Oxidized Zinc Deposits of the United States Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Oxidized Zinc Deposits of the United States Part 2 Oxidized Zinc Deposits of the United States Part 2. Utah By ALLEN V. HEYL GEOLOGICAL SURVEY BULLETIN 1135-B A detailed study of the supergene zinc deposits of Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printin~ Office Washin~ton 25, D.C. CONTENTS Page Abstract ____________________ ~------------------------------------- B1 Introduction______________________________________________________ 1 Fieldwork____________________________________________________ 1 Acknowledgments_____________________________________________ 2 Geology__________________________________________________________ 2 Location of the deposits________________________________________ 2 ~ineralogy___________________________________________________ 3 Secondary zinc minerals_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Smithsonite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 H emimorphite (calamine) __ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 Hydrozincite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ 7 Aurichalcite_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 7 VVurtzite_____________________________________________ 8 Other secondary zinc minerals___________________________ 8 Associated minerals__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 9 Relation of oxidized zinc deposits to rock types____________________ 9 Types of supergene zinc deposits________________________________ 12 Deposits formed by direct replacement of primary deposits_____ 14 Deposits formed by replacement of wallrock_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 17 Deposits formed by sulfide enrichment within the primary ores_-· 21 Origin of oxidized zinc deposits__________________________________ 21 Geologic features favorable for prospecting________________________ 23 Production and reserves____________________________________________ 24 History of production___________________________________ _ _ _ _ _ _ _ 24 Reserves_____________________________________________________ 27 Prospects for future development of reserves______________________ 27 Prospects for future development of markets and processing of ores__ 28 Description of oxidized zinc districts and deposits______________________ 29 Box Elder County_____________________________________________ 34 Lucin district_ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 34 Promon tory district____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 7 Newfoundland district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 39 Sierra ~adre district_______________________________________ 39 Tecoma district_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 40 Silver Islet district ___________________ ~_____________________ 41 Cache County_________________________________________________ 41 Swan Creek district________________________________________ 41 Hyrum or Paradise district_________________________________ 42 ~organ County_______________________________________________ 43 Argentia district____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 43 Salt Lake County_____________________________________________ 44 Alta area-Big Cottonwood district__________________________ 44 Alta area-Little Cottonwood district________________________ 47 Summit County_______________________________________________ 50 Beaver Creek lead-zinc mine________________________________ 50 Park City or Uintah district________________________________ 50 lll IV CONTENTS Description of oxidized zinc districts and deposits-Continued Page Dagget and Uintah Counties____________________________________ B52 Carbonate district____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 52 Tooele County________________________________________________ 53 Blue Bell district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 53 Dugway district________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 53 Free Coinage or Timpie Canyon district______________________ 54 Erickson district_________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 54 Columbia district__________________________________________ 55 Lakeside district_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 56 Gold Hill district__________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 58 Rush Valley district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 60 Dry Canyon and Ophir districts_____________________________ 61 Lion Hill district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 62 Mercur or Camp Floyd district_ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 62 North Tintic district_______________________________________ 63 Utah County_________________________________________________ 66 American Fork district (Alta area)___________________________ 66 Alpine district_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 7 Provo district_____________________________________________ 68 Santaquin district_________________________________________ 69 East Tintic district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 70 Juab County__________________________________________________ 72 Tintic district_____________________________________________ 72 West Tintic district________________________________________ 76 Fish Springs district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 78 Spring Creek district_______________________________________ 80 Mount Nebo and Mona districts____________________________ 81 Emery County________________________________________________ 85 Summerville, Emery, or Lost Springs district__________________ 85 Sevier County_________________________________________________ 