Toponogov.V.A.Differential.Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry of Curves
Appendix A Geometry of Curves “Arc, amplitude, and curvature sustain a similar relation to each other as time, motion and velocity, or as volume, mass and density.” Carl Friedrich Gauss The rest of this lecture notes is about geometry of curves and surfaces in R2 and R3. It will not be covered during lectures in MATH 4033 and is not essential to the course. However, it is recommended for readers who want to acquire workable knowledge on Differential Geometry. A.1. Curvature and Torsion A.1.1. Regular Curves. A curve in the Euclidean space Rn is regarded as a function r(t) from an interval I to Rn. The interval I can be finite, infinite, open, closed n n or half-open. Denote the coordinates of R by (x1, x2, ... , xn), then a curve r(t) in R can be written in coordinate form as: r(t) = (x1(t), x2(t),..., xn(t)). One easy way to make sense of a curve is to regard it as the trajectory of a particle. At any time t, the functions x1(t), x2(t), ... , xn(t) give the coordinates of the particle in n R . Assuming all xi(t), where 1 ≤ i ≤ n, are at least twice differentiable, then the first derivative r0(t) represents the velocity of the particle, its magnitude jr0(t)j is the speed of the particle, and the second derivative r00(t) represents the acceleration of the particle. As a course on Differential Manifolds/Geometry, we will mostly study those curves which are infinitely differentiable (i.e. -
ON the CURVATURES of a CURVE in RIEMANN SPACE*F
ON THE CURVATURES OF A CURVE IN RIEMANN SPACE*f BY E,. H. CUTLER Introduction. The curvature and torsion of a curve in ordinary space have three properties which it is the purpose of this paper to attempt to extend to the curvatures of a curve in Riemann space. First, if the curvature vanishes identically the curve is a straight line ; if the torsion vanishes identically the curve lies in a plane. Second, the distances of a point of the curve from the tangent line and the osculating plane at a nearby point are given approxi- mately by formulas involving the curvature and torsion. Third, the curva- ture of a curve at a point is the curvature of its projection on the osculating plane at the point. In extending to Riemann space we take as the Riemannian analogue of the line or plane, a geodesic space generated by geodesies through a point. Such a space possesses the property of the line or plane of being de- termined by the proper number of directions given at a point, but it will not in general have the three properties given above. On the other hand, if we take as the analogue of line or plane only totally geodesic spaces, then, if such osculating "planes" exist, the three properties will hold. Curves with a vanishing curvature. Given a curve C: xi = x'(s), i = l, •••,«, in a Riemann space Vn with fundamental tensor g,-,-(assumed defi- nite). Following BlaschkeJ we write the Frenet formulas for the curve. The « associate vectors are given by ¿x* dx' (1) Éi|' = —> fcl'./T" = &-i|4 ('=1. -
Differential Geometry
Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2. -
Appendix Computer Formulas ▼
▲ Appendix Computer Formulas ▼ The computer commands most useful in this book are given in both the Mathematica and Maple systems. More specialized commands appear in the answers to several computer exercises. For each system, we assume a famil- iarity with how to access the system and type into it. In recent versions of Mathematica, the core commands have generally remained the same. By contrast, Maple has made several fundamental changes; however most older versions are still recognized. For both systems, users should be prepared to adjust for minor changes. Mathematica 1. Fundamentals Basic features of Mathematica are as follows: (a) There are no prompts or termination symbols—except that a final semicolon suppresses display of the output. Input (new or old) is acti- vated by the command Shift-return (or Shift-enter), and the input and resulting output are numbered. (b) Parentheses (. .) for algebraic grouping, brackets [. .] for arguments of functions, and braces {. .} for lists. (c) Built-in commands typically spelled in full—with initials capitalized— and then compressed into a single word. Thus it is preferable for user- defined commands to avoid initial capitals. (d) Multiplication indicated by either * or a blank space; exponents indi- cated by a caret, e.g., x^2. For an integer n only, nX = n*X,where X is not an integer. 451 452 Appendix: Computer Formulas (e) Single equal sign for assignments, e.g., x = 2; colon-equal (:=) for deferred assignments (evaluated only when needed); double equal signs for mathematical equations, e.g., x + y == 1. (f) Previous outputs are called up by either names assigned by the user or %n for the nth output. -
Lecture Note on Elementary Differential Geometry
Lecture Note on Elementary Differential Geometry Ling-Wei Luo* Institute of Physics, Academia Sinica July 20, 2019 Abstract This is a note based on a course of elementary differential geometry as I gave the lectures in the NCTU-Yau Journal Club: Interplay of Physics and Geometry at Department of Electrophysics in National Chiao Tung University (NCTU) in Spring semester 2017. The contents of remarks, supplements and examples are highlighted in the red, green and blue frame boxes respectively. The supplements can be omitted at first reading. The basic knowledge of the differential forms can be found in the lecture notes given by Dr. Sheng-Hong Lai (NCTU) and Prof. Jen-Chi Lee (NCTU) on the website. The website address of Interplay of Physics and Geometry is http: //web.it.nctu.edu.tw/~string/journalclub.htm or http://web.it.nctu. edu.tw/~string/ipg/. Contents 1 Curve on E2 ......................................... 1 2 Curve in E3 .......................................... 6 3 Surface theory in E3 ..................................... 9 4 Cartan’s moving frame and exterior differentiation methods .............. 31 1 Curve on E2 We define n-dimensional Euclidean space En as a n-dimensional real space Rn equipped a dot product defined n-dimensional vector space. Tangent vector In 2-dimensional Euclidean space, an( E2 plane,) we parametrize a curve p(t) = x(t); y(t) by one parameter t with re- spect to a reference point o with a fixed Cartesian coordinate frame. The( velocity) vector at point p is given by p_ (t) = x_(t); y_(t) with the norm Figure 1: A curve. p p jp_ (t)j = p_ · p_ = x_ 2 +y _2 ; (1) *Electronic address: [email protected] 1 where x_ := dx/dt. -
Riemannian Submanifolds: a Survey
RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas -
Introduction to the Local Theory of Curves and Surfaces
Introduction to the Local Theory of Curves and Surfaces Notes of a course for the ICTP-CUI Master of Science in Mathematics Marco Abate, Fabrizio Bianchi (with thanks to Francesca Tovena) (Much more on this subject can be found in [1]) CHAPTER 1 Local theory of curves Elementary geometry gives a fairly accurate and well-established notion of what is a straight line, whereas is somewhat vague about curves in general. Intuitively, the difference between a straight line and a curve is that the former is, well, straight while the latter is curved. But is it possible to measure how curved a curve is, that is, how far it is from being straight? And what, exactly, is a curve? The main goal of this chapter is to answer these questions. After comparing in the first two sections advantages and disadvantages of several ways of giving a formal definition of a curve, in the third section we shall show how Differential Calculus enables us to accurately measure the curvature of a curve. For curves in space, we shall also measure the torsion of a curve, that is, how far a curve is from being contained in a plane, and we shall show how curvature and torsion completely describe a curve in space. 1.1. How to define a curve n What is a curve (in a plane, in space, in R )? Since we are in a mathematical course, rather than in a course about military history of Prussian light cavalry, the only acceptable answer to such a question is a precise definition, identifying exactly the objects that deserve being called curves and those that do not. -
Parsing Images Into Regions, Curves, and Curve Groups
Submitted to Int’l J. of Computer Vision, October 2003. First Review March 2005. Revised June 2005. Parsing Images into Regions, Curves, and Curve Groups Zhuowen Tu1 and Song-Chun Zhu2 Lab of Neuro Imaging, Department of Neurology1, Departments of Statistics and Computer Science2, University of California, Los Angeles, Los Angeles, CA 90095. emails: {ztu,sczhu}@stat.ucla.edu Abstract In this paper, we present an algorithm for parsing natural images into middle level vision representations – regions, curves, and curve groups (parallel curves and trees). This al- gorithm is targeted for an integrated solution to image segmentation and curve grouping through Bayesian inference. The paper makes the following contributions. (1) It adopts a layered (or 2.1D-sketch) representation integrating both region and curve models which compete to explain an input image. The curve layer occludes the region layer and curves observe a partial order occlusion relation. (2) A Markov chain search scheme Metropolized Gibbs Samplers (MGS) is studied. It consists of several pairs of reversible jumps to tra- verse the complex solution space. An MGS proposes the next state within the jump scope of the current state according to a conditional probability like a Gibbs sampler and then accepts the proposal with a Metropolis-Hastings step. This paper discusses systematic de- sign strategies of devising reversible jumps for a complex inference task. (3) The proposal probability ratios in jumps are factorized into ratios of discriminative probabilities. The latter are computed in a bottom-up process, and they drive the Markov chain dynamics in a data-driven Markov chain Monte Carlo framework. -
Geometry of Curves and Surfaces Notes C J M Speight 2011
Geometry of Curves and Surfaces Notes c J M Speight 2011 Contact Details Lecturer: Dr. Lamia Alqahtani E-mail [email protected] This note was made by Prof. Martin Speight, School of Mathematics, The University of Leeds, E-mail: [email protected] 0 Why study geometry? Curves and surfaces are all around us in the natural world, and in the built environ- ment. The first step in understanding these structures is to find a mathematically natural way to describe them. That is the primary aim of this course, which will focus particularly on the concept of curvature. As a side effect, you will develop some very useful transferable skills. Key among these is the ability to translate a mathematical system (a set of equations, or formulae, or inequalities) into a visual picture. Your geometric intuition about the picture can then give you useful insight into the original mathematical system. This trick of visualizing mathematical systems can be very powerful and is, unfortunately, not strongly emphasized in the teaching of maths. Example 0 How does the number of solutions of the pair of simultaneous equations xy = 1 x2 + y2 = a2 depend on the constant a > 0? 0 x2 So for a < a0 (in fact, a0 = √2), the system has 0 solutions, for a = a0 it has 2 and for a > a0 it has 4. One could easily verify this by solving the equations explicitly, but the point is that visualizing x the system gave us a very quick (in fact, 1 almost instantaneous) short cut. The above example featured a pair of curves, each associated with an algebraic equation. -
On Geodesic Behavior of Some Special Curves
S S symmetry Article On Geodesic Behavior of Some Special Curves Savin Trean¸t˘a Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania; [email protected] Received: 2 March 2020; Accepted: 17 March 2020; Published: 1 April 2020 Abstract: In this paper, geometric structures on an open subset D ⊆ R2 are investigated such that the graphs associated with the solutions of some special functions to become geodesics. More precisely, we determine the Riemannian metric g such that Bessel (Hermite, harmonic oscillator, Legendre and Chebyshev) ordinary differential equation (ODE) is identified with the geodesic ODEs produced by the Riemannian metric g. The technique is based on the Lagrangian (the energy of the curve) 1 L = k x˙(t) k2, the associated Euler–Lagrange ODEs and their identification