BD3 Solving the Crystal Structure Of

Total Page:16

File Type:pdf, Size:1020Kb

BD3 Solving the Crystal Structure Of IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography BD3 Solving the crystal structure of massicot (PbO) Massicot is a naturally-occurring form of lead(II) oxide produced by the oxidation of lead ores. Unfortunately, it is not one of the most visually spectacular minerals known to mankind. But it is one of the most dense: a cubic centimetre of the material weighs in at just under 10 g, which is only slightly less than metallic lead itself. Together with its dimorphic cousin litharge (the more common and more colourful form of PbO), massicot has been used for centuries in the manufacture of paints, ceramics, glasses, and – more recently – in batteries. In this demonstration we are going to attempt to solve the crystal structure of massicot us- ing x-ray diffraction data. The idea of the exercise is to bring together the different aspects of the course: we are going to need to use our knowledge of symmetry and reciprocal space and our understanding of diffraction experiments themselves. Hopefully, by the end of the exercise you will have an appreciation for how all the techniques we have learned come together to enable us to determine the arrangement of atoms in minerals. This demonstration uses a java applet, which is located at: http://rock.esc.cam.ac.uk/∼alg44/teaching ib bd3.html Unit cell (i) Diffraction photographs taken parallel to the three crystal axes are shown overleaf. The axis labels are arbitrary, but consistent across the three images. To what point group does the diffraction pattern belong, and hence in which crystal system does massicot crystallise? (ii) It is known from independent physical measurements that the crystal structure of massicot must be centrosymmetric. To what point group must its structure belong? IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography BD3 IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography BD3 (iii) The central squares drawn on each diffraction photograph are scaled such that they cut the axes at points in the diffraction pattern exactly 1 A˚ −1 away from the central (000) peak. Use this to calculate the (real-space) lattice parameters of massicot. (iv) Recalling that the density of PbO is close to 10 g cm−3, calculate how many formula units must be contained within each unit cell. (Atomic masses: Pb = 207.2 g mol−1; O = 15.999 g mol−1) (v) Illustrate on the diagrams which are the (020) and (102)¯ reflections. Space group (vi) List the reflection conditions for each of the three planes shown in the diffraction photographs, and decide the minimum number of rules needed to account for all systematic absences. (vii) Hence determine the space group, taking into account the fact that massicot is cen- trosymmetric. (viii) Draw the corresponding space group diagram, using a view that includes the a and b axes within the plane of the paper. Include on your diagram the rotation or screw axes that are generated by other symmetry elements, and also indicate the locations of the centres of symmetry. (ix) How many general positions are there in this space group? What general implication does this have for the positions of the Pb and O atoms? Atom positions (x) The atomic number of Pb is 82 while that of O is 8. What does this tell us about the sensitivity of x-ray diffraction patterns to the positions of the Pb and O atoms? (xi) We know that the Pb atoms must lie on a symmetry element. Using your space group diagram, see if you can determine the four different sets of positions possible for the Pb atoms. As a hint, two of these can be obtained by placing Pb atoms on centres of symmetry, and the other two will involve other symmetry elements. In order to distinguish between these four possibilities, we are going to use the Patterson method. This involves calculating the Fourier transform of the observed intensities, which gives us a map of the different interatomic vectors (the Patterson map). Instead of calcu- lating the entire three-dimensional Fourier transform, we are going to restrict ourselves to the (hk0) reflections, which will give us information about the structure as if it had been projected onto the (a,b) plane. (xii) For each of the four possible sets of Pb atom positions, sketch the distribution of the first few interatomic vectors projected onto the (a,b) plane. Use these to suggest what the corresponding Patterson map would be expected to look like in each case. IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography BD3 Now open the web page http://rock.esc.cam.ac.uk/∼alg44/teaching ib bd3.html to access the java applet we are going to use: The way this applet works is that we can enter the intensities of (hk0) reflections and it will automatically calculate the Patterson map as we go. To enter intensities, you have to select the appropriate reflection first. This can be done by clicking the individual reflection in the top right-hand panel, or by entering the h and k values in the top left-hand panel. We then enter the intensity value in the “|F|” box (making sure the phase is set to zero), and select “Set SF”. You should notice that the relevant square on the reflection diagram becomes coloured red (the intensity being proportional to the value just entred), and the Patterson map in the bottom right-hand corner should change. The program already knows Friedel’s law, so entering an intensity for (hk0) will add the same value for (h¯k0);¯ however, you will need to apply any additional Laue symmetry yourself. (xiii) The strongest measured intensities for |h,k| ≤ 4 are listed overleaf. Enter these into the applet and sketch the Patterson map it calculates. Does this correspond to any of the maps you were expecting? Can you now deduce the positions of the Pb atoms? (xiv) What additional information would you need to be able to determine the positions of the O atoms? (xv) Draw a quick sketch of the crystal structure of massicot, illustrating just the Pb atoms. IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography BD3 Reflection Intensity (arb. units) Reflection Intensity (arb. units) (000) 1000 (230) 60 (010) 88 (400) 152 (200) 938 (040) 151 (020) 901 (420) 152 (220) 481 (240) 144 (030) 132 (440) 103 (310) 115.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • A Pxrf in Situ Study of 16Th–17Th Century Fresco Paints from Sviyazhsk (Tatarstan Republic, Russian Federation)
    minerals Article A pXRF In Situ Study of 16th–17th Century Fresco Paints from Sviyazhsk (Tatarstan Republic, Russian Federation) Rezida Khramchenkova 1,2, Corina Ionescu 2,3,*, Airat Sitdikov 1,2,4, Polina Kaplan 1,2, Ágnes Gál 3 and Bulat Gareev 1 1 Analytical and Restoration Department, Institute of Archaeology of Tatarstan Academy of Science, 30, Butlerova St., 420012 Kazan, Tatarstan, Russia; [email protected] (R.K.); [email protected] (A.S.); [email protected] (P.K.); [email protected] (B.G.) 2 Archeotechnologies & Archeological Material Sciences Laboratory, Institute of International Relations, History and Oriental Studies, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420000 Kazan, Tatarstan, Russia 3 Department of Geology, Babe¸s-BolyaiUniversity, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania; [email protected] 4 Laboratory of Isotope and Element Analysis, Institute of Geology and Petroleum Technologies, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420000 Kazan, Tatarstan, Russia * Correspondence: [email protected] Received: 13 December 2018; Accepted: 13 February 2019; Published: 15 February 2019 Abstract: Twenty frescoes from “The Assumption” Cathedral located in the island town of Sviyazhsk (Tatarstan Republic, Russian Federation)—dated back to the times of Tsar Ivan IV “the Terrible”—were chemically analyzed in situ with a portable X-ray fluorescence (pXRF) spectrometer. The investigation focused on identifying the pigments and their combinations in the paint recipes. One hundred ninety-three micropoints randomly chosen from the white, yellow, orange, pink, brown, red, grey, black, green, and blue areas were measured for major and minor elements. The compositional types separated within each color indicate different recipes.
    [Show full text]
  • B Clifford Frondel
    CATALOGUE OF. MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM -B CLIFFORD FRONDEL BU.LLETIN OF THEAMRICANMUSEUM' OF NA.TURAL HISTORY. VOLUME LXVII, 1935- -ARTIC-LE IX- NEW YORK Tebruary 26, 1935 4 2 <~~~~~~~~~~~~~7 - A~~~~~~~~~~~~~~~, 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 4 A .~~~~~~~~~~~~~~~~~~~~~~~~~~4- -> " -~~~~~~~~~4~~. v-~~~~~~~~~~~~~~~~~~t V-~ ~~~~~~~~~~~~~~~~ 'W. - /7~~~~~~~~~~~~~~~~~~~~~~~~~~7 7-r ~~~~~~~~~-A~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -'c~ ~ ~ ' -7L~ ~ ~ ~ ~ 7 54.9:07 (74.71) Article IX.-CATALOGUE OF MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM OF NATURAL HISTORY' BY CLIFFORD FRONDEL CONTENTS PAGE INTRODUCTION .................. 389 Definition.389 Literature.390 New Pseudomorphse .393 METHOD OF DESCRIPTION.393 ORIGIN OF SUBSTITUTION AND INCRUSTATION PSEUDOMORPHS.396 Colloidal Origin: Adsorption and Peptization.396 Conditions Controlling Peptization.401 Volume Relations.403 DESCRIPTION OF SPECIMENS.403 INTRODUCTION DEFINITION.-A pseudomorph is defined as a mineral which has the outward form proper to another species of mineral whose place it has taken through the action of some agency.2 This precise use of the term excludes the regular cavities left by the removal of a crystal from its matrix (molds), since these are voids and not solids,3 and would also exclude those cases in which organic material has been replaced by quartz or some other mineral because the original substance is here not a mineral. The general usage of the term is to include as pseudomorphs both petrifactions and molds, and also: (1) Any mineral change in which the outlines of the original mineral are preserved, whether this surface be a euhedral crystal form or the irregular bounding surface of an embedded grain or of an aggregate. (2) Any mineral change which has been accomplished without change of volume, as evidenced by the undistorted preservation of an original texture or structure, whether this be the equal volume replacement of a single crystal or of a rock mass on a geologic scale.
