Four Patients with Amanita Phalloides Poisoning CASE SERIE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Biochemistry of Hepatotoxicity
linica f C l To o x l ic a o n r l o u g Singh, J Clinic Toxicol 2011, S:4 o y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.S4-001 ISSN: 2161-0495 ReviewResearch Article Article OpenOpen Access Access Clinical Biochemistry of Hepatotoxicity Anita Singh1, Tej K Bhat2 and Om P Sharma2* 1CSK Himachal Pradesh, Krishi Vishva Vidyalaya, Palampur (HP) 176 062, India 2Biochemistry Laboratory, Indian Veterinary Research Institute, Regional Station, Palampur (HP) 176 061, India Abstract Liver plays a central role in the metabolism and excretion of xenobiotics which makes it highly susceptible to their adverse and toxic effects. Liver injury caused by various toxic chemicals or their reactive metabolites [hepatotoxicants) is known as hepatotoxicity. The present review describes the biotransformation of hepatotoxicants and various models used to study hepatotoxicity. It provides an overview of pathological and biochemical mechanism involved during hepatotoxicity together with alteration of clinical biochemistry during liver injury. The review has been supported by a list of important hepatotoxicants as well as common hepatoprotective herbs. Keywords: Hepatotoxicity; Hepatotoxicant; In Vivo models; In Vitro production of bile thus leading to the body’s inability to flush out the models; Pathology; Alanine aminotransferase; Alkaline phosphatase; chemicals through waste. Smooth endoplasmic reticulum of the liver is Bilirubin; Hepatoprotective the principal ‘metabolic clearing house’ for both endogenous chemicals like cholesterol, steroid hormones, fatty acids and proteins, and Introduction exogenous substances like drugs and alcohol. The central role played by liver in the clearance and transformation of chemicals exposes it to Hepatotoxicity refers to liver dysfunction or liver damage that is toxic injury [4]. -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
The Ectomycorrhizal Fungus Amanita Phalloides Was Introduced and Is
Molecular Ecology (2009) doi: 10.1111/j.1365-294X.2008.04030.x TheBlackwell Publishing Ltd ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America ANNE PRINGLE,* RACHEL I. ADAMS,† HUGH B. CROSS* and THOMAS D. BRUNS‡ *Department of Organismic and Evolutionary Biology, Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA, †Department of Biological Sciences, Gilbert Hall, Stanford University, Stanford, CA 94305-5020, USA, ‡Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA Abstract The deadly poisonous Amanita phalloides is common along the west coast of North America. Death cap mushrooms are especially abundant in habitats around the San Francisco Bay, California, but the species grows as far south as Los Angeles County and north to Vancouver Island, Canada. At different times, various authors have considered the species as either native or introduced, and the question of whether A. phalloides is an invasive species remains unanswered. We developed four novel loci and used these in combination with the EF1α and IGS loci to explore the phylogeography of the species. The data provide strong evidence for a European origin of North American populations. Genetic diversity is generally greater in European vs. North American populations, suggestive of a genetic bottleneck; polymorphic sites of at least two loci are only polymorphic within Europe although the number of individuals sampled from Europe was half the number sampled from North America. Endemic alleles are not a feature of North American populations, although alleles unique to different parts of Europe were common and were discovered in Scandinavian, mainland French, and Corsican individuals. -
Foraged Mushroom Toxicity Presenting to Urgent Care with Acute Kidney Injury