85 Redmond district __________________________________ _:________ 85 Millard County _______________ .:._______________________________ 86 Black Rock area___________________________________________ 86 Gordon (Kanosh) district___________________________________ 87 Notch Peak d~trict________________________________________ 87 Beaver County________________________________________________ 87 Granite district____________________________________________ 87 Bradshawd~trict__________________________________________ 88 Lincoln district____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 89 Beaver Lake district_______________________________________ 89 Rocky district________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 90 Star district_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 90 San Francisco district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 93 Pine Grove district_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 94 Piute County_________________________________________________ 96 Ohio district______________________________________________ 96 Iron County__________________________________________________ 96 Escalante district__________________________________________ 96 Indian Peak district___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 97 Washington County___________________________________________ 97 Tutsagabet district_ _____________________________________ :._ 97 Selected references___________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 98 Index____________________________________________________________ 101 CONTENTS v ILLUSTR.ATTONS [Plates are in pocket] PLATE 1.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • A Pxrf in Situ Study of 16Th–17Th Century Fresco Paints from Sviyazhsk (Tatarstan Republic, Russian Federation)
    minerals Article A pXRF In Situ Study of 16th–17th Century Fresco Paints from Sviyazhsk (Tatarstan Republic, Russian Federation) Rezida Khramchenkova 1,2, Corina Ionescu 2,3,*, Airat Sitdikov 1,2,4, Polina Kaplan 1,2, Ágnes Gál 3 and Bulat Gareev 1 1 Analytical and Restoration Department, Institute of Archaeology of Tatarstan Academy of Science, 30, Butlerova St., 420012 Kazan, Tatarstan, Russia; [email protected] (R.K.); [email protected] (A.S.); [email protected] (P.K.); [email protected] (B.G.) 2 Archeotechnologies & Archeological Material Sciences Laboratory, Institute of International Relations, History and Oriental Studies, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420000 Kazan, Tatarstan, Russia 3 Department of Geology, Babe¸s-BolyaiUniversity, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania; [email protected] 4 Laboratory of Isotope and Element Analysis, Institute of Geology and Petroleum Technologies, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420000 Kazan, Tatarstan, Russia * Correspondence: [email protected] Received: 13 December 2018; Accepted: 13 February 2019; Published: 15 February 2019 Abstract: Twenty frescoes from “The Assumption” Cathedral located in the island town of Sviyazhsk (Tatarstan Republic, Russian Federation)—dated back to the times of Tsar Ivan IV “the Terrible”—were chemically analyzed in situ with a portable X-ray fluorescence (pXRF) spectrometer. The investigation focused on identifying the pigments and their combinations in the paint recipes. One hundred ninety-three micropoints randomly chosen from the white, yellow, orange, pink, brown, red, grey, black, green, and blue areas were measured for major and minor elements. The compositional types separated within each color indicate different recipes.
    [Show full text]
  • B Clifford Frondel
    CATALOGUE OF. MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM -B CLIFFORD FRONDEL BU.LLETIN OF THEAMRICANMUSEUM' OF NA.TURAL HISTORY. VOLUME LXVII, 1935- -ARTIC-LE IX- NEW YORK Tebruary 26, 1935 4 2 <~~~~~~~~~~~~~7 - A~~~~~~~~~~~~~~~, 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 4 A .~~~~~~~~~~~~~~~~~~~~~~~~~~4- -> " -~~~~~~~~~4~~. v-~~~~~~~~~~~~~~~~~~t V-~ ~~~~~~~~~~~~~~~~ 'W. - /7~~~~~~~~~~~~~~~~~~~~~~~~~~7 7-r ~~~~~~~~~-A~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -'c~ ~ ~ ' -7L~ ~ ~ ~ ~ 7 54.9:07 (74.71) Article IX.-CATALOGUE OF MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM OF NATURAL HISTORY' BY CLIFFORD FRONDEL CONTENTS PAGE INTRODUCTION .................. 389 Definition.389 Literature.390 New Pseudomorphse .393 METHOD OF DESCRIPTION.393 ORIGIN OF SUBSTITUTION AND INCRUSTATION PSEUDOMORPHS.396 Colloidal Origin: Adsorption and Peptization.396 Conditions Controlling Peptization.401 Volume Relations.403 DESCRIPTION OF SPECIMENS.403 INTRODUCTION DEFINITION.-A pseudomorph is defined as a mineral which has the outward form proper to another species of mineral whose place it has taken through the action of some agency.2 This precise use of the term excludes the regular cavities left by the removal of a crystal from its matrix (molds), since these are voids and not solids,3 and would also exclude those cases in which organic material has been replaced by quartz or some other mineral because the original substance is here not a mineral. The general usage of the term is to include as pseudomorphs both petrifactions and molds, and also: (1) Any mineral change in which the outlines of the original mineral are preserved, whether this surface be a euhedral crystal form or the irregular bounding surface of an embedded grain or of an aggregate. (2) Any mineral change which has been accomplished without change of volume, as evidenced by the undistorted preservation of an original texture or structure, whether this be the equal volume replacement of a single crystal or of a rock mass on a geologic scale.
