Characterization of P1 Leader Proteases of the Potyviridae Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect-Transmitted Viruses and Their Management in Vegetables
Insect-transmitted viruses and their Management in vegetables Rajagopalbabu Srinivasan Bhabesh Dutta Tim Coolong UGA PIs UGA PIs UGA PIs In this webinar.. § Introduction to vectors, viruses, transmission § Insect-transmitted viruses in tomato and squash § OREI trials Prominence of insect-borne viruses Bacteria, fungi, and phytoplasmas 70% Viruses & viroids transmitted by vectors - Power, A. G. 2000. Current Opinion in Plant Biology 3: 336-340. - Hohn, T. 2007. PNAS 17905-17906. Insects as vectors of phytoviruses 400 80000 Total species described vector species viruses transmitted 300 60000 40000 200 20000 100 0 0 Homoptera Coleoptera Thysanoptera Homoptera Coleoptera Thysanoptera Thrips Larvae § Sucking mouthparts § Epidermal punctures Frankliniella fusca Pupae Adults PP virus transmission - Nagata and Peters. 2001. Virus-Insect-Plant- Interactions, pp 51-67, AP. - Whitfield et al. 2005. Annu. Rev. Phytopathol. 43:459–89. -Thrips photographs by G. Mortiz Thrips-transmitted tomato spotted wilt orthotospovirus in tomato Bemisia tabaci cryptic species - de Moya et al. 2019. Diversity Piercing and sucking mode of feeding § Key to transmission- secrete two types of saliva (watery saliva & gelling saliva) - Dixon 1973 Virus transmission Kliot et al. 2013 Viruses. 5(6):1516-35 Semi-persistent transmission Persistent circulative transmission Tomato yellow leaf curl virus (TYLCV) • DNA virus • Genus Begomovirus, Family Geminiviridae Marchant -unpublished Tomato chlorosis virus (ToCV) • RNA virus • Genus Crinivirus, Family Closteroviridae Squash -
A Novel Species of RNA Virus Associated with Root Lesion Nematode Pratylenchus Penetrans
SHORT COMMUNICATION Vieira and Nemchinov, Journal of General Virology 2019;100:704–708 DOI 10.1099/jgv.0.001246 A novel species of RNA virus associated with root lesion nematode Pratylenchus penetrans Paulo Vieira1,2 and Lev G. Nemchinov1,* Abstract The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of plants. While analysing transcriptomic datasets of P. penetrans, we have identified a full-length genome of an unknown positive-sense single- stranded RNA virus, provisionally named root lesion nematode virus 1 (RLNV1). The 8614-nucleotide genome sequence encodes a single large polyprotein with conserved domains characteristic for the families Picornaviridae, Iflaviridae and Secoviridae of the order Picornavirales. Phylogenetic, BLAST and domain search analyses showed that RLNV1 is a novel species, most closely related to the recently identified sugar beet cyst nematode virus 1 and potato cyst nematode picorna- like virus. In situ hybridization with a DIG-labelled DNA probe confirmed the presence of the virus within the nematodes. A negative-strand-specific RT-PCR assay detected RLNV1 RNA in nematode total RNA samples, thus indicating that viral replication occurs in P. penetrans. To the best of our knowledge, RLNV1 is the first virus identified in Pratylenchus spp. In recent years, several new viruses infecting plant-parasitic assembly from high-throughput sequence data was supple- nematodes have been described [1–5]. Thus far, the viruses mented by sequencing of the 5¢ RACE-amplified cDNA have been identified in sedentary nematode species, such as ends of the virus. 5¢RACE reactions were performed with the soybean cyst nematode (SCN; Heterodera glycines), two the virus-specific primers GSP1, GSP2 and LN715 potato cyst nematode (PCN) species, Globodera pallida and (Table S1, available in the online version of this article) in G. -
2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A. -
Tomato Spotted Wilt Virus
-- CALIFORNIA D EP ARTM ENT OF cdfaFOOD & AGRICULTURE ~ California Pest Rating Proposal for Tomato spotted wilt virus Current Pest Rating: C Proposed Pest Rating: C Kingdom: Viruses and viroids, Category: Riboviria Phylum: Negarnaviricota, Subphylum: Polyploviricotina Class: Ellioviricetes, Order: Bunyavirales Family: Tospoviridae, Genus: Orthotospovirus Comment Period: 6/30/2020 through 8/14/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Tomato spotted wilt virus (TSWV) is given herein and a permanent pest rating is proposed. History & Status: Background: Named after Tomato spotted wilt virus, the family Tospoviridae includes species able to infect both insect vector, thrips (family Thripidae), and plant hosts. In plant pathology, viruses are often named after the first host they are described on and the most significant symptom they cause. "Spotted wilt" disease of tomato was first described in Australia in 1915. TSWV was the only member of the genus Tospovirus (now Orthotospovirus) until closely related Impatiens necrotic spot virus was characterized and added (Law and Moyer, 1990). The genus Orthotospovirus now contains TSWV as the type member and more than thirty distinct virus species. Most of them are more host specific than TSWV, and they can be separated by serological and molecular techniques (Agrios, 2005; Sherwood et al., 2003). -
Viruses Virus Diseases Poaceae(Gramineae)
Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae . -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
Yellow Head Virus: Transmission and Genome Analyses
