Utilising Forest Biomass in Iron and Steel Production

Total Page:16

File Type:pdf, Size:1020Kb

Utilising Forest Biomass in Iron and Steel Production LICENTIATE T H E SIS Department of Engineering Sciences and Mathematics Division of Energy Science Nwachukwu Chinedu Maureen ISSN 1402-1757 Utilising forest biomass in iron ISBN 978-91-7790-761-9 (print) ISBN 978-91-7790-762-6 (pdf) and steel production Luleå University of Technology 2021 Investigating supply chain and competition aspects Utilising forest biomass in iron and steel production biomass in iron Utilising forest Chinedu Maureen Nwachukwu Energy Engineering 135067 LTU_Nwachukwu.indd Alla sidor 2021-03-12 08:10 Utilising forest biomass in iron and steel production Investigating supply chain and competition aspects Chinedu Maureen Nwachukwu Licentiate Thesis Division of Energy Science Department of Engineering Sciences and Mathematics Lulea University of Technology April 2021 Copyright © 2021 Chinedu Maureen Nwachukwu. Printed by Luleå University of Technology, Graphic Production 2021 ISSN 1402-1757 ISBN 978-91-7790-761-9 (print) ISBN 978-91-7790-762-6 (pdf) Luleå 2021 www.ltu.se ii For my family past, present, and future iii iv Preface The research work presented in this thesis was carried out at the Division of Energy Science, Luleå University of Technology, Sweden, during the period 2017 - 2020. The studies were carried out under the BioMetInd project, partly financed by the Swedish Energy Agency and Bio4Energy, a strategic research environment appointed by the Swedish government. The thesis provides an overview of forest biomass utilisation in the Swedish iron and steel industry from a supply chain perspective. Results also highlight the biomass competition between the iron and steel industry and the forest industry and stationary energy sectors. Findings from the studies are detailed in the three appended papers. v vi Acknowledgements I am grateful to my principal supervisor, Associate Professor Elisabeth Wetterlund, for her support and trust rendered to me since the start of my PhD studies. My gratitude goes to my co-supervisors, Professor Andrea Toffolo and Dr. Chuan Wang, for their patience and assistance. I also thank Professor Carl-Erik Grip for the conversations on steelmaking in Sweden and for providing print and online resources to motivate and guide me at the start of my studies. The discussions and encouragement are appreciated. I would also like to appreciate Elias Olofsson for the opportunity to work together and for all the help rendered while grasping micro-economic concepts related to the Swedish forest sector. I would like to thank my colleagues and all staff at the subject of Energy Engineering for providing a thriving and open work environment. Special thanks to my dear friends, my ‘fellows’, who have proven that laughter is truly the best medicine. My gratitude goes to my family, who have always supported me in all my endeavours. I am grateful for the foundation; this is another win for us. Stephen, your kind support even while juggling several tasks is deeply appreciated. Chikamara, your cheerful disposition, innocent advice, and wonder have been a blessing to me. I still have, and cherish, your drawing illustrating my research work. Thank you! Above all, I am grateful to God for His constant grace and mercies. Chinedu Maureen Nwachukwu Luleå, March 2021 vii viii Abstract The work presented in this thesis explores the internal and external aspects surrounding the use of forest biomass in iron and steel production in Sweden. Bio-products produced via thermo-chemical conversion are considered suitable alternatives to fossil energy and reductants used in existing processes in the iron and steel industry (ISI). However, since the steel production chain is energy intensive, large quantities of raw forest biomass assortments will be required before conversion into the desired bio-products that can substitute fossil products currently used in steel production. A full system analysis of value chains of suitable bio-products is, therefore, a requirement that has been lacking since it sheds insight into the main aspects of fossil substitution in the ISI, such as availability and supply of forest biomass, material and energy-efficient upgrading, and bio-products distribution. External aspects for consideration include broader implications of large biomass utilisation in iron and steel production on other existing biomass users such as the forest industry and stationary energy sectors. The main objective of this thesis is to investigate opportunities to utilise forest biomass in the ISI while simultaneously addressing competing demand for biomass from other sectors. The work consists of three papers that address the main objective via different research questions. Process