Global Viral Epidemics: a Challenging Threat’’, During 12–14 November, 2018, at PGIMER, Chandigarh, India

Total Page:16

File Type:pdf, Size:1020Kb

Global Viral Epidemics: a Challenging Threat’’, During 12–14 November, 2018, at PGIMER, Chandigarh, India VirusDis. (January–March 2019) 30(1):112–169 https://doi.org/10.1007/s13337-019-00523-8 ABSTRACT Abstracts of the papers presented in the international conference of Indian virological society, ‘‘Global viral epidemics: a challenging threat’’, during 12–14 November, 2018, at PGIMER, Chandigarh, India Ó Indian Virological Society 2019 Medical Virology of Indian MuVs is not expected to alter the antigenicity and structural stability. Analysis of Indian and global MeV isolates indicates that the circulating strains during 2009-17 in India belong to genotypes D4 Complete Genome Sequencing of Measles Virus Isolates and D8, which have limited divergence with no potential impact on Obtained during 2009-2017 from different parts antigenicity and efficacy of the current vaccine strains in controlling of India MeV infection to meet elimination target by 2020. Sunil R. Vaidya1, Sunitha M. Kasibhatla2,3, Divya R. Bhattad1, Mukund R. Ramtirthkar4, Mohan M. Kale4, 5 2 Denovo assembly of Hepatitis C virus full-length Chandrashekhar G. Raut and Urmila Kulkarni-Kale genome following next generation sequencing 1ICMR-National Institute of Virology, Pune; 2Bioinformatics Centre, and genetic variations of strains circulating in north Savitribai Phule Pune University; 3HPC-Medical & Bioinformatics and north-east India Applications Group, Centre for Development of Advanced 4 Computing, Pune; Department of Statistics, Savitribai Phule Pune Sonu Kumar1, Renu Yadav1, Yogesh Kumar1, 5 University; ICMR-National Institute for Research in Tribal Health, Chandreswar Prasad1, Jyotish Kumar Jha1, Kekungu Puro4, Nagpur Road, Jabalpur, India Sachin Kumar3, Anoop Saraya1, Shalimar1, 2 1 Measles is a highly contagious viral disease of major public health Suraj Nongthombam , Baibaswata Nayak concern. Measles virus (MeV) is enveloped, single stranded negative RNA genome (15,894 nucleotides) belong to Pramyxoviridae family Email ID for Correspondence: [email protected] 1 (genus Morbillivirus). MeV is serologically monotypic virus and Department of Gastroenterology, All India Institute of Medical 2 genetically divided into 24 genotypes i.e. A, B1-B3, C1-C2, D1-D11, Sciences, Ansari Nagar, New Delhi; Jawaharlal Nehru Institute of 3 E, F, G1-G3 and H1-H2. World Health Organization has a target for Medical Sciences, Imphal; Department of Biosciences and 4 elimination of measles and rubella control by 2020. Government of Bioengineering, IIT Guwahati; ICAR Research Complex for NEH India is committed on ‘Measles Elimination’ in a phased manner. Region, Meghalaya Hence, a second dose of measles introduced in year 2010 through Introduction: Hepatitis C virus (HCV) infection is silent and infected Universal Immunization Program. As per policy, suspected measles patient develop chronic hepatitis with increased risk of cirrhosis, cases (fever with skin rash, cough, coryza and conjunctivitis) was hepatocellular carcinoma and end stage live disease. Current treat- monitored and laboratory confirmed by serological/molecular tests by ment with direct acting antivirals (DAAs) is very effective in the WHO accredited laboratory. Complete genome sequencing of achieving sustained virological response (SVR). However, expected thirty MeV isolates obtained during 2009-17 from six states of India drug resistance and suboptimal activity against diverse HCV geno- were performed using standard RT-PCR and sequencing protocols. types are major drawback. Next generation sequencing (NGS) with All these MeV isolates were grown on Vero hSLAM cells. Consensus more coverage will be effective in studying genetic variations in both MeV genomes/genes were subjected to phylogenetic and bioiformatic wild type and resistance associated variants (RAV) and immune analysis. Phylogeny with global isolates revealed genotype-based response. HCV genotyping by commercial real time PCR assays