    [Show full text]
  • Oxidized Zinc Deposits of the United States Part 2
    Oxidized Zinc Deposits of the United States Part 2. Utah By ALLEN V. HEYL GEOLOGICAL SURVEY BULLETIN 1135-B A detailed study of the supergene zinc deposits of Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printin~ Office Washin~ton 25, D.C. CONTENTS Page Abstract ____________________ ~------------------------------------- B1 Introduction______________________________________________________ 1 Fieldwork____________________________________________________ 1 Acknowledgments_____________________________________________ 2 Geology__________________________________________________________ 2 Location of the deposits________________________________________ 2 ~ineralogy___________________________________________________ 3 Secondary zinc minerals_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Smithsonite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 H emimorphite (calamine) __ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 Hydrozincite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ 7 Aurichalcite_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 7 VVurtzite_____________________________________________ 8 Other secondary zinc minerals___________________________ 8 Associated minerals__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Crystal Structure, Morphology and Formation Mechanism of a Novel
    Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO 2 Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redjaïmia, Thierry Belmonte To cite this version: Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redjaïmia, Thierry Belmonte. Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO 2. Jour- nal of Applied Crystallography, International Union of Crystallography, 2019, 52 (2), pp.304-311. 10.1107/S1600576719001079. hal-02105360 HAL Id: hal-02105360 https://hal.univ-lorraine.fr/hal-02105360 Submitted on 20 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. electronic reprint ISSN: 1600-5767 journals.iucr.org/j Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2 Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redja¨ımia and Thierry Belmonte J. Appl. Cryst. (2019). 52, 304–311 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE Copyright c International Union of Crystallography Author(s) of this article may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
    [Show full text]
  • Product Catalog Product Catalog Product
    KREMER /// PRODUCT CATALOG www.kremerpigments.com PRODUCT CATALOG Table of Contents Pigments 01 TABLE OF Dyes & Vegetable Color CONTENTS Paints 02 Fillers & Building Materials 03 Mediums, Binders & Glues 04 Solvents, Chemicals & Additives 05 Ready-made Colors & Gilding Materials 3 01 Pigments 06 31 02 Dyes & Vegetable Color Paints Linen, Paper 35 03 Fillers & Building Materials & Foils 41 04 Mediums, Binders & Glues 53 05 Solvents, Chemicals & Additives 07 56 06 Ready-made Colors & Gilding Brushes Materials 66 07 Linen, Paper & Foils 08 69 08 Brushes Tools, Packaging & 74 09 Tools, Packaging & Supplies Supplies 10 82 Books & Color Charts 09 85 11 General Information Books & Color Charts 10 General Information 11 For further information and prices please visit us at www.kremerpigments.com 1 Icon-Legend ICON-LEGEND The following Icons are used in the brochure: Hazardous Item Read the Material Safety Data sheet carefully – you can find all Disclaimer product sheets under www.kremerpigments.com and consult our safe handling procedures – see Chapter 11. Not for home use! To buy this product you have to be over 21 years old. Please send us a copy of your identity card . These products require a Hazardous Item Disclaimer. Please fill out the form on page 116 or at www. kremerpigments. com and submit with your order. Cautionary Products may contain hazardous substances. Label Read the ACMI cautionary label carefully and consult our safe handling procedures – see Chapter 11. For further product-specific information please visit us at www.kremerpigments.com. Approved Products bearing the AP Product Seal of ACMI are certified in a Product program of toxicological evaluation By a medical expert to con- tain no materials in suMcient quantities to be toxic or injurious to humans or cause acute or chronic health problems.