integration techniques are applied with a biomass supply chain model to evaluate the production and distribution of biomass-based fuels and reductants and quantify the possible extent for CO2 emissions reduction in the ISI. Competition effects on regional biomass markets are analysed by linking a partial equilibrium forest model to the biomass supply chain model. Economic implications for forest biomass use in the ISI are quantified for both the ISI and forest sector industries. Results from the studies conclude that the maximum possible use of alternative fuels and reductants from forest biomass can achieve a 43% reduction in CO2 emissions, although at an increased energy cost of 27% for the ISI compared to the fossil use. Effective policies such as the combined use of substitution mandates and carbon emission fees are suggested, bearing in mind the relatively high costs for alternative energy use in the ISI. Effects on forest industries, such as increased feedstock costs from increased feedstock competition, may prompt individual forest industries to experience negative economic impacts that come at a disadvantage to society at large. ix x List of Appended Papers I. Nwachukwu C.M, Toffolo A., Wetterlund E. Biomass-based gas use in Swedish iron and steel industry - Supply chain and process integration considerations. Renewable Energy, Volume 146, 2020, Pages 2797-2811, ISSN 0960- 1481 Nwachukwu planned the investigation, developed the methodology with support from Wetterlund, gathered process data, conducted the analysis in collaboration with Toffolo, and wrote most of the paper under the supervision of the co-authors. II. Nwachukwu C.M., Wang C., Wetterlund E. Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – the case of Sweden. Applied Energy, 2021. https://doi.org/10.1016/j.apenergy.2021.116558 Nwachukwu contributed to modifying an existing model developed by Wetterlund, participated in data collection and validation with Wang, carried out model runs, result analysis, wrote the paper and incorporated suggested revisions from the co-authors. III. Nwachukwu C.M., Olofsson, E., Lundmark, R., Wetterlund E. Evaluating fuel switching options in the ISI under increased competition for forest biomass. Manuscript to be submitted Nwachukwu planned an external collaboration for a model linking study, developed the methodology with Olofsson using two existing models, carried out result analysis and interpretation, and wrote most of the paper with input from Olofsson. xi xii Full papers presented in Conferences (not included in thesis) 1. Nwachukwu C.M., Toffolo A., Wang C., Grip C-E., Wetterlund E. (2018). Systems analysis of sawmill by-products gasification towards a bio-based steel production. Paper presented at the ECOS 2018 - Proceedings of the 31st International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, ECOS 2018; Guimaraes; Portugal; 17 June 2018 - 21 June 2018. (peer-reviewed) 2. Wang C., Suopajärvi H., Ng K., Nwachukwu C.M., Wetterlund E. Research development on utilising biomass in the blast furnace for CO2 emission reduction: Experiences from Nordic countries and Canada. Paper presented at the 8th International Congress on Science and Technology of Ironmaking (ICSTI 2018) at Vienna, Austria; September 2018. (peer-reviewed) 3. Nwachukwu C.M., Wang C., Toffolo A., Wetterlund E. (2020). Use of biomass in steelmaking and its effects for forest industries. Paper in Proceedings of the 33rd International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, ECOS 2020, Pages 1883 – 1894, Osaka – Japan, 29 June – 3 July 2020. (peer-reviewed) Other conference contributions 4. Optimising biomass utilisation in iron and steel production. Nwachukwu C.M., Wang C., Toffolo A., Wetterlund E. Oral presentation at EUBCE 2020 e-event (peer-reviewed) 5. Impact of carbon prices on fuel switching in the iron and steel industry. Nwachukwu C.M., Wang C., Toffolo A., Wetterlund E. Oral presentation and extended abstract at eceee digital event Industrial Efficiency 2020, Gothenburg. (peer-reviewed) 6. Perspectives of using biomass to reduce fossil CO2 emission in the Swedish steel industry. Wang C., Nwachukwu C.M., Sandberg E., Lundgren J., Wetterlund E. Accepted for Oral presentation at the ESTAD 2021 conference (peer-reviewed) xiii xiv Table of Contents 1 Introduction ....................................................................................................................... 1 1.1 Aims and objectives .................................................................................................... 3 2 Forest biomass utilisation in the Iron and Steel Industry ...................................................... 5 2.1 Biomass applications ..................................................................................................