CME: This article is offered for AMA PRA Category 1 Credit.™ Visit Case Report https://www.urgentcarecme.com/bundles/jucm-cme for further details. Foraged Mushroom Toxicity Presenting to Urgent Care with Acute Kidney Injury Urgent message: Though it occurs relatively rarely, mushroom toxicity can result in irreversible organ damage and, in certain cases, death if not recognized quickly. Diagnosis can be difficult due to the facts that toxicity may present at different intervals from time of ingestion, de- pending on the species of mushroom, and initial symptoms are nonspecific and similar to those of benign gastrointestinal illnesses. Timely consultation with a poison control center may be life-saving. MICHELE L. STOWE, PA-C, MPAS and JOSHUA W. RUSSELL, MD, MSC, FAAEM, FACEP Introduction ushroom foraging is a popular activity in the U.S. MPacific Northwest (PNW). Based on cultural traditions, many Asian and European immigrants commonly forage for mushrooms, as well. A case of mush room misidentification may occur when a poisonous species in the U.S. is mistaken for an edible species in an indi- vidual’s country of origin, which occurs most commonly among species from Europe and Asia. There are also poi- sonous local native species which can be confused with edible species with similar appearances. Amanita smithi- ana is an example of a poisonous native PNW mush- room which is similar in appearance to, and grows in the same densely forested habitat as, an edible species: the pine mushroom (or matsutake as it is known in Asia), which is used in many traditional Asian dishes.1 Amanita smithiana is known to cause delayed renal failure when ingested, due to the nephrotoxic com- pound allenic norleucine.2 Gastrointestinal symptoms generally begin within 6 hours of ingestion, but renal toxicity does not manifest until 1 to 4 days after inges- ©AdobeStock.com tion; as such, it may not be evident on initial laboratory evaluation. -
The Effect of Bacillus Larvicidal Toxins on Mammals
The effect of Bacillus larvicidal toxins On mammals By Nadia Adam Mohammed Ahmed B.Sc. of Veterinary Sciences University of Bahr-Elgazal ٢٠٠٠ Thesis submitted for the partial fulfillment of the requirements For the degree of Master of Science (M.Sc.) in microbiology Supervisor Professor: Mohammed Sulieman El-sanosi Department of microbiology Faculty of Veterinary Medicine University of Khartoum ٢٠٠٦ May To My lovely parents, My husband (M/Elmurtada) and my children (Reem&Rwan) To My brothers and sisters, And To Those who suffer from malaria, I dedicate this work. Nadia I would like to express my sincere thanks to my supervisor Prof. Elsanosi for his valuable supervision and encouragement. I also like to extend my thanks to Prof.Ahamed.A.Gameel for his great help in histopathological investigation of this study. Thanks also extend to all staff and technicians of the Department of Microbiology for their valuable advices and assistance. Iam also greatfull to my colleague and all my friends Special thanks to my family for their patience and continuous encouragement during this work. Abstract Mosquito control is the key for hopeful and sustainable eradication of different socio-economic as well as fatal viral, bacterial and parasitological diseases in the tropical and subtropical countries. In addition the safety of any pesticide should be assured before application. In the present study the susceptibility of arabiensis mosquito larvae to the toxin of two endo-spores forming bacilli strain was examined. Both Bacilli spp B. ٪١٠٠ thuringiensis and B. sphaericus were found to be highly toxic and fatal with was found to be tolerant to the (٤_Instar) ٤_mortality rate. -
A Case of Mushroom Poisoning with Russula Subnigricans: Development of Rhabdomyolysis, Acute Kidney Injury, Cardiogenic Shock, and Death
CASE REPORT Nephrology http://dx.doi.org/10.3346/jkms.2016.31.7.1164 • J Korean Med Sci 2016; 31: 1164-1167 A Case of Mushroom Poisoning with Russula subnigricans: Development of Rhabdomyolysis, Acute Kidney Injury, Cardiogenic Shock, and Death Jong Tae Cho and Jin Hyung Han Mushroom exposures are increasing worldwide. The incidence and fatality of mushroom poisoning are reported to be increasing. Several new syndromes in mushroom poisoning Department of Internal Medicine, College of have been described. Rhabdomyolytic mushroom poisoning is one of new syndromes. Medicine, Dankook University, Cheonan, Korea Russula subnigricans mushroom can cause delayed-onset rhabdomyolysis with acute Received: 17 April 2015 kidney injury in the severely poisoned patient. There are few reports on the toxicity of R. Accepted: 6 June 2015 subnigricans. This report represents the first record of R. subnigricans poisoning with rhabdomyolysis in Korea, describing a 51-year-old man who suffered from rhabdomyolysis, Address for Correspondence: Jong Tae Cho, MD acute kidney injury, severe hypocalcemia, respiratory failure, ventricular tachycardia, Department of Internal Medicine, College of Medicine, cardiogenic shock, and death. Mushroom poisoning should be considered in the evaluation Dankook University, 201 Manghyang-ro, Dongnam-gu, Cheonan 31116, Korea of rhabdomyolysis of unknown cause. Furthermore, R. subnigricans should be considered E-mail: [email protected] in the mushroom poisoning with rhabdomyolysis. Keywords: Mushroom Poisoning; Rhabdomyolysis; Acute Kidney Injury; Respiratory Failure; Cardiogenic Shock INTRODUCTION in August, 2010 at the Jujak mountain located on the province of Jeollanamdo, the southern area of Korea. He was a bus driv More leisure time for hobbies, hiking, and trekking has led to er. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms ..................................................................................... -
