BAT Guide for Electric Arc Furnace Iron & Steel Installations

Total Page:16

File Type:pdf, Size:1020Kb

BAT Guide for Electric Arc Furnace Iron & Steel Installations Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı BAT Guide for electric arc furnace iron & steel installations Project TR-2008-IB-EN-03 Mission no: 2.1.4.c.3 Prepared by: Jesús Ángel Ocio Hipólito Bilbao José Luis Gayo Nikolás García Cesar Seoánez Iron & Steel Producers Association Serhat Karadayı (Asil Çelik Sanayi ve Ticaret A.Ş.) Muzaffer Demir Mehmet Yayla Yavuz Yücekutlu Dinçer Karadavut Betül Keskin Çatal Zerrin Leblebici Ece Tok Şaziye Savaş Özlem Gülay Önder Gürpınar October 2012 1 Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı Contents 0 FOREWORD ............................................................................................................................ 12 1 INTRODUCTION. ..................................................................................................................... 14 1.1 IMPLEMENTATION OF THE DIRECTIVE ON INDUSTRIAL EMISSIONS IN THE SECTOR OF STEEL PRODUCTION IN ELECTRIC ARC FURNACE ................................................................................. 14 1.2 OVERVIEW OF THE SITUATION OF THE SECTOR IN TURKEY ...................................................... 14 1.2.1 Current Situation ............................................................................................................ 14 1.2.2 Iron and Steel Production Processes............................................................................... 17 1.2.3 The Role Of Steel Sector in Turkish Economy .............................................................. 18 1.3 RELEVANT ENVIRONMENTAL IMPACTS OF THE SECTOR. .......................................................... 18 2 PRODUCTION PROCESSES AND TECHNIQUES ........................................................................ 21 2.1 STORAGE AND HANDLING OF RAW MATERIALS ....................................................................... 21 2.2 SCRAP CHARGING ...................................................................................................................... 23 2.3 ARC FURNACE MELTING AND REFINING. .................................................................................. 23 2.4 SECONDARY STEEL MAKING ...................................................................................................... 24 2.5 CASTING ..................................................................................................................................... 26 2.6 SLAG TREATMENT, LANDFILLS ................................................................................................... 30 2.7 HOT ROLLING MILLS .................................................................................................................. 31 2.7.1 Process Overview ........................................................................................................... 31 2.7.2 Surface Rectification and Conditioning of Input ............................................................ 42 2.7.3 Reheating- and Heat Treatment Furnaces ...................................................................... 43 2.7.4 Descaling ........................................................................................................................ 45 2.7.5 Edging ............................................................................................................................ 46 2.7.6 Roughing ........................................................................................................................ 46 2.7.7 Strip Rolling/Finishing Train ......................................................................................... 47 2.7.8 Rod Rolling/Finishing Train .......................................................................................... 47 2.7.9 Plate Rolling ................................................................................................................... 48 2.7.10 Transport of Roll Stock between Rolling Stands ........................................................... 48 2.7.11 Cooling Lines ................................................................................................................. 48 2.7.12 Sheet and Plate Production ............................................................................................. 49 2.7.13 Plate Heat Treatment ...................................................................................................... 49 2.7.14 Roll Shop ........................................................................................................................ 49 2.8 Cold Rolling Mills ....................................................................................................................... 50 2.8.1 Process Overview ........................................................................................................... 50 2.8.2 Pickling of Low Alloy and Alloy HR Steel .................................................................... 52 2.8.3 Initial Annealing and Pickling of High Alloy HR Steel ................................................. 53 2.8.4 Cold Rolling of the Pickled Hot Rolled Strip ................................................................. 54 2.8.5 Annealing of Low Alloy and Alloy Steel ....................................................................... 57 2.8.6 Final annealing and Pickling of High Alloy Steel .......................................................... 59 2.8.7 Tempering of Cold Rolled Strip ..................................................................................... 