Recommended publications
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • Higher-Quality Electric-Arc Furnace Steel
    ACADEMIC PULSE Higher-Quality Electric-Arc Furnace Steel teelmakers have traditionally viewed Research Continues to Improve the electric arc furnaces (EAFs) as unsuitable Quality of Steel for producing steel with the highest- Even with continued improvements to the Squality surface finish because the process design of steelmaking processes, the steelmaking uses recycled steel instead of fresh iron. With over research community has focused their attention 100 years of processing improvements, however, on the fundamental materials used in steelmaking EAFs have become an efficient and reliable in order to improve the quality of steel. In my lab steelmaking alternative to integrated steelmaking. In at Carnegie Mellon University, we have several fact, steel produced in a modern-day EAF is often research projects that deal with controlling the DR. P. BILLCHRIS MAYER PISTORIUS indistinguishable from what is produced with the impurity concentration and chemical quality of POSCOManaging Professor Editorof Materials integrated blast-furnace/oxygen-steelmaking route. steel produced in EAFs. Science412-306-4350 and Engineering [email protected] Mellon University Improvements in design, coupled with research For example, we recently used mathematical developments in metallurgy, mean high-quality steel modeling to explore ways to control produced quickly and energy-efficiently. phosphorus. Careful regulation of temperature, slag and stirring are needed to produce low- Not Your (Great-) Grandparent’s EAF phosphorus steel. We analyzed data from Especially since the mid-1990s, there have been operating furnaces and found that, in many significant improvements in the design of EAFs, cases, the phosphorus removal reaction could which allow for better-functioning burners and a proceed further.
    [Show full text]
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • The White Book of STEEL
    The white book of STEEL The white book of steel worldsteel represents approximately 170 steel producers (including 17 of the world’s 20 largest steel companies), national and regional steel industry associations and steel research institutes. worldsteel members represent around 85% of world steel production. worldsteel acts as the focal point for the steel industry, providing global leadership on all major strategic issues affecting the industry, particularly focusing on economic, environmental and social sustainability. worldsteel has taken all possible steps to check and confirm the facts contained in this book – however, some elements will inevitably be open to interpretation. worldsteel does not accept any liability for the accuracy of data, information, opinions or for any printing errors. The white book of steel © World Steel Association 2012 ISBN 978-2-930069-67-8 Design by double-id.com Copywriting by Pyramidion.be This publication is printed on MultiDesign paper. MultiDesign is certified by the Forestry Stewardship Council as environmentally-responsible paper. contEntS Steel before the 18th century 6 Amazing steel 18th to 19th centuries 12 Revolution! 20th century global expansion, 1900-1970s 20 Steel age End of 20th century, start of 21st 32 Going for growth: Innovation of scale Steel industry today & future developments 44 Sustainable steel Glossary 48 Website 50 Please refer to the glossary section on page 48 to find the definition of the words highlighted in blue throughout the book. Detail of India from Ptolemy’s world map. Iron was first found in meteorites (‘gift of the gods’) then thousands of years later was developed into steel, the discovery of which helped shape the ancient (and modern) world 6 Steel bEforE thE 18th cEntury Amazing steel Ever since our ancestors started to mine and smelt iron, they began producing steel.