    [Show full text]
  • 1 Lecture 9: Worked Example
    Crystallography Supplementary Subject Lecture 9: Worked Example 1 Lecture 9: Worked Example Massicot is a naturally-occurring form of lead(II) oxide produced by the oxidation of lead ores. Unfortunately, it is not one of the most visually spectacular minerals known to mankind. But it is one of the most dense: a cubic centimetre of the material weighs in at just under 10 g, which is only slightly less than metallic lead itself. Together with its dimorphic cousin litharge (the more common and more colourful form of PbO), massicot has been used for centuries in the manufacture of paints, ceramics, glasses, and – more recently – in batteries. The idea of this exercise is to use x-ray diffraction images to determine the space group of massicot and to draw some conclusions regarding the arrangement of Pb and O atoms in its structure. Unit cell (i) Diffraction photographs taken parallel to the three crystal axes are shown overleaf. The axis labels are arbitrary, but consistent across the three images. To what point group does the diffraction pattern belong, and hence in which crystal system does massicot crystallise? (ii) It is known from independent physical measurements that the crystal structure of massicot must be centrosymmetric. To what point group must its structure belong? Crystallography Supplementary Subject Lecture 9: Worked Example 2 Crystallography Supplementary Subject Lecture 9: Worked Example 3 (iii) The central squares drawn on each diffraction photograph are scaled such that they cut the axes at points in the diffraction pattern exactly 1 A˚ −1 away from the central (000) peak. Use this to calculate the (real-space) lattice parameters of massicot.
    [Show full text]
  • Chemistry of Galena and Some Associated Sulfosalts
    Canadian Mineralogist Vol. 27, pp. 363-382 (1989) THE Pb-Bi-Ag-Cu-(Hg) CHEMISTRY OF GALENA AND SOME ASSOCIATED SULFOSAL TS: A REVIEW AND SOME NEW DATA FROM COLORADO, CALIFORNIA AND PENNSYLVANIA EUGENE E. FOaRD AND DANIEL R. SHAWE M.S. 905, U.S. Geological Survey, Box 25046, Denver Federal Center, Lakewood, Colorado 80225, U.S.A. ABSTRACT fures simples dans les indices mineralises 1) de Dandy a la Galena, associated with Pb-Bi-Ag sulfosalts and sim- mine Idarado, a Ouray, au Colorado, 2) de la mine Jackass, ple sulfides, contains varied amounts of Ag and Bi in the camp minier de Darwin, en Californie, et 3) du camp minier Dandy vein system, Idarado mine, Ouray, Colorado; the de Leadville, au Colorado, contient des quantites variables Jackass mine, Darwin District, California; and the Lead- de Ag et de Bi. De plus, nous trouvons la galene ainsi enri- ville district, Colorado. Silver- and bismuth-bearing galena chie associee a des quantites accessoires de pyrite, chalcopy- associated with minor amounts of pyrite, chalcopyrite and rite et sphalerite dans la mine de Pequea, comte de Lan- sphalerite occur at the Pequea mine, Lancaster County, caster, en Pennsylvanie. Les teneurs de Ag et de Bi dans Pennsylvania. Ag and Bi contents in the Dandy suite of la galene de Dandy se situent entre 1.4 et 3.4% et entre 2.5 galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.OJo et 6.5% (par poids), respectivement, et ressemblent ou sont respectively, and are comparable or lower in galena from moins elevees qu'aux autres endroits.
    [Show full text]
  • Are Cfiromates from Sefi-Cha119ij Iran
    .are Cfiromates from Sefi-Cha119iJ Iran by Pierre Darland and J. F. Poullen Laboratoire de Mineralogie et Cristallographie Universite Pierre et Marie Curie, tour 16-26 4, place Jussieu, 75230 Paris, France hoenicochroite, fomacite, iranite and hemihedrite, all rare chro- Pmates of lead, zinc and copper, occur in association with cerus- site, phosgenite, wulfenite, mimetite, diaboleite, willemite, hemi- morphite, hydrocerussite, beta-duftite, massicot and chrysocolla in the Seh-Changi lead-zinc-copper deposit in eastern Iran. LOCATION evidenced by fragments of sulfides which can be seen rolled in the The Seh-Changi deposit is situated in one of the least-known mineralized volcanic breccia at the contact of the principal fault. kl::.i!re~~iOIlsof Iran, the southern part of Khorassan near the far eastern This breccia is the principal element of the major subvertical vein fJrf~tbolrd(~rwith Afghanistan. The region is completely desert with very which cuts the series; it has a thickness varying from 0.2 to 5 m ,nlod.erate relief (the Lut Desert). The area is reached by desert (Burnol, 1968). The mineralization cements fragments of the 207 km southeast of Tabas, near the settlements of Nayband enclosing rock, which is brecciated and bleached by hydrothermal Dehuk, which lie at 55 and 90 km respectively from the mine alteration. These veins were the object of important workings in the workings. past which have been deepened in pits that reach the watertable (at a depth of 40 m). Workings have more recently been reopened on OESCRIPTION OF THE MINERALIZED REGION the principal vein and later on others.
