ICES Marine Science Symposia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Working Group on the Biology and Life History of Crabs (WGCRAB)
ICES WGCRAB REPORT 2012 SCICOM STEERING GROUP ON ECOSYSTEM FUNCTIONS ICES CM 2012/SSGEF:08 REF. SSGEF, SCICOM, ACOM Report of the Working Group on the Biology and Life History of Crabs (WGCRAB) 14–18 May 2012 Port Erin, Isle of Man, UK International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2012. Report of the Working Group on the Biology and Life History of Crabs (WGCRAB), 14–18 May 2012. ICES CM 2012/SSGEF:08 80pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2012 International Council for the Exploration of the Sea ICES WGCRAB Report 2012 | i Contents Executive summary ................................................................................................................ 1 1 Introduction .................................................................................................................... 2 2 Adoption of the agenda ................................................................................................ 2 3 Terms of reference 2011 ................................................................................................ 2 4 -
Behavioural Effects of Hypersaline Exposure on the Lobster Homarus Gammarus (L) and the Crab Cancer Pagurus (L)
Journal of Experimental Marine Biology and Ecology (2014) 457: 208–214 http://dx.doi.org/10.1016/j.jembe.2014.04.016 Behavioural effects of hypersaline exposure on the lobster Homarus gammarus (L) and the crab Cancer pagurus (L) Katie Smyth 1,*, Krysia Mazik1,, Michael Elliott1, 1 Institute of Estuarine and Coastal Studies, University of Hull, Hull HU6 7RX, United Kingdom * Corresponding author. E-mail address: [email protected] (K. Smyth). Suggested citation: Smyth, K., Mazik, K., and Elliott, M., 2014. Behavioural effects of hypersaline exposure on the lobster Homarus gammarus (L) and the crab Cancer pagurus (L). Journal of Experimental Marine Biology and Ecology 457: 208- 214 Abstract There is scarce existing information in the literature regarding the responses of any marine species, especially commercially valuable decapod crustaceans, to hypersalinity. Hypersaline discharges due to solute mining and desalination are increasing in temperate areas, hence the behavioural responses of the edible brown crab, Cancer pagurus, and the European lobster, Homarus gammarus, were studied in relation to a marine discharge of highly saline brine using a series of preference tests. Both species had a significant behavioural response to highly saline brine, being able to detect and avoid areas of hypersalinity once their particular threshold salinity was reached (salinity 50 for C. pagurus and salinity 45 for H. gammarus). The presence of shelters had no effect on this response and both species avoided hypersaline areas, even when shelters were provided there. If the salinity of commercial effluent into the marine environment exceeds the behavioural thresholds found here, it is likely that adults of these species will relocate to areas of more favourable salinity. -
High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab (Cancer Pagurus)
foods Article High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab (Cancer pagurus) Federico Lian 1,2,* , Enrico De Conto 3, Vincenzo Del Grippo 1, Sabine M. Harrison 1 , John Fagan 4, James G. Lyng 1 and Nigel P. Brunton 1 1 UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; [email protected] (V.D.G.); [email protected] (S.M.H.); [email protected] (J.G.L.); [email protected] (N.P.B.) 2 Nofima AS, Muninbakken 9-13, Breivika, P.O. Box 6122, NO-9291 Tromsø, Norway 3 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; [email protected] 4 Irish Sea Fisheries Board (Bord Iascaigh Mhara, BIM), Dún Laoghaire, A96 E5A0 Co. Dublin, Ireland; [email protected] * Correspondence: Federico.Lian@nofima.no; Tel.: +47-77629078 Abstract: High-pressure processing (HPP) in a large-scale industrial unit was explored as a means for producing added-value claw meat products from edible crab (Cancer pagurus). Quality attributes were comparatively evaluated on the meat extracted from pressurized (300 MPa/2 min, 300 MPa/4 min, 500 MPa/2 min) or cooked (92 ◦C/15 min) chelipeds (i.e., the limb bearing the claw), before and after a thermal in-pack pasteurization (F 10 = 10). Satisfactory meat detachment from the shell 90 was achieved due to HPP-induced cold protein denaturation. Compared to cooked or cooked– Citation: Lian, F.; De Conto, E.; pasteurized counterparts, pressurized claws showed significantly higher yield (p < 0.05), which was Del Grippo, V.; Harrison, S.M.; Fagan, possibly related to higher intra-myofibrillar water as evidenced by relaxometry data, together with J.; Lyng, J.G.; Brunton, N.P. -