60 2 Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı 2.8.8 Finishing ......................................................................................................................... 61 2.8.9 Roll Shop ........................................................................................................................ 62 2.8.10 Wire drawing plants ....................................................................................................... 63 2.9 Continuous Hot Dip Coating Process ......................................................................................... 70 2.9.1 Galvanizing of Sheet (Zinc and Zinc Alloy Coating) ..................................................... 71 3 PRESENT EMISSION LEVELS AND RAW MATERIALS AND ENERGY CONSUMPTION ............... 82 3.1 Present consumption and emission levels ................................................................................ 82 3.1.1 Mass stream overview and input/output data ................................................................. 82 3.1.2 Environmental issues for electric arc furnace steelmaking process ............................... 86 3.2 Emissions to air .......................................................................................................................... 86 3.2.1 Primary and secondary emissions and treatment ............................................................ 86 3.2.2 Emissions from secondary metallurgy processes and continuous casting ...................... 91 3.2.3 Emissions from scrap preheating.................................................................................... 92 3.2.4 Emissions from slag processing ..................................................................................... 92 3.3 Emissions to water .................................................................................................................... 92 3.3.1 Waste water .................................................................................................................... 92 3.4 Solid waste and by-products. Landfills ...................................................................................... 95 3.4.1 Process residues such as wastes and by-products ........................................................... 95 3.4.2 Slags from production of carbon steel/low alloyed steel/high alloyed steel ................... 95 3.4.3 Dusts from off-gas treatment .......................................................................................... 97 3.4.4 Refractory bricks ............................................................................................................ 99 3.5 Noise emissions ......................................................................................................................... 99 3.5.1 Techniques concerning noise aspects ............................................................................. 99 3.5.2 Aspects of relevant noise sources ................................................................................. 100 3.5.3 Main noise sources ....................................................................................................... 101 3.6 Soil contamination ................................................................................................................... 103 3.6.1 Storage and handling of input materials ....................................................................... 103 3.6.2 Drainage water from the scrapyard .............................................................................. 104 3.7 Raw materials consumption .................................................................................................... 104 3.8 Energy consumption ................................................................................................................ 105 4 BATs FOR THE PRODUCTION PROCESSES
Recommended publications
  • Arcelormittal Is Again Counting on the Strengths of the AUMUND Drag Chain Conveyor Type LOUISE São Paulo, Brazil, April 2017
    Press Information ArcelorMittal is again counting on the strengths of the AUMUND Drag Chain Conveyor Type LOUISE São Paulo, Brazil, April 2017 The steel maker ArcelorMittal is building on proven solutions and reliable partners in Brazil. About 20 years ago, a shock-pressure-proof drag chain conveyor was ordered for Brazil from LOUISE Fördertechnik before this company was acquired by AUMUND Fördertechnik GmbH, and now AUMUND has won an order for another drag chain conveyor type LOUISE TKF. The shock-pressure-proof design of its predecessor was no longer required for the new model because of the change in classification of the plant segment. The dispatch of the machine is planned for June 2017. 1998: AUMUND Drag Chain Conveyor, type LOUISE TKF, in ArcelorMittal’s João Monlevade plant in Brazil (photo AUMUND) The earlier model drag chain conveyor was ordered in 1998 by the then Brazilian arm of the Luxemburg steel company Arbed, CSBM, Companhia Siderurgica Belgo Mineira. Arcelor was created by the merger of Aceralia and Usinor and merged with Mittal in 2006 to become ArcelorMittal, the world’s leading steel concern. Press Information Around fifteen years ago, AUMUND Fördertechnik GmbH integrated the products of the LOUISE subsidiary into its own portfolio. This double strand drag chain conveyor with a capacity of 3 kW, a centre distance of 10.4 m and a performance of 25 t/h, will be used for bunker extraction. The previous machine proved its durability in an interesting way. One of the supports of a weighing cell collapsed and caused one side of the silo to subside.