    [Show full text]
  • Iron & Steel Entrepreneurs on the Delaware GSL22 12.15
    Today we get excited about iPhones, iPads, and the like, but 160 years ago, when the key innovations were happening in railroads, iron, and steel, many people actually got excited about . I-beams! And among the centers of such excitement was Trenton, New Jersey. Figure 1: Petty's Run Steel renton became a center of these iron and steel innovations in the 19th Site, Trenton, 2013. In the century for the same reasons that spur innovation today—location, 1990s Hunter Research, Inc. uncovered the foundation of Tinfrastructure, skilled workers, and entrepreneurs. The city’s Benjamin Yard's 1740s steel resources attracted three of the more brilliant and visionary furnace, one of the earliest entrepreneurs of the 1840s—Peter Cooper, Abram S. Hewitt, and John A. steel making sites in the Roebling. They established iron and steel enterprises in Trenton that colonies. The site lies lasted for more than 140 years and helped shape modern life with between the N.J. State innovations in transportation, construction, and communications. Their House and the Old Barracks, legacy in New Jersey continues today with landmark suspension background, and the State and Mercer County have bridges, one of the State’s finest historic parks, repurposed industrial preserved and interpreted it. buildings, one of the best company towns in America, and in a new C.W. Zink museum. Abram Hewitt, Peter Cooper’s partner and future son-in-law, highlighted Trenton’s assets in 1853: “The great advantage of Trenton is that it lies on the great route between New York and Philadelphia” which were the two largest markets in the country.
    [Show full text]
  • BAT Guide for Electric Arc Furnace Iron & Steel Installations
    Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı BAT Guide for electric arc furnace iron & steel installations Project TR-2008-IB-EN-03 Mission no: 2.1.4.c.3 Prepared by: Jesús Ángel Ocio Hipólito Bilbao José Luis Gayo Nikolás García Cesar Seoánez Iron & Steel Producers Association Serhat Karadayı (Asil Çelik Sanayi ve Ticaret A.Ş.) Muzaffer Demir Mehmet Yayla Yavuz Yücekutlu Dinçer Karadavut Betül Keskin Çatal Zerrin Leblebici Ece Tok Şaziye Savaş Özlem Gülay Önder Gürpınar October 2012 1 Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı Contents 0 FOREWORD ............................................................................................................................ 12 1 INTRODUCTION. ..................................................................................................................... 14 1.1 IMPLEMENTATION OF THE DIRECTIVE ON INDUSTRIAL EMISSIONS IN THE SECTOR OF STEEL PRODUCTION IN ELECTRIC ARC FURNACE ................................................................................. 14 1.2 OVERVIEW OF THE SITUATION OF THE SECTOR IN TURKEY ...................................................... 14 1.2.1 Current Situation ............................................................................................................ 14 1.2.2 Iron and Steel Production Processes............................................................................... 17 1.2.3 The Role Of Steel Sector in
    [Show full text]
  • Primary Mill Fabrication
    Metals Fabrication—Understanding the Basics Copyright © 2013 ASM International® F.C. Campbell, editor All rights reserved www.asminternational.org CHAPTER 1 Primary Mill Fabrication A GENERAL DIAGRAM for the production of steel from raw materials to finished mill products is shown in Fig. 1. Steel production starts with the reduction of ore in a blast furnace into pig iron. Because pig iron is rather impure and contains carbon in the range of 3 to 4.5 wt%, it must be further refined in either a basic oxygen or an electric arc furnace to produce steel that usually has a carbon content of less than 1 wt%. After the pig iron has been reduced to steel, it is cast into ingots or continuously cast into slabs. Cast steels are then hot worked to improve homogeneity, refine the as-cast microstructure, and fabricate desired product shapes. After initial hot rolling operations, semifinished products are worked by hot rolling, cold rolling, forging, extruding, or drawing. Some steels are used in the hot rolled condition, while others are heat treated to obtain specific properties. However, the great majority of plain carbon steel prod- ucts are low-carbon (<0.30 wt% C) steels that are used in the annealed condition. Medium-carbon (0.30 to 0.60 wt% C) and high-carbon (0.60 to 1.00 wt% C) steels are often quenched and tempered to provide higher strengths and hardness. Ironmaking The first step in making steel from iron ore is to make iron by chemically reducing the ore (iron oxide) with carbon, in the form of coke, according to the general equation: Fe2O3 + 3CO Æ 2Fe + 3CO2 (Eq 1) The ironmaking reaction takes place in a blast furnace, shown schemati- cally in Fig.