Crustacea, Copepoda, Harpacticoida): Proposed Emendation of Spelling to ZOSIMEIDAE to Remove Homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE)
24 Bulletin of Zoological Nomenclature 66(1) March 2009 Case 3467 ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda, Harpacticoida): proposed emendation of spelling to ZOSIMEIDAE to remove homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE) Rony Huys and Paul F. Clark Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. (e-mail: [email protected] and [email protected]) Abstract. The purpose of this application, under Articles 29 and 55.3.1 of the Code, is to remove homonymy between the family-group names ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda) and ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda) by changing the spelling of the junior homonym. It is proposed that the entire name Zosime Boeck, 1873 (Copepoda) be used to form ZOSIMEIDAE, leaving the stem of the senior homonym (based on the name Zosimus A.-G. Desmarest, 1823; Decapoda) unchanged. Zosimus A.-G. Desmarest, 1823 and Zosime Boeck, 1873 are respectively the type genera of ZOSIMINAE Alcock, 1898 (Decapoda) and ZOSIMIDAE Seifried, 2003 (Copepoda). Keywords. Nomenclature; taxonomy; Crustacea; Decapoda; Copepoda; Harpacti- coida; XANTHIDAE; ZOSIMEIDAE; ZOSIMIDAE; ZOSIMINAE; Zosime; Zosimus; Zosime typica; cosmopolitan. 1. Leach (1818) introduced the French vernacular names ‘Carpile’, ‘Clodorée’ (sic) and ‘Zosime’ for three genera of decapod crustaceans but did not include a descrip- tion, definition or indication of the taxa they denoted (Leach, 1818, pp. 74–75). Under Article 12 Leach’s names are nomina nuda and must be considered unavailable. 2. A.-G. Desmarest (1823, p. 228) latinised Leach’s (1818) vernacular names in a footnote to his text dealing with the genus Cancer, naming them Carpilius, Clorodius and Zosimus, respectively. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Report of the Working Group on the Biology and Life History of Crabs (WGCRAB)
ICES WGCRAB REPORT 2016 SCICOM STEERING GROUP ON ECOSYSTEM PROCESSES AND DYNAMICS ICES CM 2016/SSGEPD:10 REF. SCICOM Report of the Working Group on the Biology and Life History of Crabs (WGCRAB) 1-3 November 2016 Aberdeen, Scotland, UK International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2017. Report of the Working Group on the Biology and Life History of Crabs (WGCRAB), 1–3 November 2016, Aberdeen, Scotland, UK. ICES CM 2016/SSGEPD:10. 78 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2017 International Council for the Exploration of the Sea ICES WGCRAB REPORT 2016 | i Contents Executive summary ................................................................................................................ 3 1 Administrative details .................................................................................................. 4 2 Terms of Reference a) – z) ............................................................................................ 4 3 Summary of Work plan ............................................................................................... -
Fishery and Biological Characteristics of Jonah Crab (Cancer Borealis) in Rhode Island Sound
