Nuclear Medicine Ordering Guide

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Medicine Ordering Guide BJ17-1195-4220 (02/17) BJ17-1195-4220 BMD (e.g., fluoride exposure). fluoride (e.g., BMD BMD; 2) who are at risk for low BMD; or 3) who have suspected pathologically increased increased pathologically suspected have who 3) or BMD; low for risk at are who 2) BMD; Indications include but are not limited to individuals: 1) with established or suspected low low suspected or established with 1) individuals: to limited not are but include Indications estimation of future fracture risk, and to monitor response to therapy for these conditions. conditions. these for therapy to response monitor to and risk, fracture future of estimation and other disease states characterized by abnormal bone mineral density (BMD), for the the for (BMD), density mineral bone abnormal by characterized states disease other and Washington University’s Mallinckrodt Institute of Radiology. of Institute Mallinckrodt University’s Washington Dual-energy x-ray absorptiometry (DXA) is used primarily in the diagnosis of osteoporosis osteoporosis of diagnosis the in primarily used is (DXA) absorptiometry x-ray Dual-energy • All exams are read by subspecialized radiologists from from radiologists subspecialized by read are exams All 30 minutes 30 Department: in Time least 24 hours before the study. the before hours 24 least Patients should withhold oral calcium supplements (such as Tums) for at at for Tums) as (such supplements calcium oral withhold should Patients Interfering Conditions). Interfering Monday – Friday and 7:30a.m. – 11:00a.m. on Saturdays. on 11:00a.m. – 7:30a.m. and Friday – Monday (see (see radiopharmaceutical a or agents contrast oral of administration involving Outpatient Nuclear Medicine studies are available 7a.m. – 3:00p.m. 3:00p.m. – 7a.m. available are studies Medicine Nuclear Outpatient CT colonography, or another radiology or nuclear medicine examination examination medicine nuclear or radiology another or colonography, CT Friday. – Monday 5:30p.m. – 7a.m. 877-992-7111, or 314-362-7111 examination should not be scheduled within 1 week after a barium enema, enema, barium a after week 1 within scheduled be not should examination To schedule a Nuclear Medicine study please call Radiology Scheduling at at Scheduling Radiology call please study Medicine Nuclear a schedule To examination involving administration of intravenous contrast material. The The material. contrast intravenous of administration involving examination reach the appropriate sub-specialty radiologist, please call 314-454-8945. 314-454-8945. call please radiologist, sub-specialty appropriate the reach examination should not be scheduled within 1 day after another radiology radiology another after day 1 within scheduled be not should examination For questions regarding how to order any Nuclear Medicine study or how to to how or study Medicine Nuclear any order to how regarding questions For Patients are scheduled through the centralized scheduling office. The The office. scheduling centralized the through scheduled are Patients Prep: CPT Code 77080 Code CPT Pelvis or Spine Hip, sites, 2 – DXA Density Bone any other radiation safety question, please feel free to call the nuclear medicine division. medicine nuclear the call to free feel please question, safety radiation other any If you have specific questions regarding the radiopharmaceutical used for each procedure or or procedure each for used radiopharmaceutical the regarding questions specific have you If BMD (e.g., fluoride exposure). fluoride (e.g., BMD BMD; 2) who are at risk for low BMD; or 3) who have suspected pathologically increased increased pathologically suspected have who 3) or BMD; low for risk at are who 2) BMD; before coming in for the procedure. the for in coming before Indications include but are not limited to individuals: 1) with established or suspected low low suspected or established with 1) individuals: to limited not are but include Indications breast-feeding, please call and discuss all options with the nuclear medicine department department medicine nuclear the with options all discuss and call please breast-feeding, estimation of future fracture risk, and to monitor response to therapy for these conditions. conditions. these for therapy to response monitor to and risk, fracture future of estimation with the ordering doctor prior to ordering the nuclear medicine procedure. If a patient is is patient a If procedure. medicine nuclear the ordering to prior doctor ordering the with and other disease states characterized by abnormal bone mineral density (BMD), for the the for (BMD), density mineral bone abnormal by characterized states disease other and If there is a chance that a patient is pregnant, please make sure that this gets discussed discussed gets this that sure make please pregnant, is patient a that chance a is there If Dual-energy x-ray absorptiometry (DXA) is used primarily in the diagnosis of osteoporosis