Classification of Amanita Species Based on Bilinear Networks With
agriculture Article Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism Peng Wang, Jiang Liu, Lijia Xu, Peng Huang, Xiong Luo, Yan Hu and Zhiliang Kang * College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an 625000, China; [email protected] (P.W.); [email protected] (J.L.); [email protected] (L.X.); [email protected] (P.H.); [email protected] (X.L.); [email protected] (Y.H.) * Correspondence: [email protected]; Tel.: +86-186-0835-1703 Abstract: The accurate classification of Amanita is helpful to its research on biological control and medical value, and it can also prevent mushroom poisoning incidents. In this paper, we constructed the Bilinear convolutional neural networks (B-CNN) with attention mechanism model based on transfer learning to realize the classification of Amanita. When the model is trained, the weight on ImageNet is used for pre-training, and the Adam optimizer is used to update network parameters. In the test process, images of Amanita at different growth stages were used to further test the generalization ability of the model. After comparing our model with other models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (95.2%) and has good generalization ability. It is an efficient classification model, which provides a new option for mushroom classification in areas with limited computing resources. Keywords: deep learning; bilinear convolutional neural networks; attention mechanism; trans- fer learning Citation: Wang, P.; Liu, J.; Xu, L.; Huang, P.; Luo, X.; Hu, Y.; Kang, Z. -
The World's Most Poisonous Mushroom, Amanita Phalloides, Is
Maxwell Moor-Smith, BSc, Raymond Li, BSc(Pharm), MSc, Omar Ahmad, MD, FRCPC The world’s most poisonous mushroom, Amanita phalloides, is growing in BC The expanded range of death cap mushrooms—previously found on the roots of imported European trees but now found in association with native Garry oaks—puts amateur foragers at risk, and recognition of amatoxin poisoning is essential to preventing future fatalities. ABSTRACT: Amatoxins in Amanita acute liver failure occurs. Manage- shown some benefit in a retro- phalloides, commonly known as the ment of the symptomatic patient spective survival analysis. With the death cap mushroom, are responsi- consists of providing supportive expanded range of A. phalloides in ble for 90% of the world’s mushroom- care, promoting renal elimination of BC, physicians should be alert to related fatalities. The most deadly amatoxins, interrupting enterohe- the possibility of amatoxin poison- amatoxin for humans is α-amanitin, patic recirculation of amatoxins, and ing and include it in the differential a bicyclic octapeptide that irrevers- administering proposed antidotes. diagnosis of a patient presenting ibly binds RNA polymerase II, thus Although no established antidote with gastroenteritis or hepatotoxic- preventing protein synthesis and for A. phalloides has been identified, ity and a history of ingesting foraged causing cell death. Three recent N-acetylcysteine and silibinin have mushrooms. poisoning cases in British Columbia show how the death cap can be eas- ily mistaken for edible mushrooms the world’s most poisonous mushroom such as the puffball and the paddy is growing in British Columbia straw mushroom. Since being intro- duced from Europe to the west and mid-Atlantic coasts of North Ameri- Amanita phalloides, commonly known as the death cap mushroom, ca, A. -
Mushrooms on Stamps