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2018 Fishery and Biological Characteristics of Jonah Crab (Cancer borealis) in Rhode Island Sound Corinne L. Truesdale University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Truesdale, Corinne L., "Fishery and Biological Characteristics of Jonah Crab (Cancer borealis) in Rhode Island Sound" (2018). Open Access Master's Theses. Paper 1206. https://digitalcommons.uri.edu/theses/1206 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. FISHERY AND BIOLOGICAL CHARACTERISTICS OF JONAH CRAB (CANCER BOREALIS) IN RHODE ISLAND SOUND BY CORINNE L. TRUESDALE A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2018 MASTER OF SCIENCE THESIS OF CORINNE L. TRUESDALE APPROVED: Thesis Committee: Major Professor Jeremy S. Collie Candace A. Oviatt Gavino Puggioni Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2018 ABSTRACT Jonah crab (Cancer borealis) is a demersal crustacean distributed throughout continental shelf waters from Newfoundland to Florida. The species supports a rapidly growing commercial fishery in southern New England, where landings of Jonah crab have increased more than six-fold since the early 1990s. However, management of the fishery has lagged its expansion; the first Fishery Management Plan for the species was published in 2015 and a stock assessment has not yet been created due to a lack of available data concerning the species’ life history and fishery. -
Effect of Seismic Energy on Snow Crab (Chionoecetes Opilio)
Effect of Seismic Energy on Snow Crab (Chionoecetes opilio) By and For Environmental Studies Research Fund 444-7th Avenue S.W. Calgary, AB T2P 0X8 File No.: CAL-1-00364 7 November 2003 SA694 Effect of Seismic Energy on Snow Crab (Chionoecetes opilio) by John R. Christiana, Anne Mathieub, Denis H. Thomsonc, David Whiteb and Robert A. Buchanana a LGL Ltd., environmental research associates 388 Kenmount Rd., P.O. Box 13248, Stn. A, St. John’s, NL A1B 4A5 (709) 754-1992 bOceans Ltd. 31 Temperance Street St. John’s, NL A1C 3J3 (709) 753-5788 c LGL Ltd., environmental research associates 22 Fisher St., P.O. Box 280, King City, Ont. L7B 1A6 (905) 833-1244 for Environmental Studies Research Fund 444-7th Avenue S.W. Calgary, AB T2P 0X8 File No.: CAL-1-00364 7 November 2003 SA694 Effect of Seismic Energy on Snow Crab The correct citation for this report is: John R. Christian, Anne Mathieu, Denis H. Thomson, David White and Robert A. Buchanan Effect of Seismic Energy on Snow Crab (Chionoecetes opilio) 7 November 2003. Environmental Research Funds Report No. 144. Calgary. 106 p. The Environmental Studies Research Funds are financed from special levies on the oil and gas industry and administered by the National Energy Board for The Minister of Natural Resources Canada and The Minister of Indian Affairs and Northern Development. The Environmental Studies Research Funds and any person acting on their behalf assume no liability arising from the use of the information contained in this document. The opinions expressed are those of the authors and do not necessarily reflect those of the Environmental Studies Research Funds agencies. -
Humane Slaughter of Edible Decapod Crustaceans
animals Review Humane Slaughter of Edible Decapod Crustaceans Francesca Conte 1 , Eva Voslarova 2,* , Vladimir Vecerek 2, Robert William Elwood 3 , Paolo Coluccio 4, Michela Pugliese 1 and Annamaria Passantino 1 1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 981 68 Messina, Italy; [email protected] (F.C.); [email protected] (M.P.); [email protected] (A.P.) 2 Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; [email protected] 3 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; [email protected] 4 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence-Viale Pieraccini, 6-50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Decapods respond to noxious stimuli in ways that are consistent with the experi- ence of pain; thus, we accept the need to provide a legal framework for their protection when they are used for human food. We review the main methods used to slaughter the major decapod crustaceans, highlighting problems posed by each method for animal welfare. The aim is to identify methods that are the least likely to cause suffering. These methods can then be recommended, whereas other methods that are more likely to cause suffering may be banned. We thus request changes in the legal status of this group of animals, to protect them from slaughter techniques that are not viewed as being acceptable. Abstract: Vast numbers of crustaceans are produced by aquaculture and caught in fisheries to Citation: Conte, F.; Voslarova, E.; meet the increasing demand for seafood and freshwater crustaceans. -
Working Group on the Biology and Life History of Crabs (WGCRAB)