The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 12-2008 Yellow Head Virus: Transmission and Genome Analyses Hongwei Ma University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Aquaculture and Fisheries Commons, Biology Commons, and the Marine Biology Commons Recommended Citation Ma, Hongwei, "Yellow Head Virus: Transmission and Genome Analyses" (2008). Dissertations. 1149. https://aquila.usm.edu/dissertations/1149 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi YELLOW HEAD VIRUS: TRANSMISSION AND GENOME ANALYSES by Hongwei Ma Abstract of a Dissertation Submitted to the Graduate Studies Office of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 COPYRIGHT BY HONGWEI MA 2008 The University of Southern Mississippi YELLOW HEAD VIRUS: TRANSMISSION AND GENOME ANALYSES by Hongwei Ma A Dissertation Submitted to the Graduate Studies Office of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: December 2008 ABSTRACT YELLOW HEAD VIRUS: TRANSMISSION AND GENOME ANALYSES by I Iongwei Ma December 2008 Yellow head virus (YHV) is an important pathogen to shrimp aquaculture. Among 13 species of naturally YHV-negative crustaceans in the Mississippi coastal area, the daggerblade grass shrimp, Palaemonetes pugio, and the blue crab, Callinectes sapidus, were tested for potential reservoir and carrier hosts of YHV using PCR and real time PCR. -
Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M
Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin, Lyuba Ryabova To cite this version: Mikhail M. Pooggin, Lyuba Ryabova. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.644. 10.3389/fmicb.2018.00644. hal-02289592 HAL Id: hal-02289592 https://hal.archives-ouvertes.fr/hal-02289592 Submitted on 16 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License fmicb-09-00644 April 9, 2018 Time: 16:25 # 1 REVIEW published: 10 April 2018 doi: 10.3389/fmicb.2018.00644 Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin1* and Lyubov A. Ryabova2* 1 INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France, 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. -
First Insight Into the Viral Community of the Cnidarian Model Metaorganism Aiptasia Using RNA-Seq Data
First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data Jan D. Brüwer and Christian R. Voolstra Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia ABSTRACT Current research posits that all multicellular organisms live in symbioses with asso- ciated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes. -
Genome Structure and Organization of a Member of a Novel and Distinct Species of the Genus Caulimovirus Associated with Dahlia Mosaic
Arch Virol DOI 10.1007/s00705-008-0043-8 BRIEF REPORT Genome structure and organization of a member of a novel and distinct species of the genus Caulimovirus associated with dahlia mosaic V. Pahalawatta Æ K. L. Druffel Æ S. D. Wyatt Æ K. C. Eastwell Æ H. R. Pappu Received: 21 April 2007 / Accepted: 31 December 2007 Ó Springer-Verlag 2008 Abstract The genome structure and organization of a Dahlia mosaic caulimovirus (DMV) is an important viral new and distinct caulimovirus that is widespread in dahlia pathogen of dahlia (Dahlia variabilis) in the US and (Dahlia variabilis) was determined. The double-stranded several parts of the world. First reported from Germany in DNA genome was ca. 7.0 kb in size and shared many of 1928, the virus is considered to be one of the most the features of the members of the genus Caulimovirus, important disease constraints affecting dahlias. DMV is a such as the presence of genes potentially coding for the member of the family Caulimoviridae, genus Caulimovi- movement protein, the inclusion body protein, and the rus with a circular double-stranded DNA genome of reverse transcriptase (RT), and an intergenic region con- approximately 8 kb [23]. The symptomatology, propaga- sisting of a potential 35S promoter. However, the virus tive hosts and the role of various aphid species in virus differed from the previously described dahlia mosaic transmission have been reported [1, 4, 5]. The most caulimovirus and other known caulimoviruses in that the characteristic symptoms of the disease include mosaic and aphid transmission factor (ATF) was absent and the puta- vein-banding accompanied by stunting and leaf distortion. -
An Abstract of the Dissertation Of
AN ABSTRACT OF THE DISSERTATION OF Alfredo Diaz Lara for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 16, 2016. Title: Identification of Endogenous and Exogenous Pararetroviruses in Red Raspberry (Rubus idaeus L.) and Blueberry (Vaccinium corymbosum L.). Abstract approved: ______________________________________________________ Robert R. Martin The Pacific Northwest (Oregon and Washington in the United States and British Columbia in Canada) is one of the major producers of red raspberry (Rubus idaeus L.) and blueberry (Vaccinium corymbosum L.) in the world. The expansion of growing area with these crops has resulted in the emergence of new virus diseases that cause serious economic losses. The majority of viruses affecting plants (including blueberry and red raspberry) contain RNA genomes. In contrast, plant viruses with DNA genomes are relatively rare and most of the time ignored in virus surveys. The family Caulimoviridae is a group of plant pararetroviruses (reverse-transcribing viruses) with the ability to integrate their DNA into the host genome, resulting in complex molecular interactions that lead to inconsistencies in terms of detection and disease symptoms. Albeit, few studies have been conducted to determine the nature of plant pararetroviruses and their relationships with the associated host. To investigate the presence of pararetroviruses in blueberry and red raspberry, and their possible integration events, different plant material suspected to be infected with viruses was collected in nurseries, commercial fields and clonal germplasm repositories for a period of four years. For blueberry, using rolling circle amplification (RCA) a new virus was identified and named Blueberry fruit drop-associated virus (BFDaV) because of its association with fruit-drop disorder. -
1 Chapter I Overall Issues of Virus and Host Evolution
CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology.