The Principal Curvatures and the Third Fundamental Form of Dini Type

The Principal Curvatures and the Third Fundamental Form of Dini Type

THE PRINCIPAL CURVATURES AND THE THIRD FUNDAMENTAL FORM OF DINI-TYPE HELICOIDAL HYPERSURFACE IN 4-SPACE ERHAN GÜLER Abstract. We consider the principal curvatures and the third fundamental form of Dini-type 4 helicoidal hypersurface D(u; v; w) in the four dimensional Euclidean space E . We …nd the 4 Gauss map e of helicoidal hypersurface in E . We obtain characteristic polynomial of shape operator matrix S. Then, we compute principal curvatures ki=1;2;3; and the third fundamental form matrix III of D. 1. Introduction Theory of surfaces and hypersurfaces have been studied by many geometers for years such as [1 26]. In the rest of this paper, we identify a vector (a,b,c,d) with its transpose (a,b,c,d)t: Let : I be a curve in a plane in E4, and let ` be a straight line in for an open interval ! I R. A rotational hypersurface in E4 is de…ned as a hypersurface rotating a curve (i.e. pro…le curve) around a line (i.e. axis) `. Suppose that when a pro…le curve rotates around the axis `, it simultaneously displaces parallel lines orthogonal to the axis `, so that the speed of displacement is proportional to the speed of rotation. Resulting hypersurface is called the helicoidal hypersurface with axis ` and pitches a; b R 0 . Let ` be a line spanned by the vector (0; 0; 0; 1)t.2 Thenf orthogonalg matrix cos v cos w sin v cos v sin w 0 sin v cos w cos v sin v sin w 0 M(v; w) = 0 1 ; v; w R, sin w 0 cos w 0 2 B 0 0 0 1 C B C …xes the vector `. The matrix@ M can be found by solving the followingA equations simultaneously; t t M:` = `; M :M = M:M = I4; det M = 1: When the axis of rotation is `, there is an Euclidean 4 transformation by which the axis is ` transformed to the x4-axis of E . Parametrization of the pro…le curve is given by (u) = (u; 0; 0;' (u)) ; where ' (u): I R R is a di¤erentiable func- tion for all u I. So, the helicoidal hypersurface is given by H(u;! v; w) = M: t + (av + bw) :`t, 2 where u I; v; w [0; 2] ; a; b R 0 : Clearly, we write helicoidal hypersurface as follows 2 2 2 nf g H(u; v; w) = (u cos v cos w; u sin v cos w; u sin w; '(u) + av + bw) : Date: December 9, 2020. 2000 Mathematics Subject Classi…cation. Primary 53A35; Secondary 53C42. Key words and phrases. four dimensional, Dini-type helicoidal hypersurface, Gauss map, principal curvatures, the third fundamental form. This paper is in …nal form and no version of it will be submitted for publication elsewhere. 1 2 E. GÜLER In this paper, we study the principal curvatures and the third fundamental form of the Ulisse Dini-type helicoidal hypersurface in Euclidean 4-space E4. We give some basic notions of four dimensional Euclidean geometry in section 2. In section 3, we give Ulisse Dini-type helicoidal hypersurface, and calculate its principal curvatures, and the third fundamental form in section 4. In addition, we give a conclusion in the last section. 2. Preliminaries In this section, we introduce the fundamental form matrices I, II, III, the shape operator ma- trix S; the Gaussian curvature K, and the mean curvature H of a hypersurface M = M(u; v; w) in the Euclidean 4-space E4. Let M be an isometric immersion of a hypersurface M 3 in the E4. The inner product of !x = (x1; x2; x3; x4); !y = (y1; y2; y3; y4), and the vector product of !x ; !y ; !z = (z1; z2; z3; z4) on E4 are de…ned by x y = x1y1 + x2y2 + x3y3 + x4y4; ! ! e1 e2 e3 e4 x1 x2 x3 x4 !x !y !z = det 0 1 ; y1 y2 y3 y4 B z1 z2 z3 z4 C B C @ A respectively. A hypersurface M in 4-space has the …rst and the second fundamental form matrices EFA LMP I = FGB ;II = MNT ; 0 ABC 1 0 PTV 1 @ A @ A respectively. Here, E = Mu Mu;F = Mu Mv;G = Mv Mv;A = Mu Mw;B = Mv Mw;C = Mw Mw; L = Muu e; M = Muv e; N = Mvv e; P = Muw e; T = Mvw e; V = Mww e; and e is the Gauss map Mu Mv Mw e = : Mu Mv Mw k k 1 Hence, I :II gives the shape operator matrix of M s s s 1 11 12 13 S = s21 s22 s23 ; det I 0 1 s31 s32 s33 @ A where det I = (EG F 2)C A2G + 2ABF B2E; THE PRINCIPAL CURVATURES AND THE THIRD FUNDAMENTAL FORM 3 2 s11 = ABM CFM AGP + BF P + CGL B L; 2 s12 = ABN CFN AGT + BF T + CGM B M; 2 s13 = ABT CFT AGV + BF V + CGP B P; 2 s21 = ABL CFL + AF P BP E + CME A M; 2 s22 = ABM CFM + AF T BT E + CNE A N; 2 s23 = ABP CFP + AF V BV E + CTE A T; 2 s31 = AGL + BF L + AF M BME + GP E F P; 2 s32 = AGM + BF M + AF N BNE + GT E F T; 2 s33 = AGP + BF P + AF T BT E + GV E F V: Therefore, using II:S, we get the third fundamental form matrix 1 III = ; det I 0 1 where @ A = A2M 2 + 2ABLM + 2AF MP 2GALP B2L2 + 2BF LP 2EBMP F 2P 2 2CF LM + CGL2 + CEM 2 + GEP 2; = ABM 2 CFM 2 B2LM A2MN F 2PT + CMNE BNP E BMT E + GP T E + ABLN CF LN + CGLM +AF NP AGMP + BF MP + AF MT AGLT + BF LT; = BF P 2 AGP 2 B2LP A2MT F 2PV + CMTE BMV E BP T E + GP V E + ABMP + ABLT CFMP +CGLP CF LT + AF MV AGLV + BF LV + AF P T; = A2N 2 + 2ABMN + 2AF NT 2GAMT B2M 2 + 2BF MT 2EBNT F 2T 2 2CFMN + CGM 2 + CEN 2 + GET 2; = AF T 2 B2MP A2NT F 2TV BT 2E + CNTE BNV E + GT V E + ABNP + ABMT CFNP + CGMP CFMT + AF NV AGMV + BF MV AGP T + BF P T; = A2T 2 + 2ABP T + 2AF T V 2GAP V B2P 2 + 2BF P V 2EBT V F 2V 2 2CFPT + CGP 2 + CET 2 + GEV 2: 3. The Principal Curvatures and the Third Fundamental Form of the Dini-Type Helicoidal Hypersurface We consider Dini-type helicoidal hypersurface sin u cos v cos w sin u sin v cos w D(u; v; w) = ; (1) 0 sin u sin w 1 B cos u + log tan u + av + bw C B 2 C @ A 4 E. GÜLER where u R 0 and 0 v; w 2: Using the …rst di¤erentials of (1) with respect to u; v; w; we get the2 …rstnf quantitiesg cot2 u a cot u cos u b cot u cos u I = a cot u cos u sin2 u cos2 w + a2 ab ; 0 b cot u cos u ab sin2 u + b2 1 and then, we have det I @= b2 + 1 cos2 w + a2 sin2 u cos2 u: The GaussA map of (1) is given by cos ucos v cos2 w + a sin v b cos v sin w cos w 1 cos u sin v cos2 w + a cos v b sin v sin w cos w eD = 0 1 ; (2) pW (cos u sin w + b cos w) cos w B sin u cos w C B C where W = b2 + 1 cos2 w +@a2: Using the second di¤erentials of the (1) withA respect to u; v; w; with (2) ; we have the second quantities of the (1) cot u cos w a cos u cos w b cos u cos w 1 II = a cos u cos w (b sin w cos u cos w) sin u cos2 w a sin u sin w : 1=2 W 0 b cos u cos w a sin u sin w sin u cos u cos w 1 1 @ A Computing I :S; we obtain the shape operator matrix of (1) 2 2 3 sin u cos w a cos w a (b cos w+cos u sin w)+b(b +1) cos w W 1=2 cos u W 1=2 cos u W 3=2 cos u 2 b sin w cos u cos w a(b +1) sin w S = 0 0 1 : (3) W 1=2 sin u W 3=2 sin u a2(b sin w cos u cos w) (b2+1) cos u cos3 w B 0 a sin w C B W 1=2 sin u W 3=2 sin u C @ A Theorem 1. Let D : M 3 E4 be an immersion given by (1). Then, characteristic polynomial of the (3) of the (1) !is given by X3 + pX2 + qX + r = 0: where cos2 u cos3 w + b2 cos2 u cos3 w + W cos2 u cos w W cos w sin2 u + a2 cos2 u cos w 8 bW cos u sin w a2b cos u sin w 9 p = < =; W 3=2 cos u sin u : cos3 u cos4 w + a2 cos3 u cos2 w + b2 cos3 u cos4 w ; a2 cos u sin2 w cos u cos4 w sin2 u 8 2 2 2 2 2 9 > W cos u cos w sin u a cos u cos w sin u > > 2 4 2 3 2 3 > > b cos u cos w sin u b cos u cos w sin w > <> b cos2 u cos3 w sin w +bW cos w sin2 u sin w => 2a2b cos2 u cos w sin w + a2b cos w sin2 u sin w q = > >; > 2 2 > > W cos u sin u > : a2 sin2 w cos2 u cos4 w a2 cos2 u cos2 w ; b2 cos2 u cos4 w + b cosu cos3 w sin w cos w 8 +b3cos u cos3 w sin w + 2a2b cos u cos w sin w 9 r = < = : W 5=2 sin u cos u : ; THE PRINCIPAL CURVATURES AND THE THIRD FUNDAMENTAL FORM 5 Proof.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us