spatio-temporal clustering. Estimated genome/gene-wide nucleotide escapes subtypic variations within genotype that need to be evaluated substitution rates of Indian MeV are comparable with global isolates. by direct sequencing for unusual subtype that may evade SVR. The Selection pressure analysis indicated modest role of positive selection serum samples from treatment naı¨ve consecutive chronic hepatitis C in MeV evolution corroborating with its serologically monotypic patients at AIIMS (North India) and JNIMS, Imphal were obtained to nature. Though selection was found to be operational across all MeV study genetic variation of HCV. Real time PCR for HCV quantitation genes except L-gene in global isolates, no positively selected sites and genotyping was carried out. The next generation sequencing and were observed in Indian isolates. The mutation noted in the H-protein NS5b region Sanger sequencing of HCV genome was carried out 123 113 Denovo assembly and phylogenetic analysis of strains were done The etiological role of infection with high-risk Human papillomavirus using web based bioinformatics software. (HPV) types and cervical cancer is well established, while HPV type Out of 90 HCV samples collected at AIIMS, Genotype 1 was 21% 16 is most prevalent globally and in India. In a given HPV type, the and genotype 3a was 78% (n = 71) whereas among 142 north east genome is further classified into ‘variants’ if presence of nucleotide sample, genotype 1 was 29% (n = 42), 3 was 60.5% (n = 86), 4 was variations is \ 2% in coding regions. Major capsid or L1 protein is 1.5% (n = 2) and genotype 6 was 8.5% (n = 12). HCV complete corner stone in HPV structure. L1 variants can affect viral assembly genome cDNA and library preparation was carried out for NGS. The and restrict immunological recognition. Developing information on sequence data were subjected for filtration and exclusion of human L1 variants is imperative for rational design of newer diagnostics and sequence by mapping with HG19 sequence. The remaining reads vaccine. The present study was carried out to characterize HPV16 L1 were used for denovo genome assembly. Three north-east strains from variants by cervical intraepithelial neoplastic status, evaluate their genotype 1 and 3 were sequenced and analyzed. Phylogenetic analysis impact on epitopes and determine their phylogeny. HPV16 L1 open of NS5b region of north Indian HCV strain have shown 3a, 3b, 3 g reading frame was analyzed in 152 well characterized archival and 3i subtypes within genotype 3 HCV. HPV16 positive cervical samples (48 with normal, 51 with low-grade and 53 with high-grade cervical status). Intratype variants were ana- Delineating the role of DNA damage response lyzed using PCR-directed sequencing, impact on experimentally validated epitopes was predicted in silico, while phylogenetic analysis during Rotavirus replication was carried out using MEGA software with maximum likelihood method. A total of 58 nucleotide polymorphisms were detected, of Sarkar R, Chawla-Sarkar M which 26 were novel and 20 non-synonymous. Commonest L1 vari- ants were A6432G (73.7%), G7058T (17.8%) and C6852T (16.4%). Email ID for Correspondence: [email protected] L1 variants C5862T (H102Y), C6163 (T202N), A6178C (N207T), Division of Virology, National Institute of Cholera and Enteric A6693C (T379P) and A6801T (T415S) showed significant associa- Diseases, Kolkata, India tion with high-grade cervical disease and an increasing trend with cervical disease progression. Predominance of European lineage Cellular DNA damage response (DDR) machinery is present in all (84.2%) was observed, while non-European lineages were associated eukaryotic cells to monitor and repair DNA in response to cellular with high grade cervical intraepithelial neoplasia, p = 0.012. Ten DNA damage. Induction of cellular DDR results in the activation of variants were part of experimentally validated B cell and three of T cell cycle arrest, DNA repair pathway or apoptosis. Several studies cell epitopes respectively. Five variants were located in the immuno- have shown that both DNA and RNA viruses can