    [Show full text]
  • AISI | Electric Arc Furnace Steelmaking
    http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Home Steelworks Home Electric Arc Furnace Steelmaking By Jeremy A. T. Jones, Nupro Corporation SIGN UP to receive AISI's FREE e-news! Read the latest. Email: Name: Join Courtesy of Mannesmann Demag Corp. FURNACE OPERATIONS The electric arc furnace operates as a batch melting process producing batches of molten steel known "heats". The electric arc furnace operating cycle is called the tap-to-tap cycle and is made up of the following operations: Furnace charging Melting Refining De-slagging Tapping Furnace turn-around Modern operations aim for a tap-to-tap time of less than 60 minutes. Some twin shell furnace operations are achieving tap-to-tap times of 35 to 40 minutes. 10/3/2008 9:36 AM http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Furnace Charging The first step in the production of any heat is to select the grade of steel to be made. Usually a schedule is developed prior to each production shift. Thus the melter will know in advance the schedule for his shift. The scrap yard operator will prepare buckets of scrap according to the needs of the melter. Preparation of the charge bucket is an important operation, not only to ensure proper melt-in chemistry but also to ensure good melting conditions. The scrap must be layered in the bucket according to size and density to promote the rapid formation of a liquid pool of steel in the hearth while providing protection for the sidewalls and roof from electric arc radiation.
    [Show full text]
  • Review of NIOSH Site Profile for Bethlehem Steel Plant, Lackawanna, NY Pdf Icon[512 KB
    ADVISORY BOARD ON RADIATION AND WORKER HEALTH National Institute of Occupational Safety and Health Review of NIOSH Site Profile for Bethlehem Steel Plant, Lackawanna, NY Contract No. 200-2004-03805 Task Order No. 1 SCA-TR-TASK1-0001 Prepared by S. Cohen & Associates 6858 Old Dominion Drive, Suite 301 McLean, Virginia 22101 Saliant, Inc. 5579 Catholic Church Road Jefferson, Maryland 21755 October 2004 Effective Date: Revision No. Document No. Page No. October 14, 2004 0 SCA-TR-TASK1-0001 2 of 87 S. Cohen & Associates: Document No. SCA-TR-TASK1-0001 Technical Support for the Advisory Board on Effective Date: Radiation & Worker Health Review of October 14, 2004 NIOSH Dose Reconstruction Program Revision No. 0 REVIEW OF NIOSH SITE PROFILE FOR BETHLEHEM STEEL PLANT, Page 2 of 87 LACKAWANNA, NY Supersedes: Task Manager: ____________________________ N/A Joseph Fitzgerald Date: October 14, 2004____ Project Manager: __________________________ John Mauro Date: October 14, 2004____ Effective Date: Revision No. Document No. Page No. October 14, 2004 0 SCA-TR-TASK1-0001 3 of 87 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 5 Results................................................................................................................................. 5 Conclusions......................................................................................................................... 7 ACRONYMS AND ABBREVIATIONS......................................................................................
    [Show full text]
  • Understanding the Benefits of Electric Arc Furnace Technology
    Industry Focus #mullite #alumina #silica #refractories #furnaces Understanding the Benefits of Electric Arc Furnace Technology Minerals processed via electric arc furnace technology provide optimal purity, porosity and crystal size to meet the increasingly stringent needs of a range of industries. hether a finishing process uses sandpaper or a grinding wheel, pres- sure blasting or thermal spraying, abrasive and ceramic grains and powders play an integral role in the appearance and performance of thousands of products that are used every day all over the world. WThese minerals, which are also used to produce ceramic parts and kiln furniture, through various size reduction and among other refractory products, undergo a meticulous production process in order powder processing steps to achieve the to meet the increasingly stringent requirements of various end-use applications. A material’s desired finished properties. vital aspect of that process is the electric arc furnace, which helps ensure the miner- Virtually any oxide material can be als’ optimal purity, porosity, and crystal size. processed in an electric arc furnace. Because the materials are melted and The Fusion Process actually reach the liquid state, the end Simply put, an electric arc furnace is a vessel that uses electricity to melt miner- result is a near-perfect fusion. Let’s take als or other materials. The process begins when the dry minerals are weighed and a look at mullite as an example. To pro- mixed together, then evenly distributed throughout the furnace via feed chutes. duce mullite, alumina and silica are put Power is supplied to the furnace by a transformer and graphite electrodes.