Mushrooms On Stamps Paul J. Brach Scientific Name Edibility Page(s) Amanita gemmata Poisonous 3 Amanita inaurata Not Recommended 4-5 Amanita muscaria v. formosa Poisonous (hallucenogenic) 6 Amanita pantherina Deadly Poisonous 7 Amanita phalloides Deadly Poisonous 8 Amanita rubescens Not Recommended 9-11 Amanita virosa Deadly Poisonous 12-14 Aleuria aurantiaca Edible 15 Sarcocypha coccinea Edible 16 Phlogiotis helvelloides Edible 17 Leccinum aurantiacum Good Edible 18 Boletus parasiticus Not Recommended 19 For this presentation I chose the species for Cantharellus cibarius Choice Edible 20 their occurrence in our 5 county region Cantharellus cinnabarinus Choice Edible 21 Coprinus atramentarius Poisonous 22 surrounding Rochester, NY. My intent is to Coprinus comatus Choice Edible 23 show our stamp collecting audience that an Coprinus disseminatus Edible 24 Clavulinopsis fusiformis Edible 25 artist's rendition of a fungi species depicted Leotia viscosa Harmless 26 on a stamp could be used akin to a Langermannia gigantea Choice Edible 27 Lycoperdon perlatum Good Edible 28-29 guidebook for the study of mushrooms. Entoloma murraii Not Recommended 30 Most pages depict a photograph and related Morchella esculenta Choice Edible 31-32 Russula rosacea Not Recommended (bitter) 33 stamp of the species, along with an edibility Laetiporus sulphureus Choice Edible 34 icon. Enjoy… but just the edible ones! Polyporus squamosus Edible 35 Choice/Good Edible Harmless Not Recommended Poisonous Deadly Poisonous 2 3 4 5 6 7 8 Amanita rubescens (blusher) 9 10 -
Death Cap Mushrooms
INFORMATION Death Cap Mushroom Amanita Phalloides The Death Cap mushroom (Amanita Phalloides) is a deadly poisonous fungus. They often grow near established oak trees, and are found when there is warm, wet weather. In Canberra this usually occurs in autumn but there is no specific mushroom season. There have been multiple incidents and fatalities associated with Death Cap mushrooms. It can be extremely difficult for even experienced collectors to distinguish Death Cap mushrooms from an edible mushroom. People should not pick or eat wild mushrooms, and should talk to their families, friends and neighbours about the dangers of Death Cap mushrooms. Cooking Death Cap mushrooms does not make them safe. Symptoms Symptoms of Death Cap mushroom poisoning generally occur 6–24 hours or more after ingestion of mushrooms and include stomach pains, nausea, vomiting and diarrhoea. Symptoms may subside for 1–2 days giving a false impression of recovery. However, by this stage the toxin will have already caused serious liver damage. Liver failure and death may occur. Medical Treatment Anyone who suspects that they might have eaten Death Cap mushrooms should seek urgent medical attention at a hospital emergency department. Where possible take a whole mushroom sample for identification. The sooner the treatment begins, the better the chances of survival. Further information and assistance if poisoning is suspected can be sought by calling the Poisons Information Centre on 13 11 26 (24 hours a day, seven days a week). For further information or to report the location of Death Cap mushrooms contact Access Canberra on 13 22 81. Do not pick or eat any wild mushrooms Accessibility If you have difficulty reading a standard printed document and would like an alternative format, please phone 13 22 81. -
Research Article Presentations Related to Acute
Hindawi Emergency Medicine International Volume 2019, Article ID 3130843, 7 pages https://doi.org/10.1155/2019/3130843 Research Article Presentations Related to Acute Paracetamol Intoxication in an Urban Emergency Department in Switzerland Natalia Piotrowska,1 Jolanta Klukowska-Ro¨tzler ,1 Beat Lehmann ,1 Gert Krummrey,1 Manuel Haschke,2,3 Aristomenis K. Exadaktylos,1 and Evangelia Liakoni 2,3 1Department of Emergency Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland 2Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland 3Institute of Pharmacology, University of Bern, Bern, Switzerland Correspondence should be addressed to Evangelia Liakoni; [email protected] Received 25 March 2019; Accepted 22 November 2019; Published 6 December 2019 Academic Editor: $eodore J. Gaeta Copyright © 2019 Natalia Piotrowska et al. $is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. To investigate the characteristics of Emergency Department (ED) presentations due to acute paracetamol intoxication. Methods. Retrospective observational study of patients presenting to the ED of Bern University Hospital between May 1, 2012, and October 31, 2018, due to a paracetamol overdose (defined as intake of >4 g/24 h). Cases were identified using the full-text search of the electronic patient database and were grouped into intentional (suicidal/parasuicidal) and unintentional in- toxications (e.g., patient unaware of maximal daily dose). Results. During the study period, 181 cases were included and 143 (79%) of those were intentional.