Identification of a Nanovirus-Alphasatellite Complex in Sophora Alopecuroides

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Nanovirus-Alphasatellite Complex in Sophora Alopecuroides Accepted Manuscript Title: Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides Author: Jahangir Heydarnejad Mehdi Kamali Hossain Massumi Anders Kvarnheden Maketalena F. Male Simona Kraberger Daisy Stainton Darren P. Martin Arvind Varsani PII: S0168-1702(17)30009-6 DOI: http://dx.doi.org/doi:10.1016/j.virusres.2017.03.023 Reference: VIRUS 97113 To appear in: Virus Research Received date: 5-1-2017 Revised date: 15-3-2017 Accepted date: 18-3-2017 Please cite this article as: Heydarnejad, J., Kamali, M., Massumi, H., Kvarnheden, A., Male, M.F., Kraberger, S., Stainton, D., Martin, D.P., Varsani, A.,Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides, Virus Research (2017), http://dx.doi.org/10.1016/j.virusres.2017.03.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides 2 Jahangir Heydarnejad 1* , Mehdi Kamali 1, Hossain Massumi 1, Anders Kvarnheden 2, Maketalena 3 F. Male 3, Simona Kraberger 3,4 , Daisy Stainton 3,5 , Darren P. Martin 6 and Arvind Varsani 3,7,8* 4 5 1Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, 6 Kerman, Iran 7 2Department of Plant Biology, Uppsala BioCenter, Linnean Center of Plant Biology in Uppsala, 8 Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden 9 3School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, 10 New Zealand 11 4Department of Microbiology, Immunology and Pathology, Colorado State University, Fort 12 Collins, CO 80523, USA 13 5School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, 14 Australia 15 6Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, 16 University of Cape Town Faculty of Health Sciences, Observatory 7925. South Africa 17 7Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of 18 Cape Town, Rondebosch, 7701, Cape Town, South Africa 19 8The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and 20 Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA 21 22 *Corresponding authors 23 Dr Jahangir Heydarnejad, Department of Plant Protection, College of Agriculture, Shahid 24 Bahonar University of Kerman, Kerman, Iran, Fax: 0098 341 3222043, E-mail: 25 [email protected] Manuscript 26 Assoc Prof. Arvind Varsani, The Biodesign Center for Fundamental and Applied Microbiomics, 27 Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, 28 AZ 85287-5001, USA, Tel: +1 480 410 9366. E-mail: [email protected] 29 1 Page 1 of 23 30 Key words: Nanovirus; Sophora alopecuroides ; Iran; alphasatellite; high throughput sequencing 31 Accepted Manuscript 2 Page 2 of 23 31 Abstract 32 Viruses in the genus Nanovirus of the family Nanoviridae generally have eight individually 33 encapsidated circular genome components and have been predominantly found infecting 34 Fabaceae plants in Europe, Australia, Africa and Asia. For over a decade Sophora alopecuroides 35 L. (Fabaceae) plants have been observed across Iran displaying dwarfing, yellowing, stunted 36 leaves and yellow vein banding. Using a high-throughput sequencing approach, sequences were 37 identified within one such plant that had similarities to nanovirus genome components. From this 38 plant, the nanovirus-like molecules DNA-R (n=4), DNA-C (n=2), DNA-S (n=1), DNA-M (n=1), 39 DNA-N (n=1), DNA-U1 (n=1), DNA-U2 (n=1) and DNA-U4 (n=1) were amplified, cloned and 40 sequenced. Other than for the DNA-R, these components share less than 71% identity with those 41 of other known nanoviruses. The four DNA-R molecules were highly diverse, sharing only 65- 42 71% identity with each other and 64-86% identity with those of other nanoviruses. In the S. 43 alopecuroides plant 14 molecules sharing 57.7-84.6% identity with previously determined 44 sequences of nanovirus-associated alphasatellites were also identified. Given the research 45 activity in the nanovirus field during the last five years coupled with high-throughput sequence 46 technologies, many more diverse nanoviruses and nanovirus-associated satellites are likely to be 47 identified. 48 Accepted Manuscript 3 Page 3 of 23 48 1. Introduction 49 The family Nanoviridae contains plant-infecting viruses with multi-component single-stranded 50 DNA (ssDNA) genomes that are individually encapsidated within isometric 17-20 nm virions. 51 The two genera within the family, Nanovirus and Babuvirus, are differentiated based on their 52 biological and genomic properties. Viruses in both genera are transmitted by aphids with 53 members of the genus Nanovirus infecting dicotyledonous host plants and those of the genus 54 Babuvirus infecting monocotyledonous plants. Also, whereas members of the genus Nanovirus 55 have eight genome components (named DNA-R, DNA-S, DNA-M, DNA-C, DNA-N, DNA-U1, 56 DNA-U2 and DNA-U4) that are between 970 and 1021 nucleotides (nts) in length, members of 57 the genus Babuvirus have six components (DNA-R, DNA-S, DNA-M, DNA-C, DNA-N, and 58 DNA-U3) that are between 1013 and 1116 nts in length (Table 1) (Vetten et al. , 2012). 