osteoporosis of diagnosis the in primarily used is (DXA) absorptiometry x-ray Dual-energy • nuclear medicine gamma cameras for diagnostic inquiries. diagnostic for cameras gamma medicine nuclear 30 minutes 30 Department: in Time least 24 hours before the study. the before hours 24 least radioactivity gets injected for nuclear medicine exams. These tracers are then visualized by by visualized then are tracers These exams. medicine nuclear for injected gets radioactivity Patients should withhold oral calcium supplements (such as Tums) for at at for Tums) as (such supplements calcium oral withhold should Patients and in most cases specifically for each patient. Generally, a small and safe amount of of amount safe and small a Generally, patient. each for specifically cases most in and tracers). Each radiopharmaceutical is prepared for a specific imaging or therapeutic exam, exam, therapeutic or imaging specific a for prepared is radiopharmaceutical Each tracers). Interfering Conditions). Interfering There are many different types of nuclear medicine radiopharmaceuticals (diagnostic (diagnostic radiopharmaceuticals medicine nuclear of types different many are There (see (see radiopharmaceutical a or agents contrast oral of administration involving Nuclear Medicine Radiopharmaceuticals Medicine Nuclear CT colonography, or another radiology or nuclear medicine examination examination medicine nuclear or radiology another or colonography, CT examination should not be scheduled within 1 week after a barium enema, enema, barium a after week 1 within scheduled be not should examination BMD (e.g., fluoride exposure). fluoride (e.g., BMD examination involving administration of intravenous contrast material. The The material. contrast intravenous of administration involving examination BMD; 2) who are at risk for low BMD; or 3) who have suspected pathologically increased increased pathologically suspected have who 3) or BMD; low for risk at are who 2) BMD; examination should not be scheduled within 1 day after another radiology radiology another after day 1 within scheduled be not should examination Indications include but are not limited to individuals: 1) with established or suspected low low suspected or established with 1) individuals: to limited not are but include Indications Patients are scheduled through the centralized scheduling office. The The office. scheduling centralized the through scheduled are Patients Prep: estimation of future fracture risk, and to monitor response to therapy for these conditions. conditions. these for therapy to response monitor to and risk, fracture future of estimation CPT Code 77080 Code CPT Pelvis or Spine Hip, site, 1 – DXA Density Bone and other disease states characterized by abnormal bone mineral density (BMD), for the the for (BMD), density mineral bone abnormal by characterized states disease other and BONE DENSITY BONE Dual-energy x-ray absorptiometry (DXA) is used primarily in the diagnosis of osteoporosis osteoporosis of diagnosis the in primarily used is (DXA) absorptiometry x-ray Dual-energy • 30 minutes 30 Department: in Time study. the before hours 24 least (2) For head & neck and OB lymphoscintigraphy, SPECT/CT is often indicated. often is SPECT/CT lymphoscintigraphy, OB and neck & head For (2) • Patients should withhold oral calcium supplements (such as Tums) for at at for Tums) as (such supplements calcium oral withhold should Patients obtained. obtained. Conditions). lymph nodes. Because of timing issues related to surgery, on occasion, images may not be be not may images occasion, on surgery, to related issues timing of Because nodes. lymph (see Interfering Interfering (see radiopharmaceutical a or agents contrast oral of administration SPECT/CT may be indicated to provide better anatomical localization of the sentinel sentinel the of localization anatomical better provide to indicated be may SPECT/CT (1) • colonography, or another radiology or nuclear medicine examination involving involving examination medicine nuclear or radiology another or colonography, 2 hours or longer if deemed necessary by radiologist by necessary deemed if longer or hours 2 Department: in Time examination should not be scheduled within 1 week after a barium enema, CT CT enema, barium a after week 1 within scheduled be not should examination examination involving administration of intravenous contrast material. The The material. contrast intravenous of administration involving examination injection(s). to prior antiseptic topical appropriate examination should not be scheduled within 1 day after another radiology radiology another after day 1 within scheduled
Recommended publications
  • Nuclide Imaging: Planar Scintigraphy, SPECT, PET