    [Show full text]
  • Investigation of Batch Intensive Quenching Processes When Using
    Reports on research (2016), «EUREKA: Physics and Engineering» projects Number 6 INVESTIGATION OF BATCH INTENSIVE QUENCHING PROCESSES WHEN USING HYDRODYNAMIC EMITTERS IN QUENCH TANKS Nikolai Kobasko Intensive Technologies Ltd 68/1 Peremohy ave., Kyiv, Ukraine, 03113 [email protected] Abstract The paper discusses patented in Ukraine a new intensive quenching IQ-2 technology based on film boiling resonance ef- fect [1]. Namely, the paper discusses improving of the batch intensive quenching (IQ) process known as IQ-2 method by the use of hydrodynamic emitters installed in quench tanks. The hydrodynamic emitters produce oscillating waves in the quench media with the frequency of the film boiling process creating a resonance effect. Two- and three-step IQ-2 processes are considered. Specifics of the heat transfer during the IQ-2 process are presented with focusing on the first stage of quenching where film and nucleate boiling processes are taking place. Examples of production IQ-2 equipment and loads processed are also presented. Application of hydro- dynamic emitters in the IQ water tanks in addition to currently used propellers is considered in details. It is shown that the proposed new method can fully eliminate the film boiling process resulting in significant reduction of part distortion during quenching. Fur- ther evaluation of the proposed method is needed for its implementation in heat treating practice. Keywords: IQ-2 process, local film boiling, resonance effect, elimination, water flow, low distortion, smooth hardness, hydrodynamics wave emitters. DOI: 10.21303/2461-4262.2016.00212 © Nikolai Kobasko 1. Introduction One of the major achievements in technology of heat treating of steels was a discovery of the intensive quenching (IQ) phenomenon.
    [Show full text]
  • Process of Cokeless Without Waste Treatment of Direct Vanadium
    PROCESS OF COKELESS WITHOUT WASTE TREATMENT OF DIRECT VANADIUM ... PROCESS OF COKELESS WITHOUT WASTE TREATMENT OF DIRECT VANADIUM ALLOWING STEEL MELTING Lisienko, V.G., Droujinina, O.G., Morozova, V.A.., Ladigina, N.V., Yusfin Yu.S. and Parenkev A.E. Urals State Technical University, Mira str., 19, Ekaterinburg, Russia Moscow Stell and Alloys Institute, Leninskii av.,4, Moscow, Russia \y/ Abstract: The development of new methods of steel production are now conducted with the purpose of energy consumption and harmful emissions reduction. The choice of technology and equipment in this case plays a cricinal role. It is well known that vanadium alloying steel has increased service properties. The known classical scheme of vanadium steel melting is very power-intensive, as includes such power- intensive processes as blast furnace process and chemical processing of vanadium slag therewith sintering and by-product coke processes are accompanied by significant harmful emissions. In so doing the vanadium losses may run to 60%. In view of requests of environment protection and economical efficiency the new process of cokless without wastes processing of vanadium-bearing raw material with direct vanadium allowing of steel - LP-process is developed. Its purpose is the melting on the basis of vanadium-bearing titanomagnetite of vanadium allowing steel with increase of vanadium concentration in steel and diminution of vanadium losses without application coke and natural gas with use of any coals and carbon-bearing wastes. LP-process consists of three aggregates and corresponding processes: process of liquid-phase reduction, process of vanadium-bearing pellets metallization in the shaft furnace, and process of alloying steel melting in the arc electric furnace.
    [Show full text]