59 60 There are presently eight recognized species in the genus Nanovirus (Table 1) (Abraham et al. , 61 2012; Boevink et al. , 1995; Chu and Helms, 1988; Grigoras et al. , 2014; Grigoras et al. , 2010; 62 Grigoras et al. , 2009; Katul et al. , 1998; Sano et al. , 1998), which have so far been found 63 infecting various predominantly leguminous species (Table 1). The host symptoms include 64 stunting, necrosis, leaf yellowing or reddening and leaf curling (Vetten et al. , 2012). 65 66 The DNA-R, DNA-S, DNA-M, DNA-C and DNA-N components of nanoviruses and 67 babuviruses are homologous and all encode a protein of known function. DNA-R encodes a 68 replication-associated protein (Rep) (Burns et al. , 1995; Hafner et al. , 1997; Harding et al. , 1993) 69 which is involved in replicating all canonical components. DNA-S encodes the capsid protein 70 (CP); (Wanitchakorn et al. , 1997). DNA-C encodes a cell-cycle link protein (Clink) which is 71 involved in switchingAccepted the plant host into DNA repli Manuscriptcation or S-phase to increase replication of 72 the other components (Aronson et al. , 2000; Lageix et al. , 2007; Wanitchakorn et al. , 2000). 73 DNA-M encodes a movement protein (MP) and based on cellular localisation studies DNA-N 74 encodes a putative nuclear shuttle protein (NSP) (Wanitchakorn et al. , 2000). The DNA-U1, 75 DNA-U2, and DNA-U4 components have unknown functions. 4 Page 4 of 23 76 77 The components of a nanovirus genome share two homologous regions: the common region 78 stem-loop (CR-I) and the common region II (CR-II). In addition to the canonical genome 79 components, nanoviruses have also been found associated with satellite molecules known as 80 alphasatellites. Like the canonical DNA-R component, these molecules contain a rep -like gene, 81 however, unlike DNA-R, they are unable to trans-replicate the canonical genome components 82 with which they are associated (Horser et al. , 2001; Timchenko et al. , 1999; Timchenko et al. , 83 2000). Alphasatellites that are related to those of nanoviruses are also found associated with 84 viruses in the genera Begomovirus and Mastrevirus of the family Geminiviridae (Kumar et al. , 85 2014; Zhou, 2013). 86 87 Sophora alopecuroides L. (Fabaceae) is a wild perennial herb that is widely distributed across 88 the arid and semi-arid regions of Iran and other parts of Asia (Bisby et al. , 1994). It is primarily 89 used as livestock feed but in traditional Chinese medicine it is also used to treat fever and 90 diarrhea (Song et al. , 1999; Zhao et al. , 2013). Over the past decade in Iran S. alopecuroides 91 plants have been observed throughout most parts of the country with apparent disease symptoms 92 including severe yellowing and stunting, shrunken leaves and yellow vein banding (Figure 1). In 93 this report a putative nanovirus in the genus Nanovirus recovered from S. alopecuroides is 94 described. 95 96 2. Materials and methods 97 2.1 DNA isolation, amplification of circular molecules and Illumina sequencing 98 A symptomatic Acceptedsample of Sophora alopecuroides Manuscript L. (Fabaceae; Figure 1) was collected at 99 Shahid Bahonar University of Kerman (Kerman, Iran) in 2014 and total DNA was extracted 100 according to Zhang et al. (1998). Circular DNA sequences were amplified using rolling circle 101 amplification with Phi29 DNA polymerase as previously described (Shepherd et al. , 2008). The 5 Page 5 of 23 102 amplified circular DNA was sequenced on an Illumina HiSeq 2500 sequencer at Noveogene 103 (Hong Kong). 104 105 2.2 De novo assembly of Illumina sequencing reads and analysis of resulting contigs 106 The Illumina sequenced paired-end reads were de novo assembled using ABySS v1.9 (Simpson 107 et al. , 2009) assembler. Contigs of >500 nts were analyzed using BLASTn and BLASTx 108 (Altschul et al. , 1990) against a viral database to identify viral-like contigs. In the 3366 contigs 109 that were > 500 nts viral sequences were identified that shared similarities to nanovirus 110 components and alphasatellite sequences. 111 112 2.3 Recovery and characterization of circular molecules with viral and alphasatellite 113 sequences 114 Abutting primers were designed for all de novo assembled contigs that had similarities to 115 nanovirus and alphasatellite sequences in order to recover, verify and archive the DNA 116 molecules.