    Nuclide Imaging: Planar Scintigraphy, SPECT, PET Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical Imaging Signals and Systems, and lecture notes by Prince. Figures are from the textbook except otherwise noted. Lecture Outline • Nuclide Imaging Overview • Review of Radioactive Decay • Planar Scintigraphy – Scintillation camera – Imaging equation • Single Photon Emission Computed Tomography (SPECT) • Positron Emission Tomography (PET) • Image Quality consideration – Resolution, noise, SNR, blurring EL5823 Nuclear Imaging Yao Wang, Polytechnic U., Brooklyn 2 What is Nuclear Medicine • Also known as nuclide imaging • Introduce radioactive substance into body • Allow for distribution and uptake/metabolism of compound ⇒ Functional Imaging ! • Detect regional variations of radioactivity as indication of presence or absence of specific physiologic function • Detection by “gamma camera” or detector array • (Image reconstruction) From H. Graber, Lecture Note for BMI1, F05 EL5823 Nuclear Imaging Yao Wang, Polytechnic U., Brooklyn 3 Examples: PET vs. CT • X-ray projection and tomography: – X-ray transmitted through a body from a outside source to a detector (transmission imaging) – Measuring anatomic structure • Nuclear medicine: – Gamma rays emitted from within a body (emission imaging) From H. Graber, Lecture Note, F05 – Imaging of functional or metabolic contrasts (not anatomic) • Brain perfusion, function • Myocardial perfusion • Tumor detection (metastases) EL5823 Nuclear Imaging Yao Wang, Polytechnic
    [Show full text]
  • Description of Alternative Approaches to Measure and Place a Value on Hospital Products in Seven Oecd Countries
    OECD Health Working Papers No. 56 Description of Alternative Approaches to Measure Luca Lorenzoni, and Place a Value Mark Pearson on Hospital Products in Seven OECD Countries https://dx.doi.org/10.1787/5kgdt91bpq24-en Unclassified DELSA/HEA/WD/HWP(2011)2 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 14-Apr-2011 ___________________________________________________________________________________________ _____________ English text only DIRECTORATE FOR EMPLOYMENT, LABOUR AND SOCIAL AFFAIRS HEALTH COMMITTEE Unclassified DELSA/HEA/WD/HWP(2011)2 Health Working Papers OECD HEALTH WORKING PAPERS NO. 56 DESCRIPTION OF ALTERNATIVE APPROACHES TO MEASURE AND PLACE A VALUE ON HOSPITAL PRODUCTS IN SEVEN OECD COUNTRIES Luca Lorenzoni and Mark Pearson JEL Classification: H51, I12, and I19 English text only JT03300281 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format DELSA/HEA/WD/HWP(2011)2 DIRECTORATE FOR EMPLOYMENT, LABOUR AND SOCIAL AFFAIRS www.oecd.org/els OECD HEALTH WORKING PAPERS http://www.oecd.org/els/health/workingpapers This series is designed to make available to a wider readership health studies prepared for use within the OECD. Authorship is usually collective, but principal writers are named. The papers are generally available only in their original language – English or French – with a summary in the other. Comment on the series is welcome, and should be sent to the Directorate for Employment, Labour and Social Affairs, 2, rue André-Pascal, 75775 PARIS CEDEX 16, France. The opinions expressed and arguments employed here are the responsibility of the author(s) and do not necessarily reflect those of the OECD.
    [Show full text]
  • Procedure Guideline for Planar Radionuclide Cardiac
    Procedure Guideline for Planar Radionuclide Cardiac Ventriculogram for the Assessment of Left Ventricular Systolic Function Version 2 2016 Review date 2021 a b c d e e Alice Nicol , Mike Avison , Mark Harbinson , Steve Jeans , Wendy Waddington , Simon Woldman (on behalf of BNCS, BNMS, IPEM). a b Southern General Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK Bradford Royal Infirmary, c d e Bradford, UK Queens University, Belfast, UK Christie Hospital NHS Foundation Trust, Manchester, UK University College London Hospitals NHS Foundation Trust, London, UK 1 1. Introduction The purpose of this guideline is to assist specialists in nuclear medicine in recommending, performing, interpreting and reporting radionuclide cardiac ventriculograms (RNVG), also commonly known as multiple gated acquisition (MUGA) scans. It will assist individual departments in the development and formulation of their own local protocols. RNVG is a reliable and robust method of assessing cardiac function [1-5]. The basis of the study is the acquisition of a nuclear medicine procedure with multiple frames, gated by the R wave of the electrocardiogram (ECG) signal. The tracer is a blood pool agent, usually red blood cells labelled with technetium-99m (99mTc). One aim of this guideline is to foster a more uniform method of performing RNVG scans throughout the United Kingdom. This is particularly desirable since the National Institute for Health and Clinical Excellence (NICE) has mandated national protocols for the pre-assessment and monitoring of patients undergoing certain chemotherapy regimes [6, 7], based on specific left ventricular ejection fraction (LVEF) criteria. This guideline will focus on planar equilibrium RNVG scans performed for the assessment of left ventricular systolic function at rest, using data acquired in the left anterior oblique (LAO) projection by means of a frame mode, ECG-gated acquisition method.
