium have been removed, and a few other resupinate genera were added to the family. However, none of these studies intended to investigate the relationship between Pterulaceae genera. In this study, we generated 278 sequences from both newly collected and fungarium samples. Phylogenetic analyses supported with morphological data allowed a reclassification of Pterulaceae where we propose the introduction of Myrmecopterula gen. nov. and Radulomycetaceae fam. nov., the reintroduction of Phaeopterula, the synonymisation of Deflexula in Pterulicium, and 53 new combinations. Pterula is rendered polyphyletic requiring a reclassification; thus, it is split into Pterula, Myrmecopterula gen. nov., Pterulicium and Phaeopterula. Deflexula is recovered as paraphyletic alongside several Pterula species and Pterulicium, and is sunk into the latter genus. Phaeopterula is reintroduced to accommodate species with darker basidiomes. The neotropical Myrmecopterula gen. nov. forms a distinct clade adjacent to Pterula, and most members of this clade are associated with active or inactive attine ant nests.
    [Show full text]
  • Boletus Mushrooms La Tia Jackson, Ian C
    Genetic Diversity within Alaskan Boletus Mushrooms www.fungi-zette.com La Tia Jackson, Ian C. Herriott, József Geml, Gary A. Laursen, D. Lee Taylor Discussion Abstract •Clade 1 is composed of Alaskan samples from the interior and Northwest and We analyzed the genetic differences within the collection of samples from Europe. Although the species names do not match up they are genetically very similar, and B. citrinovirens is thought to be in what is called the Boletus mushroom from the UAF Fungal Herbarium, representing Identification on Tree Location subtomentosus group. samples from all over Alaska. Upon analyzing the DNA sequence Results DQ066405_Boletus_citrinovirens Europe from 18 samples, we found that most Alaskan Boletus are closely DQ066407_Boletus_spadiceus Europe •Clade 2 is composed of Alaskan samples from Southeast Alaska and GenBank DQ066397_Boletus_citrinovirens Europe samples from Europe, both identified as Boletus mirabilis. related to samples from the same species found in other parts of the world (clades 1,2,5,6,8,12). We also found that some species DQ066410_Boletus_spadiceus Europe •Clade 3 is composed of samples only from Alaska. None of the sequences DQ384578_Boletellus_mirabilis Europe collected in other parts of the world were not found in our sample 1 mycorance.free.fr obtained from GenBank are closely related. These were morphologically collection (clades 4,7,9,10,11). Finally, our results suggested that AJ419187_Boletus_impolitus Spain identified as B. subglabripes. “B. subglabripes” is in GenBank, but only Large 100 DQ131632_Xerocomus_subtomentosus Europe clade 3 on our phylogenetic tree is not represented among the Subunit gene, not Internally Transcribed Spacer gene (reference 2) so comparison AJ889931_Boletus_pruinatus Europe GenBank sequences from other parts of the world and may be a 100 is not possible to determine if morphological species attribution is the same or 2 AM087271_Xerocomus_pruinatus Europe genetic lineage endemic to Alaska.
    [Show full text]
  • 2014 Fall Spore Print [Pdf]
    Fall 2014 Volume XXXX No. 3 The Newsletter of the Connecticut Valley Mycological Society Affiliate of the North American Mycological Association Member Northeastern Mycological Federation Founder: Ed Bosman President: Bill Bynum (860)214-2639 COMING EVENTS email: [email protected] Oct. 26: CVMS Tailgate! Stratton Brook State Park, Vice President: Bill Yule Simsbury, CT A regular foray at 10am followed by potluck email: [email protected] Treasurer:Terri Hungerford lunch. Please see food event guidelines in Member Handbook. email: [email protected] Important: Remember to print your dish ingredients on a card Secretary: Ellen Bulger along with your name. email: [email protected] Nov. 2: Final foray of the year: Gay City State Park, Hebron Membership Sec.: Karen Monger There will still be things to find with all the rain we've had! email: [email protected] Dec. 5–7: GSMS Winter Foray, Crawfordville, Florida The Spore Print Editor:Dinah Wells email: [email protected] GSMS (Gulf States Mycological Society) Winter Foray 2014 will be held at the Best Western Plus, Crawfordville, FL, 18 Membership: Dues per calendar year are $15 individual; $20 family (two or more persons at one address and miles south of Tallahassee. The Guest Mycologist will be Dr. requiring only one copy of club mailings). Lifetime Matthew Smith, Assistant Professor in the Department of Plant memberships are $200 individual and $250 family. Pathology and curator of the UF Fungal Herbarium, at the Make checks payable to CVMS and send to: CVMS/Karen Monger, 32A Perkins Ave., Norwich, CT University of Florida, Gainesville. Dr. Smith plans to bring a 06360.
    [Show full text]
  • The Contribution of DNA Metabarcoding
    The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands Jo´ zsef Geml1,2*, Barbara Gravendeel1,2,3, Kristiaan J. van der Gaag4, Manon Neilen1, Youri Lammers1, Niels Raes1, Tatiana A. Semenova1,2, Peter de Knijff4, Machiel E. Noordeloos1 1 Naturalis Biodiversity Center, Leiden, The Netherlands, 2 Faculty of Science, Leiden University, Leiden, The Netherlands, 3 University of Applied Sciences Leiden, Leiden, The Netherlands, 4 Forensic Laboratory for DNA Research, Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands Abstract Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Kaki Mela E Non Esiste Assolu - *** Tamente Un Melo-Kaki Risultato Dell’Incrocio Tra Melo E Kaki
    Periodico di informazione dei soci dell’Associazione Culturale Nasata Anno XV N°163 Febbraio 2019 [email protected] www.isaporidelmiosud.it In questo numero Cachi mela non è l’incrocio tra melo e cachi Cachi mela di Domenico Saccà Pag.2 Massimo 5 caffè al giorno Anzitutto precisiamo che si chiama kaki mela e non esiste assolu - *** tamente un melo-kaki risultato dell’incrocio tra melo e kaki. Invece Dolcificanti con effetto minimo esiste appunto il kaki melo, cioè il kaki sul peso i cui frutti, per forma e altre caratteri - Pag.3 stiche, somigliano alle mele. Vitamina Day Questi kaki di solito hanno una forma *** piuttosto schiacciata e sono interes - Guida per misurare porzioni santi per il fatto che, contengono poco a occhio tannino , si possono mangiare già alla Pag.4-5 raccolta, tagliandoli a fette, come le News mele. Pag.6-7 Sui mercati, da qualche anno sono Tendenze ristoranti del mondo venduti degli ottimi kaki mela, prove - Pag.8 nienti da Israele e, pensando potesse - Cibo nel cassonetto ro avere un gran successo, si è tenta - *** to d’introdurli anche nel nostro Paese, con risultati insoddisfacenti. Innovazioni italiane Il Cachi detto anche kaki o talvolta localmente loto ( Diospyros kaki ) Pag.9 è una preziosissima pianta di origine cinese. Produce gustosi frutti Vegetariani al bivio durante l’inverno, quando perde le foglie e rimane addobbata di *** curiosi frutti arancioni, non come si crede talvolta, color khaki, che Carne sintetica invece è un marrone-beige come certi suoli indiati e significa appun - Pag.10-11-12-13 to, ‘suolo’ in sanscrito.
    [Show full text]
  • CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
    CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge­ neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka­ mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic.
    [Show full text]