Recommended publications
  • Frequent Occurrence of Mungbean Yellow Mosaic India Virus in Tomato Leaf Curl Disease Afected Tomato in Oman M
    www.nature.com/scientificreports OPEN Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease afected tomato in Oman M. S. Shahid 1*, M. Shafq 1, M. Ilyas2, A. Raza1, M. N. Al-Sadrani1, A. M. Al-Sadi 1 & R. W. Briddon 3 Next generation sequencing (NGS) of DNAs amplifed by rolling circle amplifcation from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identifed a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identifed infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confrmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efciency. This is the frst identifcation of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This fnding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material.
    [Show full text]
  • Novel Circular DNA Viruses in Stool Samples of Wild-Living Chimpanzees
    Journal of General Virology (2010), 91, 74–86 DOI 10.1099/vir.0.015446-0 Novel circular DNA viruses in stool samples of wild-living chimpanzees Olga Blinkova,1 Joseph Victoria,1 Yingying Li,2 Brandon F. Keele,2 Crickette Sanz,33 Jean-Bosco N. Ndjango,4 Martine Peeters,5 Dominic Travis,6 Elizabeth V. Lonsdorf,7 Michael L. Wilson,8,9 Anne E. Pusey,9 Beatrice H. Hahn2 and Eric L. Delwart1 Correspondence 1Blood Systems Research Institute, San Francisco and the Department of Laboratory Medicine, Eric L. Delwart University of California, San Francisco, CA, USA [email protected] 2Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA 3Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany 4Department of Ecology and Management of Plant and Animal Ressources, Faculty of Sciences, University of Kisangani, Democratic Republic of the Congo 5UMR145, Institut de Recherche pour le De´velopement and University of Montpellier 1, Montpellier, France 6Department of Conservation and Science, Lincoln Park Zoo, Chicago, IL 60614, USA 7The Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA 8Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA 9Jane Goodall Institute’s Center for Primate Studies, Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA Viral particles in stool samples from wild-living chimpanzees were analysed using random PCR amplification and sequencing. Sequences encoding proteins distantly related to the replicase protein of single-stranded circular DNA viruses were identified. Inverse PCR was used to amplify and sequence multiple small circular DNA viral genomes.
    [Show full text]
  • An Unusual Alphasatellite Associated with Monopartite Begomoviruses Attenuates Symptoms and Reduces Betasatellite Accumulation
    Journal of General Virology (2011), 92, 706–717 DOI 10.1099/vir.0.025288-0 An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation Ali M. Idris,1,2 M. Shafiq Shahid,1,3 Rob W. Briddon,3 A. J. Khan,4 J.-K. Zhu2 and J. K. Brown1 Correspondence 1School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA J. K. Brown 2Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, [email protected] Thuwal 23955-6900, Kingdom of Saudi Arabia 3National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan 4Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman The Oman strain of Tomato yellow leaf curl virus (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type Ageratum yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and Papaya leaf curl virus from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and Nicotiana benthamiana. Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms.
