THE PRINCIPAL AND THE THIRD FUNDAMENTAL FORM OF DINI-TYPE HELICOIDAL HYPERSURFACE IN 4-SPACE

ERHANGÜLER

Abstract. We consider the principal curvatures and the third fundamental form of Dini-type 4 helicoidal hypersurface D(u; v; w) in the four dimensional Euclidean space E . We …nd the 4 Gauss map e of helicoidal hypersurface in E . We obtain characteristic polynomial of shape operator matrix S. Then, we compute principal curvatures ki=1;2;3; and the third fundamental form matrix III of D.

1. Introduction Theory of surfaces and hypersurfaces have been studied by many geometers for years such as [1 26]. In the rest of this paper, we identify a vector (a,b,c,d) with its transpose (a,b,c,d)t: Let : I  be a curve in a plane  in E4, and let ` be a straight line in  for an open interval ! I R. A rotational hypersurface in E4 is de…ned as a hypersurface rotating a curve (i.e. pro…le curve) around a line (i.e. axis) `. Suppose that when a pro…le curve rotates around the axis `, it simultaneously displaces parallel lines orthogonal to the axis `, so that the speed of displacement is proportional to the speed of rotation. Resulting hypersurface is called the helicoidal hypersurface with axis ` and pitches a; b R 0 . Let ` be a line spanned by the vector (0; 0; 0; 1)t.2 Thenf orthogonalg matrix cos v cos w sin v cos v sin w 0 sin v cos w cos v sin v sin w 0 M(v; w) = 0 1 ; v; w R, sin w 0 cos w 0 2 B 0 0 0 1 C B C …xes the vector `. The matrix@ M can be found by solving the followingA equations simultaneously; t t M:` = `; M :M = M:M = I4; det M = 1: When the axis of rotation is `, there is an Euclidean 4 transformation by which the axis is ` transformed to the x4-axis of E . Parametrization of the pro…le curve is given by (u) = (u; 0; 0;' (u)) ; where ' (u): I R R is a di¤erentiable func- tion for all u I. So, the helicoidal hypersurface is given by H(u;! v; w) = M: t + (av + bw) :`t, 2 where u I; v; w [0; 2] ; a; b R 0 : Clearly, we write helicoidal hypersurface as follows 2 2 2 nf g H(u; v; w) = (u cos v cos w; u sin v cos w; u sin w; '(u) + av + bw) :

Date: December 9, 2020. 2000 Mathematics Subject Classi…cation. Primary 53A35; Secondary 53C42. Key words and phrases. four dimensional, Dini-type helicoidal hypersurface, Gauss map, principal curvatures, the third fundamental form. This paper is in …nal form and no version of it will be submitted for publication elsewhere. 1 2 E. GÜLER

In this paper, we study the principal curvatures and the third fundamental form of the Ulisse Dini-type helicoidal hypersurface in Euclidean 4-space E4. We give some basic notions of four dimensional Euclidean geometry in section 2. In section 3, we give Ulisse Dini-type helicoidal hypersurface, and calculate its principal curvatures, and the third fundamental form in section 4. In addition, we give a conclusion in the last section.

2. Preliminaries In this section, we introduce the fundamental form matrices I, II, III, the shape operator ma- trix S; the Gaussian K, and the H of a hypersurface M = M(u; v; w) in the Euclidean 4-space E4. Let M be an isometric immersion of a hypersurface M 3 in the E4. The inner product of !x = (x1; x2; x3; x4); !y = (y1; y2; y3; y4), and the vector product of !x ; !y ; !z = (z1; z2; z3; z4) on E4 are de…ned by

x y = x1y1 + x2y2 + x3y3 + x4y4; !  ! e1 e2 e3 e4 x1 x2 x3 x4 !x !y !z = det 0 1 ;   y1 y2 y3 y4 B z1 z2 z3 z4 C B C @ A respectively. A hypersurface M in 4-space has the …rst and the matrices

EFA LMP I = FGB ;II = MNT ; 0 ABC 1 0 PTV 1 @ A @ A respectively. Here,

E = Mu Mu;F = Mu Mv;G = Mv Mv;A = Mu Mw;B = Mv Mw;C = Mw Mw;       L = Muu e; M = Muv e; N = Mvv e; P = Muw e; T = Mvw e; V = Mww e;       and e is the Gauss map

Mu Mv Mw e =   : Mu Mv Mw k   k 1 Hence, I :II gives the shape operator matrix of M

s s s 1 11 12 13 S = s21 s22 s23 ; det I 0 1 s31 s32 s33 @ A where det I = (EG F 2)C A2G + 2ABF B2E; THE PRINCIPAL CURVATURES AND THE THIRD FUNDAMENTAL FORM 3