    [Show full text]
  • Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons Under Similar Hardness
    metals Article Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons under Similar Hardness 1,2 2 2 2, , Bingxu Wang , Xue Han , Gary C. Barber and Yuming Pan * y 1 Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] 2 Automotive Tribology Center, Department of Mechanical Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA; [email protected] (X.H.); [email protected] (G.C.B.) * Correspondence: [email protected] Current address: 201 N. Squirrel Rd Apt 1204, Auburn Hills, MI 48326, USA. y Received: 14 November 2019; Accepted: 4 December 2019; Published: 8 December 2019 Abstract: In this research, an austempering heat treatment was applied on gray cast iron using various austempering temperatures ranging from 232 ◦C to 371 ◦C and holding times ranging from 1 min to 120 min. The microstructure and hardness were examined using optical microscopy and a Rockwell hardness tester. Rotational ball-on-disk sliding wear tests were carried out to investigate the wear behavior of austempered gray cast iron samples and to compare with conventional quenched and tempered gray cast iron samples under equivalent hardness. For the austempered samples, it was found that acicular ferrite and carbon saturated austenite were formed in the matrix. The ferritic platelets became coarse when increasing the austempering temperature or extending the holding time. Hardness decreased due to a decreasing amount of martensite in the matrix. In wear tests, austempered gray cast iron samples showed slightly higher wear resistance than quenched and tempered samples under similar hardness while using the austempering temperatures of 232 ◦C, 260 ◦C, 288 ◦C, and 316 ◦C and distinctly better wear resistance while using the austempering temperatures of 343 ◦C and 371 ◦C.
    [Show full text]
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon As Carburizer
    Materials Research, Vol. 12, No. 4, 483-487, 2009 © 2009 Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon as Carburizer Fatai Olufemi Aramidea,*, Simeon Ademola Ibitoyeb, Isiaka Oluwole Oladelea, Joseph Olatunde Borodea aMetallurgical and Materials Engineering Department, Federal University of Technology, Akure, Ondo State, Nigeria bMaterials Science and Engineering Department, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria Received: July 31, 2009; Revised: September 25, 2009 Due to the complexity of controlling parameters in carburization, there has been relatively little work on process variables during the surface hardening process. This work focuses on the effects of the carburizing temperature and time on the mechanical properties of mild steel carburized with activated carbon, at 850, 900 and 950 °C, soaked at the carburizing temperature for 15 and 30 minutes, quenched in oil, tempered at 550 °C and held for 60 minutes. Prior carburization process, standard test samples were prepared from the as received specimen for tensile and impact tests. After carburization process, the test samples were subjected to the standard test and from the data obtained, ultimate tensile strength, engineering strain, impact strength, Youngs’ moduli were calculated. The case and core hardness of the carburized tempered samples were measured. It was observed that the mechanical properties of mild steels were found to be strongly influenced by the process of carburization, carburizing temperature and soaking time at carburizing temperature. It was concluded that the optimum combination of mechanical properties is achieved at the carburizing temperature of 900 °C followed by oil quenching and tempering at 550 °C.
    [Show full text]
  • Crucible A2 Data Sheet
    CRUCIBLE DATA SHEET Airkool (AISI A2) is an air-hardening medium alloy tool steel ® Issue #1 which is heat treatable to HRC 60-62. It has wear resistance AIRKOOL intermediate between the oil hardening tool steels (O1) and (AISI A2) the high carbon chromium tool steels (D2). Because it offers a combination of good toughness along with moderate Carbon 1.00% wear resistance, it has been widely used for many years in Manganese 0.85% variety of cold work applications which require fairly high abrasion resistance but where the higher carbon/ high Chromium 5.25% chromium steels are prone to chipping and cracking. Molybdenum 1.10% Airkool is quite easily machined in the annealed condition Vanadium 0.25% and, like other air-hardening tool steels, exhibits minimal distortion on hardening, making it an excellent choice for dies of complicated design. Physical Properties Elastic Modulus 30 X 106 psi (207 GPa) Density 0.284 lbs./in3 (7.86 g/cm3) Thermal Conductivity Tool Steel Comparagraph BTU/hr-ft-°F W/m-°K cal/cm-s-°C at 200°F (95°C) 15 26 0.062 Coefficient of Thermal Expansion ° ° Toughness in/in/ F mm/mm/ C ° ° -6 -6 Wear Resistance 70-500 F (20-260 C) 5.91 X10 (10.6 X10 ) 70-800°F (20-425°C) 7.19 X10-6 (12.9 X10-6) 70-1000°F (20-540°C) 7.76 X10-6 (14.0 X10-6) 70-1200°F (20-650°C) 7.91 X10-6 (14.2 X10-6) Relative Values Mechanical Properties Heat Treatment(1) Impact Wear Austenitizing Toughness(2) Resistance(3) Temperature HRC ft.-lb.