    [Show full text]
  • Juab County Resource Management Plan
    Juab County Resource Management Plan: I. Scope and Authority Juab County consists of 2,183,681 acres of land of which the Federal Government controls 1,569,966 acres or 71.90% of the land area. Of the 1,569,966 acres 1,442,917 acres are managed by the Bureau of Land Management, the Forest Service controls 109,917 acres, and the Fish and Wildlife Department controls 17,992 acres. In accordance with law Juab County asserts planning authority over all lands and natural resources within its geographical boundaries including those lands administered by the United States to the maximum extent, provided such plans and policies of Juab County are consistent with federal law. This is so for the following reasons: 1. The United States Constitution at Article I Section 8 Clause 17 grants Congress the power of exclusive legislation only over the District of Columbia and other places purchased by the consent of State Legislatures for the erection of forts, magazines, arsenals, dock-yards, and other needful buildings. The Utah Legislature reinforced this principle at Utah Code 63L-1-201, by ceding jurisdiction to the United States only over those lands used for the purposes spelled out in the U.S. Constitution Article I Section 8 Clause 17. No such lands are located in Juab County. Therefore, there is no constitutional basis for the Federal Government to assert exclusive jurisdiction over any federal land in Juab County. As the Tenth Amendments to the United States Constitution states: “The powers not delegated to the United States by the Constitution, nor prohibited by it to the States, are reserved to the States respectively, or to the people.” 2.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East ...Tintic Mountains, Utah
    Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East ...Tintic Mountains, Utah G E 0 L 0 G I C A L S U R V E Y P R 0 F E S S I 0 N A L P A P E R 1025 Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East rrintic Mountains, Utah By H. T. MORRIS, R. C. DOUGLASS, and R. W. KOPF G E 0 L 0 G I CAL S lJ R V E Y P R 0 FE S S I 0 N A L PAP E R 1025 U N I T E D S T A T E S G 0 V E R N M E N T P R I N T I N G 0 F F I C E , WAS H I N G T 0 N : 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main en try under title: Morris, Hal Tryon, 1920- Stratigraphy and microfaunas of the Oquirrh Group in the southern East Tintic Mountains, Utah. (Geological Survey Professional Paper 1025) Bibliography: p. 20-22. 1. Geology, Stratigraphic--Pennsylvanian. 2. Geology, Stratigraphic--Permian. 3. Micropaleontology-­ Utah--Tintic Mountains. 4. Geology--Utah--Tintic Mountains. I. Douglass, Raymond Charles, joint author. II. Kopf, Rudolph William. III. Title. IV. Series: United States. Geological Survey. Professional Paper 1025. QE673.M67 551.7'52 77-10492 For -,ale by the Superintendent of Documents, U.S. GoYernment Printing Office \Vashington, D.C.