2 s11 = ABM CFM AGP + BFP + CGL B L; 2 s12 = ABN CFN AGT + BFT + CGM B M; 2 s13 = ABT CFT AGV + BFV + CGP B P; 2 s21 = ABL CFL + AF P BPE + CME A M; 2 s22 = ABM CFM + AF T BTE + CNE A N; 2 s23 = ABP CFP + AF V BVE + CTE A T; 2 s31 = AGL + BFL + AF M BME + GP E F P; 2 s32 = AGM + BFM + AF N BNE + GT E F T; 2 s33 = AGP + BFP + AF T BTE + GV E F V: Therefore, using II:S, we get the third fundamental form matrix  1 III =   ; det I 0   1 where @ A = A2M 2 + 2ABLM + 2AF MP 2GALP B2L2 + 2BF LP 2EBMP F 2P 2 2CF LM + CGL2 + CEM 2 + GEP 2;  = ABM 2 CFM 2 B2LM A2MN F 2PT + CMNE BNPE BMTE + GP T E + ABLN CF LN + CGLM +AF NP AGMP + BFMP + AF MT AGLT + BF LT; = BFP 2 AGP 2 B2LP A2MT F 2PV + CMTE BMVE BPTE + GP V E + ABMP + ABLT CFMP +CGLP CF LT + AF MV AGLV + BF LV + AF P T; = A2N 2 + 2ABMN + 2AF NT 2GAMT B2M 2 + 2BFMT 2EBNT F 2T 2 2CFMN + CGM 2 + CEN 2 + GET 2;  = AF T 2 B2MP A2NT F 2TV BT 2E + CNTE BNVE + GT V E + ABNP + ABMT CFNP + CGMP CFMT + AF NV AGMV + BFMV AGP T + BFPT;  = A2T 2 + 2ABP T + 2AF T V 2GAP V B2P 2 + 2BFPV 2EBTV F 2V 2 2CFPT + CGP 2 + CET 2 + GEV 2:

3. The Principal Curvatures and the Third Fundamental Form of the Dini-Type Helicoidal Hypersurface We consider Dini-type helicoidal hypersurface sin u cos v cos w sin u sin v cos w D(u; v; w) = ; (1) 0 sin u sin w 1 B cos u + log tan u + av + bw C B 2 C @ A  4 E. GÜLER where u R 0 and 0 v; w 2: Using the …rst di¤erentials of (1) with respect to u; v; w; we get the2 …rstnf quantitiesg   cot2 u a cot u cos u b cot u cos u I = a cot u cos u sin2 u cos2 w + a2 ab ; 0 b cot u cos u ab sin2 u + b2 1 and then, we have det I @= b2 + 1 cos2 w + a2 sin2 u cos2 u: The GaussA map of (1) is given by cos ucos v cos2 w + a sin v b cos v sin w cos w 1 cos u sin v cos2 w + a cos v b sin v sin w cos w eD = 0 1 ; (2) pW (cos u sin w + b cos w) cos w B sin u cos w C B C where W = b2 + 1 cos2 w +@a2: Using the second di¤erentials of the (1) withA respect to u; v; w; with (2) ; we have the second quantities of the (1)  cot u cos w a cos u cos w b cos u cos w 1 II = a cos u cos w (b sin w cos u cos w) sin u cos2 w a sin u sin w : 1=2 W 0 b cos u cos w a sin u sin w sin u cos u cos w 1 1 @ A Computing I :S; we obtain the shape operator matrix of (1) 2 2 3 sin u cos w a cos w a (b cos w+cos u sin w)+b(b +1) cos w W 1=2 cos u W 1=2 cos u W 3=2 cos u 2 b sin w cos u cos w a(b +1) sin w S = 0 0 1 : (3) W 1=2 sin u W 3=2 sin u a2(b sin w cos u cos w) (b2+1) cos u cos3 w B 0 a sin w C B W 1=2 sin u W 3=2 sin u C @ A Theorem 1. Let D : M 3 E4 be an immersion given by (1). Then, characteristic polynomial of the (3) of the (1) !is given by X3 + pX2 + qX + r = 0: where cos2 u cos3 w + b2 cos2 u cos3 w + W cos2 u cos w W cos w sin2 u + a2 cos2 u cos w 8 bW cos u sin w a2b cos u sin w 9 p = < =; W 3=2 cos u sin u : cos3 u cos4 w + a2 cos3 u cos2 w + b2 cos3 u cos4 w ; a2 cos u sin2 w cos u cos4 w sin2 u 8 2 2 2 2 2 9 > W cos u cos w sin u a cos u cos w sin u > > 2 4 2 3 2 3 > > b cos u cos w sin u b cos u cos w sin w > <> b cos2 u cos3 w sin w +bW cos w sin2 u sin w => 2a2b cos2 u cos w sin w + a2b cos w sin2 u sin w q = > >; > 2 2 > > W cos u sin u > : a2 sin2 w cos2 u cos4 w a2 cos2 u cos2 w ; b2 cos2 u cos4 w + b cosu cos3 w sin w cos w 8 +b3cos u cos3 w sin w + 2a2b cos u cos w sin w 9 r = < = : W 5=2 sin u cos u : ; THE PRINCIPAL CURVATURES AND THE THIRD FUNDAMENTAL FORM 5