    [Show full text]
  • Higher-Quality Electric-Arc Furnace Steel
    ACADEMIC PULSE Higher-Quality Electric-Arc Furnace Steel teelmakers have traditionally viewed Research Continues to Improve the electric arc furnaces (EAFs) as unsuitable Quality of Steel for producing steel with the highest- Even with continued improvements to the Squality surface finish because the process design of steelmaking processes, the steelmaking uses recycled steel instead of fresh iron. With over research community has focused their attention 100 years of processing improvements, however, on the fundamental materials used in steelmaking EAFs have become an efficient and reliable in order to improve the quality of steel. In my lab steelmaking alternative to integrated steelmaking. In at Carnegie Mellon University, we have several fact, steel produced in a modern-day EAF is often research projects that deal with controlling the DR. P. BILLCHRIS MAYER PISTORIUS indistinguishable from what is produced with the impurity concentration and chemical quality of POSCOManaging Professor Editorof Materials integrated blast-furnace/oxygen-steelmaking route. steel produced in EAFs. Science412-306-4350 and Engineering [email protected] Mellon University Improvements in design, coupled with research For example, we recently used mathematical developments in metallurgy, mean high-quality steel modeling to explore ways to control produced quickly and energy-efficiently. phosphorus. Careful regulation of temperature, slag and stirring are needed to produce low- Not Your (Great-) Grandparent’s EAF phosphorus steel. We analyzed data from Especially since the mid-1990s, there have been operating furnaces and found that, in many significant improvements in the design of EAFs, cases, the phosphorus removal reaction could which allow for better-functioning burners and a proceed further.
    [Show full text]
  • ITP Metal Casting: Advanced Melting Technologies
    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry November 2005 BCS, Incorporated 5550 Sterrett Place, Suite 306 Columbia, MD 21044 www.bcs-hq.com Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry Prepared for ITP Metal Casting by BCS, Incorporated November 2005 Acknowledgments This study was a collaborative effort by a team of researchers from University of Missouri–Rolla, Case Western Reserve University, and Carnegie Mellon University with BCS, Incorporated as the project coordinator and lead. The research findings for the nonferrous casting industry were contributed by Dr. Jack Wallace and Dr. David Schwam, while the ferrous melting technologies were addressed by Dr. Kent Peaslee and Dr. Richard Fruehan. BCS, Incorporated researched independently to provide an overview of the melting process and the U.S. metal casting industry. The final report was prepared by Robert D. Naranjo, Ji-Yea Kwon, Rajita Majumdar, and William T. Choate of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy and Cast Metal Coalition (CMC) in conducting this study. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof.