    [Show full text]
  • Crystal Structure, Morphology and Formation Mechanism of a Novel
    Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO 2 Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redjaïmia, Thierry Belmonte To cite this version: Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redjaïmia, Thierry Belmonte. Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO 2. Jour- nal of Applied Crystallography, International Union of Crystallography, 2019, 52 (2), pp.304-311. 10.1107/S1600576719001079. hal-02105360 HAL Id: hal-02105360 https://hal.univ-lorraine.fr/hal-02105360 Submitted on 20 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. electronic reprint ISSN: 1600-5767 journals.iucr.org/j Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2 Hiba Kabbara, Jaafar Ghanbaja, Abdelkrim Redja¨ımia and Thierry Belmonte J. Appl. Cryst. (2019). 52, 304–311 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE Copyright c International Union of Crystallography Author(s) of this article may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
    [Show full text]
  • Mesozoic Structure of the Newfoundland Mountains, Utah: Horizontal Shortening and Subsequent Extension in the Hinterland of the Sevier Belt
    Mesozoic structure of the Newfoundland Mountains, Utah: Horizontal shortening and subsequent extension in the hinterland of the Sevier belt RICHARD W. ALLMENDINGER | Department of Geological Sciences, Cornell University, Ithaca, New York 14853 TERESA E. JORDAN ABSTRACT ented at a low angle to bedding. Microfabric analysis of recrystallized The Newfoundland Mountains of northwestern Utah preserve an rocks in the contact aureole and unrecrystallized country rocks shows unusually complete record of Mesozoic deformation in the hinterland that most of the intracrystalline strain is pre-latest Jurassic in age and of the Sevier orogenic belt. Structural relations of Paleozoic miogeo- is characterized by layer-parallel shortening. Post-latest Jurassic in- clinal strata with the Newfoundland stock, which has biotite and tracrystalline strain is minor and records shortening originally ori- hornblende K/Ar ages of 153.2 ± 4.6 and 147.7 ± 4.4 m.y., respec- ented nearly vertical. The map geometries, geochronology, and tively, and dated quartz monzonite dikes (with K/Ar biotite ages of microfabric analysis suggest the following structural history (from 150.7 ± 4.5 and 143.7 ± 4.3 m.y. and a muscovite age of 149.1 ± 4.5 oldest to youngest): (1) pre-latest Jurassic regional shortening and m.y.) provide the basis for dating Mesozoic deformation in the range. thrusting and (2) syn- or post-latest Jurassic horizontal extension Geologic mapping at 1:24,000 has identified four geometric classes of during the Mesozoic. In the Cretaceous and early Tertiary,
    [Show full text]
  • Product Catalog Product Catalog Product
    KREMER /// PRODUCT CATALOG www.kremerpigments.com PRODUCT CATALOG Table of Contents Pigments 01 TABLE OF Dyes & Vegetable Color CONTENTS Paints 02 Fillers & Building Materials 03 Mediums, Binders & Glues 04 Solvents, Chemicals & Additives 05 Ready-made Colors & Gilding Materials 3 01 Pigments 06 31 02 Dyes & Vegetable Color Paints Linen, Paper 35 03 Fillers & Building Materials & Foils 41 04 Mediums, Binders & Glues 53 05 Solvents, Chemicals & Additives 07 56 06 Ready-made Colors & Gilding Brushes Materials 66 07 Linen, Paper & Foils 08 69 08 Brushes Tools, Packaging & 74 09 Tools, Packaging & Supplies Supplies 10 82 Books & Color Charts 09 85 11 General Information Books & Color Charts 10 General Information 11 For further information and prices please visit us at www.kremerpigments.com 1 Icon-Legend ICON-LEGEND The following Icons are used in the brochure: Hazardous Item Read the Material Safety Data sheet carefully – you can find all Disclaimer product sheets under www.kremerpigments.com and consult our safe handling procedures – see Chapter 11. Not for home use! To buy this product you have to be over 21 years old. Please send us a copy of your identity card . These products require a Hazardous Item Disclaimer. Please fill out the form on page 116 or at www. kremerpigments. com and submit with your order. Cautionary Products may contain hazardous substances. Label Read the ACMI cautionary label carefully and consult our safe handling procedures – see Chapter 11. For further product-specific information please visit us at www.kremerpigments.com. Approved Products bearing the AP Product Seal of ACMI are certified in a Product program of toxicological evaluation By a medical expert to con- tain no materials in suMcient quantities to be toxic or injurious to humans or cause acute or chronic health problems.