    [Show full text]
  • Native Lead at Keno Hill, Yukon R. W. Boyle
    Canadian Mineralogist Vol. 14, p.577 (1976) NATIVE LEAD AT KENO HILL, YUKON R. W. BOYLE Geological Survey of Canada, Ottawa KIA 0E8 Recent investigations of the heavy-mineral processg6all amounts of lead are mobile as the concentrates from the oxidized zones of the sulfate, carbonate, and probably also as organic lead-zinc-silver deposits, their overlying soils, (humic) compounds. Disintegration of the humic and the stream sedimentsof the Keno Hill area, ligands in the last type of compounds as a re- Yukon (Gleeson& Boyle in press)have revealed sult of oxidation processes would precipitate the occasional occurrence of native lead. The native lead. Reduction of the sulfate and car- mineral occurs as small ((50 microns) irre- bonate, perhaps by reaction with organic com- gularly rounded massesand thin plates; rarely pounds, may also have produced the native as microscopic dendrites and poorly formed lead, although this mechanism seemsless likely crystals. The most intimate associatein some, than the oxidation of humic compounds. but not all, occurrences is litharge which may It is interesting that four native elements occur as a thin coating on the lead. Other as- have now been identified in the lodes and their sociates are cerussite, massicot(?), wad, and oxidation products at Keno Hill, including na- limonite. Spectrographic analyses of the native tive silver, native gold, native zinc (Boyle 1961), lead indicate the presence of strong traces to and native lead. minor amounts of arsenic and tin and traces of A specimen has been filed in the systematic Ag,Ba,Bi,Co,Cu,Ni, and Sb. reference series of the National Mineral Col- The source of the native lead is undoubtedly leqtion at the Geological Survey of Canada the lead-zinc-silver lodes in which lead as the (No.
    [Show full text]
  • Oxidation of a Sulfide Body, Glove Mine, Santa Cruz County, Arizona
    Economic Geology Vol. 61, 1966, pp. 731-743 OXIDATION OF A SULFIDE BODY, GLOVE MINE, SANTA CRUZ COUNTY, ARIZONA HARRY J. OLSON ABSTRACT The Glove Mine is located on the southern extremity of an isolated syncllnalsedimentary block of Paleozoicand Cretaceous sediments on the southernflank of the Santa Rita Mountains in Santa Cruz County about forty miles southof Tucson, Arizona. Fluids probably associatedwith a Laramide (?) quartz monzonitein- trusive•havedeposited argentiferous galena, sphalerite, chalcopyrite, pyrite, and quartz along permeablezones causedby fault intersectionswithin a favorablelimestone bed of the Pennsylvanian-PermianNaco group. As a result of extensiveoxidation, only relics of the primary sulfidesexist in the minedportion of the deposit. Cerussite,and lesseramounts of angle- site, wulfenite,smithsonite, and other oxidationproducts of the primary sulfides have been conten{rated in solution caverns. The ore body can be divided into three general zoneson the basis of metalcontent and mineral assemblage. These zones are (A) the upper oxidizedand leachedzone, (B) the silver-enrichedintermediate zone, and .(C) the sulfidezone. The behaviorof individualmetals and minerals is dependentupon local Eh-pH conditionsas well as other environmental factorsaffecting mineral stability. In responseto changesin environment, mineraland metalassemblages vary not only betweenthe zonesbut within them as well. INTRODUCTION THE GloveMine is a small,oxide, lead-silver-zinc deposit about 40 miles southof Tucson,Arizona. The mine is in the Tyndall Mining District in section30, T20S, R14E, on the southwesternflank of the Santa Rita Moun- tainsat an elevationof approximately4,200 feet (Fig. 1). The originalclaims of the Glovegroup were located in 1907. Production commencedin 1911and has continued intermittently under various operators until thepresent. The bulkof productiontook place from 1951to 1959under the managementof the SunriseMining Company,which produced from 20 to 25 tonsof lead-silverore per day.
    [Show full text]