with the considered 2 special ODEs. Keywords: auto-parallel curve; geodesic; Euler–Lagrange equations; Lagrangian; special functions MSC: 34A26; 53B15; 53C22 1. Introduction and Preliminaries The concept of connection plays an important role in geometry and, depending on what sort of data one wants to transport along some trajectories, a variety of kinds of connections have been introduced in modern geometry. Crampin et al. [1], in a certain vector bundle, described the construction of a linear connection associated with a second-order differential equation field and, moreover, the corresponding curvature was computed. Ermakov [2] established that linear second-order equations with variable coefficients can be completely integrated only in very rare cases. Further, some aspects of time-dependent second-order differential equations and Berwald-type connections have been studied, with remarkable results, by Sarlet and Mestdag [3]. -
Differential Geometry Curves – Surfaces – Manifolds Third Edition
STUDENT MATHEMATICAL LIBRARY Volume 77 Differential Geometry Curves – Surfaces – Manifolds Third Edition Wolfgang Kühnel Differential Geometry Curves–Surfaces– Manifolds http://dx.doi.org/10.1090/stml/077 STUDENT MATHEMATICAL LIBRARY Volume 77 Differential Geometry Curves–Surfaces– Manifolds Third Edition Wolfgang Kühnel Translated by Bruce Hunt American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov Translation from German language edition: Differentialgeometrie by Wolfgang K¨uhnel, c 2013 Springer Vieweg | Springer Fachmedien Wies- baden GmbH JAHR (formerly Vieweg+Teubner). Springer Fachmedien is part of Springer Science+Business Media. All rights reserved. Translated by Bruce Hunt, with corrections and additions by the author. Front and back cover image by Mario B. Schulz. 2010 Mathematics Subject Classification. Primary 53-01. For additional information and updates on this book, visit www.ams.org/bookpages/stml-77 Page 403 constitutes an extension of this copyright page. Library of Congress Cataloging-in-Publication Data K¨uhnel, Wolfgang, 1950– [Differentialgeometrie. English] Differential geometry : curves, surfaces, manifolds / Wolfgang K¨uhnel ; trans- lated by Bruce Hunt.— Third edition. pages cm. — (Student mathematical library ; volume 77) Includes bibliographical references and index. ISBN 978-1-4704-2320-9 (alk. paper) 1. Geometry, Differential. 2. Curves. 3. Surfaces. 4. Manifolds (Mathematics) I. Hunt, Bruce, 1958– II. Title. QA641.K9613 2015 516.36—dc23 2015018451 c 2015 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. -
Spherical Product Surfaces in the Galilean Space
Konuralp Journal of Mathematics Volume 4 No. 2 pp. 290{298 (2016) c KJM SPHERICAL PRODUCT SURFACES IN THE GALILEAN SPACE MUHITTIN EVREN AYDIN AND ALPER OSMAN OGRENMIS Abstract. In the present paper, we consider the spherical product surfaces in a Galilean 3-space G3. We derive a classification result for such surfaces of constant curvature in G3. Moreover, we analyze some special curves on these surfaces in G3. 1. Introduction The tight embeddings of product spaces were investigated by N.H. Kuiper (see [17]) and he introduced a different tight embedding in the (n1 + n2 − 1) −dimensional Euclidean space Rn1+n2−1 as follows: Let m n1 c1 : M −! R ; c1 (u1; :::; um) = (f1 (u1; :::; um) ; :::; fn1 (u1; :::; um)) be a tight embedding of a m−dimensional manifold M m satisfying Morse equality and n2−1 n2 c2 : S −! R ; c1 (v1; :::; vn2−1) = (g1 (v1; :::; vn2−1) ; :::; gn2 (v1; :::; vn2−1)) n2 the standard embedding of (n2 − 1) −sphere in R , where u = (u1; :::; um) and m n2−1 v = (v1; :::; vn2−1) are the local coordinate systems on M and S , respectively. Then a new tight embedding is given by m n2−1 n1+n2−1 x = c1 ⊗ c2 : M × S −! R ; (u; v) 7−! (f1 (u) ; :::; fn1−1 (u) ; fn1 (u) g1 (v) ; :::; fn1 (u) gn2 (v)) : n1 n1−1 n1+n2−1 Such embeddings are obtained from c1 by rotating R about R in R (cf. [4]). B. Bulca et al. [6, 7] called such embeddings rotational embeddings and consid- ered the spherical product surfaces in Euclidean spaces, which are a special type 2000 Mathematics Subject Classification.