Proof. Computing det(S X:I3) = 0, we get the p; q; and r. Corollary 1. Let D : M 3 E4 be an immersion given by (1). Then, (1) has the principal curvatures ! sin u cos w 1 2 k1 = ; k2 = ; k3 = ; W 1=2 cos u 2W 3=2 sin u 2W 3=2 sin u where = T1=2 2W cos u cos w + W + a2 b sin w; 1 1=2 2 2 = T 2W cos u cos w + W + a b sin w; and  2 T = W + a2 (cos u cos w 2b sin w) cos u cos w 2 + 4a2W + b2 W + a2 sin2 w 2 b2 + 1 W + a2 (cos u cos w + b sin w) cos u cos3 w 2 + b2 + 1 cos 2 u cos6 w: Proof. Solving characteristic polynomial of S; we have eigenvalues of S. Corollary 2. Let D : M 3 E4 be an immersion given by (1). Then, (1) has the third fundamental form matrix ! 1 a sin u b sin u 2 cos w (b sin w cos u cos w)2 cos2 w+a2 a(b cos 2w+cos u sin 2w) a sin u III = 0 cos2 w cos2 w 1 : W a(b cos 2w+cos u sin 2w) a2(b2+1 cos2 w sin2 w)+(b2+1)(b2+cos2 u) cos4 w b sin u B cos2 w cos2 w C Proof. Using II:S@ , we get the third fundamental form matrix of (1). A

4. Conclusion In this paper, we introduce the principal curvatures, and the third fundamental form of the Dini-type helicoidal hypersurface D(u; v; w) in the four dimensional Euclidean space E4. We calculate the Gauss map e of the D(u; v; w) in E4. We obtain the characteristic polynomial of the shape operator matrix S. After long calculations, we reveal the principal curvatures k1; k2; k3; and the third fundamental form matrix III of the Dini-type helicoidal hypersurface.

References

4 [1] Arvanitoyeorgos A., Kaimakamis G., Magid M. Lorentz hypersurfaces in E1 satisfying H = H: Illinois J. Math. 53(2), (2009) 581–590. [2] Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22(39), (1862) 1–148. [3] Chen B.Y. Total mean curvature and submanifolds of …nite type. World Scienti…c, Singapore, 1984. 4 [4] Cheng Q.M., Wan Q.R. Complete hypersurfaces of R with constant mean curvature. Monatsh. Math. 118(3- 4), (1994) 171–204. [5] Choi M., Kim Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38, (2001) 753–761. [6] Dillen F., Pas J., Verstraelen L. On surfaces of …nite type in Euclidean 3-space. Kodai Math. J. 13, (1990) 10–21. 6 E. GÜLER

[7] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34, (1982) 351–367. [8] Ferrandez A., Garay O.J., Lucas P. On a certain class of conformally at Euclidean hypersurfaces. Proc. of the Conf. in Global Analysis and Global Di¤erential Geometry, Berlin, 1990. [9] Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38, (2014) 883–895. [10] Güler E., Hac¬salihoglu¼ H.H., Kim Y.H. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10(9), (2018) 1–11. 4 [11] Güler E., Ki¸si Ö. Dini-type helicoidal hypersurfaces with timelike axis in Minkowski 4-space E1. Mathematics 7(2), 205, (2019) 1–8. [12] Güler E., Magid M., Yayl¬Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Sym. Phys. 41, (2016) 77–95. [13] Güler E., Turgay N.C. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3) 66, (2019) 1–16. [14] Güler E., Yayl¬Y., Hac¬salihoglu¼ H.H. Bour’stheorem on the Gauss map in 3-Euclidean space. Hacettepe J. Math. 39 (2010) 515–525. 4 [15] Hasais Th., Vlachos Th. Hypersurfaces in E with harmonic mean curvature vector …eld. Math. Nachr. 172 (1995) 145–169. [16] Kim D.S., Kim J.R., Kim Y.H. Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39 (2016) 1319–1327. 4 [17] Kim Y.H., Turgay N.C. Surfaces in E with L1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3) (2013) 935–949. [18] Lawson H.B. Lectures on minimal submanifolds. Vol. 1, Rio de Janeiro, 1973. 4 [19] Magid M., Scharlach C., Vrancken L. A¢ ne umbilical surfaces in R : Manuscripta Math. 88 (1995) 275–289. [20] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21, (1919) 81–93. [21] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26, (1920) 454–460. 4 [22] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in E : J. Math. Anal. Appl. 439, (2016) 798–812. 4 [23] Scharlach, C. A¢ ne geometry of surfaces and hypersurfaces in R . Symposium on the Di¤erential Geometry of Submanifolds, France (2007) 251–256. [24] Senoussi B., Bekkar M. Helicoidal surfaces with J r = Ar in 3-dimensional Euclidean space. Stud. Univ. Babe¸s-Bolyai Math. 60(3), (2015) 437–448. [25] Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, (1966) 380–385. [26] Verstraelen L., Walrave J., Yaprak S. The minimal translation surfaces in Euclidean space. Soochow J. Math. 20(1), (1994) 77–82.

(Erhan Güler) Bart¬nUniversity, Faculty of Sciences, Department of Mathematics, 74100 Bart¬n, Turkey E-mail address: [email protected]