    [Show full text]
  • Evidence That a Plant Virus Switched Hosts to Infect a Vertebrate and Then Recombined with a Vertebrate-Infecting Virus
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8022–8027, July 1999 Evolution Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus MARK J. GIBBS* AND GEORG F. WEILLER Bioinformatics, Research School of Biological Sciences, The Australian National University, G.P.O. Box 475, Canberra 2601, Australia Communicated by Bryan D. Harrison, Scottish Crop Research Institute, Dundee, United Kingdom, April 28, 1999 (received for review December 22, 1998) ABSTRACT There are several similarities between the The history of viruses is further complicated by interspecies small, circular, single-stranded-DNA genomes of circoviruses recombination. Distinct viruses have recombined with each that infect vertebrates and the nanoviruses that infect plants. other, producing viruses with new combinations of genes (6, 7); We analyzed circovirus and nanovirus replication initiator viruses have also captured genes from their hosts (8, 9). These protein (Rep) sequences and confirmed that an N-terminal interspecies recombinational events join sequences with dif- region in circovirus Reps is similar to an equivalent region in ferent evolutionary histories; hence, it is important to test viral nanovirus Reps. However, we found that the remaining C- sequence datasets for evidence of recombination before phy- terminal region is related to an RNA-binding protein (protein logenetic trees are inferred. If a set of aligned sequences 2C), encoded by picorna-like viruses, and we concluded that contains regions with significantly different phylogenetic sig- the sequence encoding this region of Rep was acquired from nals and the regions are not delineated, errors may result. one of these single-stranded RNA viruses, probably a calici- Interspecies recombination between viruses has been linked virus, by recombination.
    [Show full text]
  • 1 Chapter I Overall Issues of Virus and Host Evolution
    CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology.
    [Show full text]
  • Suivi De La Thèse
    UNIVERSITE OUAGA I UNIVERSITÉ DE LA PR JOSEPH KI-ZERBO RÉUNION ---------- ---------- Unité de Formation et de Recherche Faculté des Sciences et Sciences de la Vie et de la Terre Technologies UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical CIRAD – Université de La Réunion INERA – LMI Patho-Bios THÈSE EN COTUTELLE Pour obtenir le diplôme de Doctorat en Sciences Epidémiologie moléculaire des géminivirus responsables de maladies émergentes sur les cultures maraîchères au Burkina Faso par Alassane Ouattara Soutenance le 14 Décembre 2017, devant le jury composé de Stéphane POUSSIER Professeur, Université de La Réunion Président Justin PITA Professeur, Université Houphouët-Boigny, Côte d'Ivoire Rapporteur Philippe ROUMAGNAC Chercheur HDR, CIRAD, UMR BGPI, France Rapporteur Fidèle TIENDREBEOGO Chercheur, INERA, Burkina Faso Examinateur Nathalie BECKER Maître de conférences HDR MNHN, UMR ISYEB, France Examinatrice Jean-Michel LETT Chercheur HDR, CIRAD, UMR PVBMT, La Réunion Co-Directeur de thèse Nicolas BARRO Professeur, Université Ouagadougou, Burkina Faso Co-Directeur de thèse DEDICACES A mon épouse Dadjata et à mon fils Jaad Kaamil: merci pour l’amour, les encouragements et la compréhension tout au long de ces trois années. A mon père Kassoum, à ma mère Salimata, à ma belle-mère Bila, à mon oncle Soumaïla et son épouse Abibata : merci pour votre amour, j’ai toujours reçu soutien, encouragements et bénédictions de votre part. Puisse Dieu vous garder en bonne santé ! REMERCIEMENTS Mes remerciements vont à l’endroit du personnel des Universités Ouaga I Pr Joseph KI- ZERBO et de La Réunion pour avoir accepté mon inscription. Je remercie les différents financeurs de mes travaux : l’AIRD (Projet PEERS-EMEB), l’Union Européenne (ERDF), le Conseil Régional de La Réunion et le Cirad (Bourse Cirad-Sud).
    [Show full text]
  • Global Viral Epidemics: a Challenging Threat’’, During 12–14 November, 2018, at PGIMER, Chandigarh, India
    VirusDis. (January–March 2019) 30(1):112–169 https://doi.org/10.1007/s13337-019-00523-8 ABSTRACT Abstracts of the papers presented in the international conference of Indian virological society, ‘‘Global viral epidemics: a challenging threat’’, during 12–14 November, 2018, at PGIMER, Chandigarh, India Ó Indian Virological Society 2019 Medical Virology of Indian MuVs is not expected to alter the antigenicity and structural stability. Analysis of Indian and global MeV isolates indicates that the circulating strains during 2009-17 in India belong to genotypes D4 Complete Genome Sequencing of Measles Virus Isolates and D8, which have limited divergence with no potential impact on Obtained during 2009-2017 from different parts antigenicity and efficacy of the current vaccine strains in controlling of India MeV infection to meet elimination target by 2020. Sunil R. Vaidya1, Sunitha M. Kasibhatla2,3, Divya R. Bhattad1, Mukund R. Ramtirthkar4, Mohan M. Kale4, 5 2 Denovo assembly of Hepatitis C virus full-length Chandrashekhar G. Raut and Urmila Kulkarni-Kale genome following next generation sequencing 1ICMR-National Institute of Virology, Pune; 2Bioinformatics Centre, and genetic variations of strains circulating in north Savitribai Phule Pune University; 3HPC-Medical & Bioinformatics and north-east India Applications Group, Centre for Development of Advanced 4 Computing, Pune; Department of Statistics, Savitribai Phule Pune Sonu Kumar1, Renu Yadav1, Yogesh Kumar1, 5 University; ICMR-National Institute for Research in Tribal Health, Chandreswar Prasad1, Jyotish Kumar Jha1, Kekungu Puro4, Nagpur Road, Jabalpur, India Sachin Kumar3, Anoop Saraya1, Shalimar1, 2 1 Measles is a highly contagious viral disease of major public health Suraj Nongthombam , Baibaswata Nayak concern.
    [Show full text]
  • Varsani, Arvind Devshi
    Dr Arvind Varsani Current Address: The Biodesign Institute and School of Life Sciences Tel No.: +1 480-727-2093 Arizona State University Cell No.: +1 480-410-9366 1001 S. McAllister Ave Tempe, AZ 85287-5001 USA E-mail: [email protected] EDUCATION 1998 - 2003 University of Cape Town, Cape Town, South Africa Degree course: PhD in Molecular and Cell Biology Thesis title: Development of candidate Human papillomavirus vaccines I investigated deleted and mutated gene products of the HPV-16 major capsid protein gene towards expressing candidate HPV vaccines in plants, with the final aim being the design and analysis of novel chimaeric HPV vaccines. 1993 - 1997 Loughborough University, Loughborough, England Degree Course: Medicinal and Pharmaceutical Chemistry (BSc, DIS) WORK EXPERIENCE 07/16 – current Arizona State University, Tempe, USA Associate professor in the Biodesign Center of Fundamental and Applied Microbiomics and the School of Life Sciences. I hold adjunct positions in the Biodesign Center for Molecular Evolution and the Center of Evolution and Medicine. I teach both undergraduate and postgraduate courses and run an active research group focused on virus evolution and virus discovery. 02/09 – 07/16 University of Canterbury, Christchurch, New Zealand Senior lecturer/ researcher in molecular biology / virology I taught virology, general molecular and microbiology to 1st, 2nd, 3rd and 4th year students and ran an active research program in DNA virus discovery and evolution. 07/03 – 09/08 University of Cape Town, Cape Town, South Africa Lecturer for the Masters program in Structural Biology at the University of Cape Town. Funded (5 years) by the Carnegie Corporation of New York, this was the first structural biology initiative in Africa.
    [Show full text]
  • Structure of a Plant Geminivirus Using Cryo-EM
    ARTICLE DOI: 10.1038/s41467-018-04793-6 OPEN The 3.3 Å structure of a plant geminivirus using cryo-EM Emma L. Hesketh 1, Keith Saunders2, Chloe Fisher1, Joran Potze2, John Stanley2, George P. Lomonossoff2 & Neil A. Ranson 1 Geminiviruses are major plant pathogens that threaten food security globally. They have a unique architecture built from two incomplete icosahedral particles, fused to form a geminate 1234567890():,; capsid. However, despite their importance to agricultural economies and fundamental bio- logical interest, the details of how this is realized in 3D remain unknown. Here we report the structure of Ageratum yellow vein virus at 3.3 Å resolution, using single-particle cryo-electron microscopy, together with an atomic model that shows that the N-terminus of the single capsid protein (CP) adopts three different conformations essential for building the interface between geminate halves. Our map also contains density for ~7 bases of single-stranded DNA bound to each CP, and we show that the interactions between the genome and CPs are different at the interface than in the rest of the capsid. With additional mutagenesis data, this suggests a central role for DNA binding-induced conformational change in directing the assembly of geminate capsids. 1 Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK. These authors contributed equally: Emma L. Hesketh, Keith Saunders. Correspondence and requests for materials should be addressed to G.P.L.
    [Show full text]
  • Virus De La Marchitez Del Tomate (Tomarv) En El Noroeste De México E Identificación De Hospedantes Alternos” TESIS
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA “Presencia del Virus de la marchitez del tomate (ToMarV) en el Noroeste de México e identificación de hospedantes alternos” TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA ROGELIO ARMENTA CHÁVEZ GUASAVE, SINALOA; MÉXICO DICIEMBRE, 2012 Agradecimientos a proyectos El trabajo de tesis se desarrolló en el Departamento de Biotecnología Agrícola del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa del Instituto Politécnico Nacional (IPN). El presente trabajo fue apoyado económicamente por el IPN y recursos autogenerados. El alumno Rogelio Armenta Chávez fue apoyado con una beca CONACYT con clave 366650 y por el IPN a través de la beca PIFI dentro del proyecto Determinación de la importancia de hospedantes alternos en la dispersión de Ca. Liberibacter sp. en el Norte de México (Con número de registro 20120507). DEDICATORIA A mis padres A ellos por haberme dado la vida y haberse preocupado día a día por mi bienestar y futuro, a ellos les dedicó esta tesis, mi vida y mi ser. Gracias por ser mis padres. A mi novia A mi novia Karen quien siempre me ha apoyado en todo, sin condición alguna; por darme su amor y cariño, por eso gracias. A mi tía Soledad Armenta Por estar a mi lado en los momentos difíciles y haberme dado su apoyo y fuerza para salir adelante día con día. Gracias por eso y por todo lo que venga. A mi hermana Quien ha estado conmigo en las buenas y en las malas a lo largo de mi vida; gracias hermana por ese apoyo tan peculiar que me das.
    [Show full text]
  • Potential Role of Viruses in White Plague Coral Disease
    The ISME Journal (2014) 8, 271–283 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Potential role of viruses in white plague coral disease Nitzan Soffer1,2, Marilyn E Brandt3, Adrienne MS Correa1,2,4, Tyler B Smith3 and Rebecca Vega Thurber1,2 1Department of Microbiology, Oregon State University, Corvallis, OR, USA; 2Department of Biological Sciences, Florida International University, North Miami, FL, USA; 3Center for Marine and Environmental Studies, University of the Virgin Islands, St Thomas, Virgin Islands, USA and 4Ecology and Evolutionary Biology Department, Rice University, Houston, TX, USA White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals.
    [Show full text]
  • Reconstruction and Characterization of Full-Length Begomovirus and Alphasatellite Genomes Infecting Pepper Through Metagenomics
    viruses Article Reconstruction and Characterization of Full-Length Begomovirus and Alphasatellite Genomes Infecting Pepper through Metagenomics Verónica A. Bornancini 1,2, José M. Irazoqui 2,3 , Ceferino R. Flores 4, Carlos G. Vaghi Medina 1 , Ariel F. Amadio 2,3 and Paola M. López Lambertini 1,* 1 Instituto de Patología Vegetal, IPAVE-CIAP-INTA, 5000 Córdoba, Argentina; [email protected] (V.A.B.); [email protected] (C.G.V.M.) 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; [email protected] (J.M.I.); [email protected] (A.F.A.) 3 Estación Experimental Agropecuaria Rafaela-INTA, 2300 Rafaela, Santa Fe, Argentina 4 Estación Experimental Agropecuaria Yuto-INTA, 4518 Yuto, Argentina; cefefl[email protected] * Correspondence: [email protected] Received: 8 December 2019; Accepted: 16 January 2020; Published: 11 February 2020 Abstract: In northwestern Argentina (NWA), pepper crops are threatened by the emergence of begomoviruses due to the spread of its vector, Bemisia tabaci (Gennadius). The genus Begomovirus includes pathogens that can have a monopartite or bipartite genome and are occasionally associated with sub-viral particles called satellites. This study characterized the diversity of begomovirus and alphasatellite species infecting pepper in NWA using a metagenomic approach. Using RCA-NGS (rolling circle amplification-next generation sequencing), 19 full-length begomovirus genomes (DNA-A and DNA-B) and one alphasatellite were assembled. This ecogenomic approach revealed six begomoviruses in single infections: soybean blistering mosaic virus (SbBMV), tomato yellow spot virus (ToYSV), tomato yellow vein streak virus (ToYVSV), tomato dwarf leaf virus (ToDfLV), sida golden mosaic Brazil virus (SiGMBRV), and a new proposed species, named pepper blistering leaf virus (PepBLV).
    [Show full text]