    [Show full text]
  • Cold Rolled Steel Coils Arcelormittal Europe
    ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804 Owner of the Declaration ArcelorMittal Europe - Flat Products Programme holder Institut Bauen und Umwelt e.V. (IBU) Publisher Institut Bauen und Umwelt e.V. (IBU) Declaration number EPD-ARC-20200027-CBD1-EN ECO EPD Ref. No. ECO-00001269 Issue date 10/07/2020 Valid to 09/07/2025 Cold Rolled Steel Coils ArcelorMittal Europe www.ibu-epd.com | https://epd-online.com Umwelt Produktdeklaration Name des Herstellers – Name des Produkts General Information ArcelorMittal Europe Cold Rolled Steel Coils Programme holder Owner of the declaration IBU – Institut Bauen und Umwelt e.V. ArcelorMittal Europe – Flat Products Panoramastr. 1 24-26 Boulevard d’Avranches 10178 Berlin L-1160 Luxembourg Germany Luxembourg Declaration number Declared product / declared unit EPD-ARC-20200027-CBD1-EN The declaration applies to 1 ton of cold rolled steel coil. This declaration is based on the product Scope: category rules: The Life Cycle Assessment is based on data collected Structural steels, 07.2014 from the ArcelorMittal plants producing Cold Rolled (PCR checked and approved by the SVR) Coils, representing 95 % of the annual production from 2015. Issue date 10/07/2020 The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not Valid to be liable with respect to manufacturer information, life cycle assessment data and evidences. 09/07/2025 Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2010 Dipl. Ing. Hans Peters internally x externally (chairman of Institut Bauen und Umwelt e.V.) Dr.
    [Show full text]
  • Effect of Heat Treatment (Ferritizing) on Chemical Composition, Microstructure, Physical Properties and Corrosion Behaviour of Spheroidal Ductile Cast Iron
    Asian Journal of Chemistry Vol. 19, No. 6 (2007), 4665-4673 Effect of Heat Treatment (Ferritizing) on Chemical Composition, Microstructure, Physical Properties and Corrosion Behaviour of Spheroidal Ductile Cast Iron A.R. ISMAEEL*, S.S. ABDEL REHIM† and A.E. ABDOU‡ Department of Chemistry, Faculty of Science, Garyounis University, Benghazi, Libya E-mail: [email protected] Two steps ferritizing technique was applied on ductile cast iron samples by austenitizing at 900ºC, air cooling to produce pearlite, ferritizing by reheating samples for different times at 700ºC and air cooling to room temperature. Chemical analysis and microstructure showed that as ferritizing time increased, an increase of percentage of ferrite, decrease of pearlite, with corresponding decrease in cementite and increase of free carbon in the form of spheroidal graphite. These changes explain the changes of physical (mechanical) properties repre- sented in the increase of percentage elongation, decrease of tensile strength and decrease in brinle hardness. Weight loss corrosion test technique was followed for investigation of corrosion rate of heat treated samples in 0.1 N H2SO4 solution, which show decrease in corrosion rate with increased ferritizing time. This was explained due to decrease of cathodic sites represented in cementite forming pearlitic lamella. The exception was in the early step of ferritizing, where the corrosion rate increased due to formation of secondary graphite acting as effec- tive cathodic sites. Key Words: Ferritizing, Pearlite, Austenitizing, Microstructure, Cementite, Spheroidal graphite, Cathodic, Corrosion, Secondary graphite. INTRODUCTION Ductile (nodular or spherulitic graphite) cast iron in which a part or all of the carbon is present in the form of a tiny spherical balls, of average 33 to 37 µm1-4.
    [Show full text]
  • The Modern Brazilian Steel Industry
    THE MODERN BRAZILIAN STEEL INDUSTRY By Professor Celso Lafer* *Minister of Foreign Relations Notwithstanding the importance of pioneer initiatives by the first generation of Brazilian industrialists, the foundation and growth of the modern steel industry in Brazil was made, in great part, by the state. Steel symbolized industrialization which, for many decades, was synonymous with progress. The government realized, correctly, that having vast reserves of iron ore, Brazil could aspire to a significant steel industry. And it acted on this belief, creating the industry during the Getúlio Vargas administration and promoting its growth during the decades of 1960 and 1970. The predominantly state model that was necessary at the industry’s inception had some success cases. Without the government’s action in the 1930s and 1940s, Brazil would probably not have developed a robust steel-producing base. During the following decades Brazil positioned itself among the main producers and exporters of steel in the world. The state model came to an end, as happened in other sectors, when the government management crisis brought to the surface unsustainable inefficiencies and weaknesses of the productive segment. During the 1990s the steel sector experienced a great transformation. In three years, between 1991 and 1993, all of the state steel industry was privatized through public bidding, and massive investment began to modernize it. In 1998 alone more funds were invested than the sum of monies invested during the 5-year period 1989-1994. In total, between 1994 and 2000, the new steel mill owners invested US$ 10.2 billion in modernization, upgrading, cost reduction and environmental protection works.