activate the cellular genetic FG and HI capsid loops and could potentially impact anti- DDR pathway and hijack this pathway to facilate their own replica- HPV vaccine efficacy. Results suggest association of specific L1 tion. This study was conducted to check the activation of DDR variants and non-European lineages with cervical intraepithelial following Rotavirus infection and find out its role in Rotavirus neoplasia. replication. Western blotting was performed to check the expressions of cellular and viral proteins following Rotavirus infection. Expres- sions of viral RNAs were quantified by qRT-PCR. Cellular DNA damage was measured by comet assay. Localization of cellular pro- Development and evaluation of rapid field compatible teins were visualized by immunofluorescence technique. Infective sample to answer detection technique for rapid on-site virion particles formation was measured by plaque assay. Results have shown that Rotavirus infection induces the activation of the detection of Chikungunya virus ATM branch of DDR pathway. ATM activation was found to be independent of cellular DNA damagebut dependent on double Shashi Sharma1, Paban Kumar Dash1, M.M.Parida1, stranded break sensor MRN complex as knockdown of MRE11 and Deepak Pardasani2, D.K. Dubey2 RAD50 by lentivirus prevented ATM activation. Activated form of ATM, CHK2 and MRN complex components, MRE11 and RAD50 Virology Division1 DRDE, Gwalior,Vertox Division2 DRDE, were found to localize within the viroplasm. Inhibition of ATM and Gwalior,Defence food research laboratory, Mysore CHK2 proteins by chemical
Recommended publications
  • Insect-Transmitted Viruses and Their Management in Vegetables
    Insect-transmitted viruses and their Management in vegetables Rajagopalbabu Srinivasan Bhabesh Dutta Tim Coolong UGA PIs UGA PIs UGA PIs In this webinar.. § Introduction to vectors, viruses, transmission § Insect-transmitted viruses in tomato and squash § OREI trials Prominence of insect-borne viruses Bacteria, fungi, and phytoplasmas 70% Viruses & viroids transmitted by vectors - Power, A. G. 2000. Current Opinion in Plant Biology 3: 336-340. - Hohn, T. 2007. PNAS 17905-17906. Insects as vectors of phytoviruses 400 80000 Total species described vector species viruses transmitted 300 60000 40000 200 20000 100 0 0 Homoptera Coleoptera Thysanoptera Homoptera Coleoptera Thysanoptera Thrips Larvae § Sucking mouthparts § Epidermal punctures Frankliniella fusca Pupae Adults PP virus transmission - Nagata and Peters. 2001. Virus-Insect-Plant- Interactions, pp 51-67, AP. - Whitfield et al. 2005. Annu. Rev. Phytopathol. 43:459–89. -Thrips photographs by G. Mortiz Thrips-transmitted tomato spotted wilt orthotospovirus in tomato Bemisia tabaci cryptic species - de Moya et al. 2019. Diversity Piercing and sucking mode of feeding § Key to transmission- secrete two types of saliva (watery saliva & gelling saliva) - Dixon 1973 Virus transmission Kliot et al. 2013 Viruses. 5(6):1516-35 Semi-persistent transmission Persistent circulative transmission Tomato yellow leaf curl virus (TYLCV) • DNA virus • Genus Begomovirus, Family Geminiviridae Marchant -unpublished Tomato chlorosis virus (ToCV) • RNA virus • Genus Crinivirus, Family Closteroviridae Squash
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Frequent Occurrence of Mungbean Yellow Mosaic India Virus in Tomato Leaf Curl Disease Afected Tomato in Oman M
    www.nature.com/scientificreports OPEN Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease afected tomato in Oman M. S. Shahid 1*, M. Shafq 1, M. Ilyas2, A. Raza1, M. N. Al-Sadrani1, A. M. Al-Sadi 1 & R. W. Briddon 3 Next generation sequencing (NGS) of DNAs amplifed by rolling circle amplifcation from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identifed a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identifed infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confrmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efciency. This is the frst identifcation of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This fnding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material.