WORKING GROUP ON THE BIOLOGY AND LIFE HISTORY OF CRABS (WGCRAB; outputs from 2019 meeting) VOLUME 3 | ISSUE 32 ICES SCIENTIFIC REPORTS RAPPORTS SCIENTIFIQUES DU CIEM ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] ISSN number: 2618-1371 This document has been produced under the auspices of an ICES Expert Group or Committee. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. ICES Scientific Reports Volume 3 | Issue 32 WORKING GROUP ON THE BIOLOGY AND LIFE HISTORY OF CRABS (WGCRAB; outputs from 2019 meeting) Recommended format for purpose of citation: ICES. 2021. Working Group on the Biology and Life History of Crabs (WGCRAB; outputs from 2019 meet- ing). ICES Scientific Reports. 3:32. 68 pp. https://doi.org/10.17895/ices.pub.8003 Editor Martial Laurans Authors Ann Lisbeth Agnalt • Ann Merete Hjelset • AnnDorte Burmeister • Carlos Mesquita • Darrell Mulloway • Fabian Zimmermann • Jack Emmerson • Jan Sundet • Martial Laurans • Martin Wiech • Mathew Coleman • Paul Chambers • Rosslyn McIntyre • Samantha Stott • Sara Clarke • Snorre Bakke ICES | WGCRAB 2021 | i Contents i Executive summary ...................................................................................................................... -
The Colonization of a Multi-Functional Artificial Reef Designed for the American Lobster, Homarus Americanus
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-8-2020 The Colonization of a Multi-functional Artificial Reef Designed for the American Lobster, Homarus Americanus Christopher Roy University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Recommended Citation Roy, Christopher, "The Colonization of a Multi-functional Artificial Reef Designed for the American Lobster, Homarus Americanus" (2020). Electronic Theses and Dissertations. 3205. https://digitalcommons.library.umaine.edu/etd/3205 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE COLONIZATION OF A MULTIFUNCTIONAL ARTIFICIAL REEF DESIGNED FOR THE AMERICAN LOBSTER, HOMARUS AMERICANUS By Christopher Roy A.A. University of Maine, Augusta, ME. 2006 B.S. University of Maine, 2004 A THESIS SuBmitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Animal Science) The Graduate School The University of Maine May 2020 Advisory Committee: Robert Bayer, Professor of Food and Agriculture, ADvisor Ian Bricknell, Professor of Marine Sciences Timothy BowDen, Associate Professor of Aquaculture © 2020 Christopher Roy All Rights ReserveD ii THE COLONIZATION OF A MULTIFUNCTIONAL ARTIFICIAL REEF DESIGNED FOR THE AMERICAN LOBSTER, HOMARUS AMERICANUS By Christopher Roy Thesis Advisor: Dr. Bob Bayer An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Animal Science) May 2020 HaBitat loss anD DegraDation causeD By the installation of infrastructure relateD to coastal population increase removes vital habitat necessary in the lifecycles of benthic and epibenthic species. -
Exposure to Electromagnetic Fields (EMF)
Journal of Marine Science and Engineering Article Exposure to Electromagnetic Fields (EMF) from Submarine Power Cables Can Trigger Strength-Dependent Behavioural and Physiological Responses in Edible Crab, Cancer pagurus (L.) Kevin Scott 1,*, Petra Harsanyi 1,2,3, Blair A. A. Easton 1, Althea J. R. Piper 1, Corentine M. V. Rochas 1 and Alastair R. Lyndon 2 1 St Abbs Marine Station, The Harbour, St Abbs TD14 5PW, UK; [email protected] (P.H.); [email protected] (B.A.A.E.); alfi[email protected] (A.J.R.P.); [email protected] (C.M.V.R.) 2 School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; [email protected] 3 Institute of Biology, Eötvös Loránd University, H-1053 Budapest, Hungary * Correspondence: [email protected] Abstract: The current study investigated the effects of different strength Electromagnetic Field (EMF) exposure (250 µT, 500 µT, 1000 µT) on the commercially important decapod, edible crab (Cancer pagurus, Linnaeus, 1758). Stress related parameters were measured (L-Lactate, D-Glucose, Total Haemocyte Count (THC)) in addition to behavioural and response parameters (shelter preference and time spent resting/roaming) over 24 h periods. EMF strengths of 250 µT were found to have Citation: Scott, K.; Harsanyi, P.; limited physiological and behavioural impacts. Exposure to 500 µT and 1000 µT were found to Easton, B.A.A.; Piper, A.J.R.; Rochas, disrupt the L-Lactate and D-Glucose circadian rhythm and alter THC. Crabs showed a clear attraction C.M.V.; Lyndon, A.R.