    [Show full text]
  • Heat Treating of Aluminum Alloys
    ASM Handbook, Volume 4: Heat Treating Copyright © 1991 ASM International® ASM Handbook Committee, p 841-879 All rights reserved. DOI: 10.1361/asmhba0001205 www.asminternational.org Heat Treating of Aluminum Alloys HEAT TREATING in its broadest sense, • Aluminum-copper-magnesium systems The mechanism of strengthening from refers to any of the heating and cooling (magnesium intensifies precipitation) precipitation involves the formation of co- operations that are performed for the pur- • Aluminum-magnesium-silicon systems herent clusters of solute atoms (that is, the pose of changing the mechanical properties, with strengthening from Mg2Si solute atoms have collected into a cluster the metallurgical structure, or the residual • Aluminum-zinc-magnesium systems with but still have the same crystal structure as stress state of a metal product. When the strengthening from MgZn2 the solvent phase). This causes a great deal term is applied to aluminum alloys, howev- • Aluminum-zinc-magnesium-copper sys- of strain because of mismatch in size be- er, its use frequently is restricted to the tems tween the solvent and solute atoms. Conse- specific operations' employed to increase quently, the presence of the precipitate par- strength and hardness of the precipitation- The general requirement for precipitation ticles, and even more importantly the strain hardenable wrought and cast alloys. These strengthening of supersaturated solid solu- fields in the matrix surrounding the coher- usually are referred to as the "heat-treat- tions involves the formation of finely dis- ent particles, provide higher strength by able" alloys to distinguish them from those persed precipitates during aging heat treat- obstructing and retarding the movement of alloys in which no significant strengthening ments (which may include either natural aging dislocations.
    [Show full text]
  • Improving the Corrosion Behavior of Ductile Cast Iron in Sulphuric Acid
    Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2017, 8(6):513-523 ISSN : 0976-8505 CODEN (USA): CSHIA5 Improving the Corrosion Behavior of Ductile Cast Iron in Sulphuric Acid by Heat Treatment TFH Mohamed, SS Abd El Rehim and MAM Ibrahim* Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt ABSTRACT In this investigation, the effect of heat treatment on the corrosion behavior of ductile cast iron (DCI) in H2SO4 environment has been conducted. Moreover, the effect of heat treatment on the mechanical properties has also been investigated. The change in microstructure of DCI is obtained by austenetising at 900°C for two hours followed by oil quenching and then heated to 700ºC for different tempering times. The corrosion measurements were tested using anodic potentiodynamic polarization and cyclic polarization techniques. Here we show that the tempered specimens at different tempering times show better corrosion resistance in H2SO4 solution than that without heat treatment. Moreover, the polarization measurements showed that the Ecorr and ia of the different specimens increase with increasing H2SO4 concentration while both Epass and ipass were decreased. Keywords: Ductile cast iron, Corrosion behaviour, Potentiodynamic, Cyclic polarization, Heat treatment INTRODUCTION Ductile cast iron (DCI) possesses several engineering and manufacturing advantages when compared with cast steels [1,2]. These include an excellent damping capacity, better wear resistance, 20-40% lower manufacturing cost and lower volume shrinkage during solidification [3,4]. The combination between the good mechanical properties and the casting abilities of DCI makes its usage successful in structural applications especially in the automotive industry.
    [Show full text]