    [Show full text]
  • Characterization of P1 Leader Proteases of the Potyviridae Family
    Characterization of P1 leader proteases of the Potyviridae family and identification of the host factors involved in their proteolytic activity during viral infection Hongying Shan Ph.D. Dissertation Madrid 2018 UNIVERSIDAD AUTONOMA DE MADRID Facultad de Ciencias Departamento de Biología Molecular Characterization of P1 leader proteases of the Potyviridae family and identification of the host factors involved in their proteolytic activity during viral infection Hongying Shan This thesis is performed in Departamento de Genética Molecular de Plantas of Centro Nacional de Biotecnología (CNB-CSIC) under the supervision of Dr. Juan Antonio García and Dr. Bernardo Rodamilans Ramos Madrid 2018 Acknowledgements First of all, I want to express my appreciation to thesis supervisors Bernardo Rodamilans and Juan Antonio García, who gave the dedicated guidance to this thesis. I also want to say thanks to Carmen Simón-Mateo, Fabio Pasin, Raquel Piqueras, Beatriz García, Mingmin, Zhengnan, Wenli, Linlin, Ruiqiang, Runhong and Yuwei, who helped me and provided interesting suggestions for the thesis as well as technical support. Thanks to the people in the greenhouse (Tomás Heras, Alejandro Barrasa and Esperanza Parrilla), in vitro plant culture facility (María Luisa Peinado and Beatriz Casal), advanced light microscopy (Sylvia Gutiérrez and Ana Oña), photography service (Inés Poveda) and proteomics facility (Sergio Ciordia and María Carmen Mena). Thanks a lot to all the assistance from lab313 colleagues. Thanks a lot to the whole CNB. Thanks a lot to the Chinese Scholarship Council. Thanks a lot to all my friends. Thanks a lot to my family. Madrid 20/03/2018 Index I CONTENTS Abbreviations………………………………………….……………………….……...VII Viruses cited…………………………………………………………………..……...XIII Summary…………………………………………………………………...….…….XVII Resumen…………………………………………………………......…...…………..XXI I.
    [Show full text]
  • Tomato Spotted Wilt Virus
    -- CALIFORNIA D EP ARTM ENT OF cdfaFOOD & AGRICULTURE ~ California Pest Rating Proposal for Tomato spotted wilt virus Current Pest Rating: C Proposed Pest Rating: C Kingdom: Viruses and viroids, Category: Riboviria Phylum: Negarnaviricota, Subphylum: Polyploviricotina Class: Ellioviricetes, Order: Bunyavirales Family: Tospoviridae, Genus: Orthotospovirus Comment Period: 6/30/2020 through 8/14/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Tomato spotted wilt virus (TSWV) is given herein and a permanent pest rating is proposed. History & Status: Background: Named after Tomato spotted wilt virus, the family Tospoviridae includes species able to infect both insect vector, thrips (family Thripidae), and plant hosts. In plant pathology, viruses are often named after the first host they are described on and the most significant symptom they cause. "Spotted wilt" disease of tomato was first described in Australia in 1915. TSWV was the only member of the genus Tospovirus (now Orthotospovirus) until closely related Impatiens necrotic spot virus was characterized and added (Law and Moyer, 1990). The genus Orthotospovirus now contains TSWV as the type member and more than thirty distinct virus species. Most of them are more host specific than TSWV, and they can be separated by serological and molecular techniques (Agrios, 2005; Sherwood et al., 2003).