    [Show full text]
  • W9200094.Pdf
    STATE OF UTAH DEPARTt1EtJT OF tJATURAL RESOURCES Technical Publ ication No. 42 HYDROLOG IC RECOtJNA , SSANCE OF THE tWRTHERN GREAT SALT LAKE DESERT AND SUMMARY HYDROLOGIC RECONNAISSANCE OF NORTHWESTERN UTAH by Jerry C. Stephens, Hydrologist U. S. Geological Survey Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources Division of ~ater Rights 1974 CONTENTS Page Abstract ...........................................•....................... Introduction ••••.•••.••••.••••••••••••••••••••••••••••••••••••••••••••••••• 2 Previous studies and acknowledgments ••••••.•••••••••••••••••••••••••••••••• 3 Hydrologic reconnaissance of the northern Great Salt Lake Desert............................................................ 7 Location and general features •••••••••••.•.••••••••••••••••••.•.•.. 7 Hydrology •••••••••• ................................................ 7 Surface water •• ................................................ 7 Ground water ••••••••••••••••••••••••••••••••••••••••••••••••••• 11 Shallow brine aquifer ••• ................................... 12 Alluvial-fan aquifer ••• .................................... 16 Valley-fill aquifer 20 ot he r aqui fer 5 ••••••••••••••••••••••••••••••••••• 22 Discussion of recharge and discharge estimates ••••••••••••• 23 ~"a te r qua litY••••••• ........................................... 23 Potential for additional water-resources development •• 26 Summary of hydrology of northwestern Utah •••••••••••••••••••••••••••••••••• 26 Surface water .................•..•................................
    [Show full text]
  • A Route for the Overland Stage
    Utah State University DigitalCommons@USU All USU Press Publications USU Press 2008 A Route for the Overland Stage Jesse G. Petersen Follow this and additional works at: https://digitalcommons.usu.edu/usupress_pubs Part of the Creative Writing Commons, and the Environmental Sciences Commons Recommended Citation Petersen, J. G. (2008). A route for the overland stage: James H. Simpson's 1859 trail across the Great Basin. Logan: Utah State University Press. This Book is brought to you for free and open access by the USU Press at DigitalCommons@USU. It has been accepted for inclusion in All USU Press Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 6693-6_OverlandStageCVR.ai93-6_OverlandStageCVR.ai 5/20/085/20/08 10:49:4010:49:40 AMAM C M Y CM MY CY CMY K A Route for the Overland Stage Library of Congress Prints and Photographs Division. Colonel James H. Simpson shown during his Civil War service as an offi cer of the Fourth New Jersey infantry. A Route for the Overland Stage James H. Simpson’s 1859 Trail Across the Great Basin Jesse G. Petersen Foreword by David L. Bigler Utah State University Press Logan, Utah Copyright ©2008 Utah State University Press All rights reserved Utah State University Press Logan, Utah 84322-7800 www.usu.edu/usupress Manufactured in the United States of America Printed on recycled, acid-free paper ISBN: 978-0-87421-693-6 (paper) ISBN: 978-0-87421-694-3 (e-book) Library of Congress Cataloging-in-Publication Data Petersen, Jesse G.
    [Show full text]
  • 1 Lecture 9: Worked Example
    Crystallography Supplementary Subject Lecture 9: Worked Example 1 Lecture 9: Worked Example Massicot is a naturally-occurring form of lead(II) oxide produced by the oxidation of lead ores. Unfortunately, it is not one of the most visually spectacular minerals known to mankind. But it is one of the most dense: a cubic centimetre of the material weighs in at just under 10 g, which is only slightly less than metallic lead itself. Together with its dimorphic cousin litharge (the more common and more colourful form of PbO), massicot has been used for centuries in the manufacture of paints, ceramics, glasses, and – more recently – in batteries. The idea of this exercise is to use x-ray diffraction images to determine the space group of massicot and to draw some conclusions regarding the arrangement of Pb and O atoms in its structure. Unit cell (i) Diffraction photographs taken parallel to the three crystal axes are shown overleaf. The axis labels are arbitrary, but consistent across the three images. To what point group does the diffraction pattern belong, and hence in which crystal system does massicot crystallise? (ii) It is known from independent physical measurements that the crystal structure of massicot must be centrosymmetric. To what point group must its structure belong? Crystallography Supplementary Subject Lecture 9: Worked Example 2 Crystallography Supplementary Subject Lecture 9: Worked Example 3 (iii) The central squares drawn on each diffraction photograph are scaled such that they cut the axes at points in the diffraction pattern exactly 1 A˚ −1 away from the central (000) peak. Use this to calculate the (real-space) lattice parameters of massicot.
    [Show full text]