    [Show full text]
  • Planta Daninha
    AGUIAR, R.W.S. et al. Evaluation of weeds as virus reservoirs in watermelon crops 1 151103-PD-2016 PLANTA (9 páginas) DANINHAPROVA GRÁFICA SOCIEDADE BRASILEIRA DA CIÊNCIA DAS PLANTAS DANINHAS ISSN 0100-8358 (print) <http://www.sbcpd.org> 1806-9681 (online) Article EVALUATION OF WEEDS AS VIRUS RESERVOIRS IN WATERMELON CROPS Avaliação de Plantas Daninhas como Reservatórios de Vírus na Cultura da 1 AGUIAR, R.W.S. * Melancia ALVES, G.B.1 QUEIROZ, A.P.1 ABSTRACT - Watermelon is one of the most important vegetable crops in Brazil, which is grouped among the greatest producers worldwide. Viruses stand out among NASCIMENTO, I.R.1 the most damaging disease agents, which can drastically reduce fruit production. In LIMA, M.F.2 this context, weeds present in the field can also interfere in crop production, acting as reservoirs for viruses. Thus, this study aimed to investigate virus occurrence in weeds at the main watermelon-growing regions in the State of Tocantins. Viruses identification (e.g. potyviruses: Watermelon mosaic virus - WMV; Papaya ring spot virus – type watermelon -PRSV-W; Zucchini yellow mosaic virus- ZYMV; the cucumovirus Cucumber mosaic virus - CMV, and the orthotospovirus Zucchini lethal chlorosis virus - ZLCV) infecting weeds was performed by serology and confirmed by RT-PCR tests. Serological and molecular test results indicate that Amaranthus spinosus, Nicandra physaloides, Physalis angulata and Heliotropium indicum were infected by at least one virus species. The highest infection rate was represented by ZYMV (52.7%), followed by PRSV-W (22.2%); CMV, WMV, and ZLCV that showed the same infection rate (8.3%) each.
    [Show full text]
  • Identification of a Nanovirus-Alphasatellite Complex in Sophora Alopecuroides
    Accepted Manuscript Title: Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides Author: Jahangir Heydarnejad Mehdi Kamali Hossain Massumi Anders Kvarnheden Maketalena F. Male Simona Kraberger Daisy Stainton Darren P. Martin Arvind Varsani PII: S0168-1702(17)30009-6 DOI: http://dx.doi.org/doi:10.1016/j.virusres.2017.03.023 Reference: VIRUS 97113 To appear in: Virus Research Received date: 5-1-2017 Revised date: 15-3-2017 Accepted date: 18-3-2017 Please cite this article as: Heydarnejad, J., Kamali, M., Massumi, H., Kvarnheden, A., Male, M.F., Kraberger, S., Stainton, D., Martin, D.P., Varsani, A.,Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides, Virus Research (2017), http://dx.doi.org/10.1016/j.virusres.2017.03.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides 2 Jahangir Heydarnejad 1* , Mehdi Kamali 1, Hossain Massumi 1, Anders Kvarnheden 2, Maketalena 3 F. Male 3, Simona Kraberger 3,4 , Daisy Stainton 3,5 , Darren P. Martin 6 and Arvind Varsani 3,7,8* 4 5 1Department of Plant Protection, College
    [Show full text]
  • UF/IFAS Annual Report of Peer-Reviewed Journal Articles – 2018 Master List – Unique Titles
    UF/IFAS Annual Report of Peer-reviewed Journal Articles – 2018 Master List – Unique Titles Abbate, A., Campbell, J., Bremer, J., & Kern, W. H. (2018). The introduction and establishment of Campsomeris dorsata (Hymenoptera: Scoliidae) in Florida. Florida Entomologist, 101(3), 543- 545. Abdelbasir, S. M., El-Sheikh, S. M., Morgan, V. L., Schmidt, H., Casso-Hartmann, L. M., Vanegas, D. C., Velez-Torres, I., & McLamore, E. S. (2018). Graphene-anchored cuprous oxide nanoparticles from waste electric cables for electrochemical sensing. ACS Sustainable Chemistry & Engineering, 6(9), 12176-12186. Abdulridha, J., Ampatzidis, Y., Ehsani, R., & de Castro, A. I. (2018). Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Computers and Electronics in Agriculture, 155, 203-211. AbouEl Ela, N. A., El-Nesr, K. A., Ahmed, H. A., & Brooks, S. A. (2018). Molecular detection of severe combined immunodeficiency disorder in Arabian horses in Egypt. Journal of Equine Veterinary Science, 68, 55-58. Abountiolas, M., Kelly, K., Yagiz, Y., Li, Z., Mahnken, G., Borejsza-Wysocki, W., Marshall, M., Sims, C. A., Peres, N., & Nunes, M. C. D. (2018). Sensory quality, physicochemical attributes, polyphenol profiles, and residual fungicides in strawberries from different disease-control treatments. Journal of Agricultural and Food Chemistry, 66(27), 6986-6996. Abrahamian, P., Timilsina, S., Minsavage, G. V., Sushmita, K. C., Goss, E. M., Jones, J. B., & Vallad, G. E. (2018). The type III effector AvrBsT enhances Xanthomonas perforans fitness in field- grown tomato. Phytopathology, 108(12), 1355-1362. Abrahamsen, E. B., Moharamzadeh, A., Abrahamsen, H. B., Asche, F., Heide, B., & Milazzo, M.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • An Unusual Alphasatellite Associated with Monopartite Begomoviruses Attenuates Symptoms and Reduces Betasatellite Accumulation
    Journal of General Virology (2011), 92, 706–717 DOI 10.1099/vir.0.025288-0 An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation Ali M. Idris,1,2 M. Shafiq Shahid,1,3 Rob W. Briddon,3 A. J. Khan,4 J.-K. Zhu2 and J. K. Brown1 Correspondence 1School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA J. K. Brown 2Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, [email protected] Thuwal 23955-6900, Kingdom of Saudi Arabia 3National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan 4Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman The Oman strain of Tomato yellow leaf curl virus (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type Ageratum yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and Papaya leaf curl virus from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and Nicotiana benthamiana. Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms.
    [Show full text]
  • Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors
    pathogens Review Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors Alexander Nilon 1 , Karl Robinson 1 , Hanu R. Pappu 2 and Neena Mitter 1,* 1 Centre for Horticultural Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4067, Australia; [email protected] (A.N.); [email protected] (K.R.) 2 Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; [email protected] * Correspondence: [email protected] Abstract: Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers Citation: Nilon, A.; Robinson, K.; for managing TSWV and thrips vectors.
    [Show full text]
  • Rescue of Tomato Spotted Wilt Virus Entirely from Complementary DNA Clones
    Rescue of tomato spotted wilt virus entirely from complementary DNA clones Mingfeng Fenga, Ruixiang Chenga, Minglong Chena, Rong Guoa, Luyao Lia, Zhike Fenga, Jianyan Wua, Li Xieb, Jian Hongb, Zhongkai Zhangc, Richard Kormelinkd, and Xiaorong Taoa,1 aDepartment of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, People’s Republic of China; bAnalysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 317502 Hangzhou, People’s Republic of China; cYunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, 650223 Kunming, People’s Republic of China; and dLaboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands Edited by David C. Baulcombe, University of Cambridge, Cambridge, United Kingdom, and approved December 2, 2019 (received for review June 26, 2019) Negative-stranded/ambisense RNA viruses (NSVs) include not only losses due to this virus have been estimated at more than $1 dangerous pathogens of medical importance but also serious plant billion annually (7, 17). pathogens of agronomic importance. Tomato spotted wilt virus TSWV consists of spherical, enveloped virus particles (80 to (TSWV) is one of the most important plant NSVs, infecting more 120 nm) that contain a tripartite genome consisting of large- (L), than 1,000 plant species, and poses major threats to global food medium- (M), and small-sized (S) RNA segments (14). The L security. The segmented negative-stranded/ambisense RNA ge- RNA segment is negative sense and encodes a single large RNA- nomes of TSWV, however, have been a major obstacle to molecular dependent RNA polymerase (RdRp, ∼330 kDa) that is required genetic manipulation.
    [Show full text]