    [Show full text]
  • SPR 2013 Postgraduate Course May 14-15, 2013 SAM Questionnaire Tuesday, May 14, 2013 CHEST Digital Radiography Robert Macdougal
    SPR 2013 Postgraduate Course May 14-15, 2013 SAM Questionnaire Tuesday, May 14, 2013 CHEST Digital Radiography Robert MacDougall, MSc 1. Which of the following is unaffected by the selection of Value of Interest Look Up Table (VOI-LUT): A. Diagnostic information in the processed image B. Target Exposure (ET) C. Exposure Index (EI) D. Deviation Index (DI) E. Brightness and contrast of the displayed image Correct Answer: B 2. Exposure Index (EI) represents: A. The exposure at the entrance to the patient B. The exposure at the detector plane measured with an ion chamber C. The brightness of the displayed image D. The exposure at the detector calculated from the mean signal response of the detector within the Values of Interest E. The deviation from a target exposure Correct Answer: D References 1. An Exposure Indicator for Digital Radiography: Report of AAPM Task Group 116. American Association of Physicists in Medicine. Accessed April 10, 2013. https://www.aapm.org/pubs/reports/RPT_116.pdf 2. Internation Electrotechnical Commission. Medical Electrical Equipment. Exposure Index of Digital X-ray Imaging Systems - Part 1: Definitions and Requirements for General Radiography. IEC Publication No. 62494-1. Geneva, Switzerland: International Electrotechnical Commission, 2002. Functional Chest MR Imaging Hyun Woo Goo, MD, PhD 3. Which one of the followings is the LEAST likely limitation of thoracic MR imaging? A. Low signal-to-noise ratio due to the low proton density of the lung B. Potential hazards from ionizing radiation C. Motion artifacts from respiratory motion and cardiac pulsation D. Relatively long examination time E. Susceptibility artifacts from multiple air-tissue interfaces Correct Answer: B References 1.
    [Show full text]
  • Updated December 13, 2020
    WWW.SNMMI.ORG October 2020 Compared to Final 2021 Rates Medicare Hospital Outpatient Prospective Payment System HOPPS (APC) Medicine Procedures, Radiopharmaceuticals, and Drugs October 2020 Rates CY 2021 Final Rule Updated December 13, 2020 Status Item/Code/Service OPPS Payment Status Indicator Services furnished to a hospital outpatient that are paid under a fee schedule or Not paid under OPPS. Paid by MACs under a fee schedule or payment system other than OPPS. payment system other than OPPS,* for example: A ● Separately Payable Clinical Diagnostic Laboratory Services (Not subject to Services are subject to deductible or coinsurance unless indicated otherwise. deductible or coinsurance.) D Discontinued Codes Not paid under OPPS or any other Medicare payment system. Items and Services: ● Not covered by any Medicare outpatient benefit category Not paid by Medicare when submitted on outpatient claims (any outpatient bill type). E1 ● Statutorily excluded by Medicare ● Not reasonable and necessary Items and Services: E2 ● for which pricing information and claims data are not Not paid by Medicare when submitted on outpatient claims (any outpatient bill type). available G Pass-Through Drug/ Biologicals Paid under OPPS; separate APC payment NonPass-Through Drugs and nonimplantable Biologicals, including Therapeutic Paid under OPPS; separate APC payment K Radiopharmaceuticals Paid under OPPS; payment is packaged into payment for other services. Therefore, Items and Services packaged into APC rate N there is no separate APC payment. Paid under OPPS; Addendum B displays APC assignments when services are separately payable. (1) Packaged APC payment if billed on the same claim as a HCPCS code assigned STV-Packaged status indicator “S,” “T,” or “V.” Q1 Codes (2) Composite APC payment if billed with specific combinations of services based on OPPS composite-specific payment criteria.
    [Show full text]
  • Criteria for Acceptability of Medical Radiological Equipment Used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy
    EUROPEAN COMMISSION RADIATION PROTECTION N° 162 Criteria for Acceptability of Medical Radiological Equipment used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy Directorate-General for Energy Directorate D — Nuclear Safety & Fuel Cycle Unit D4 — Radiation Protection 2012 This report was prepared by Quality Assurance Reference Centre for the European Commission under contract N°. ENER/10/NUCL/SI2.581655 and represents those organisations’ views on the subject matter. The views and opinions expressed herein do not necessarily state or reflect those of the European Commission and should not be relied upon as a statement of the Commission’s views. The European Commission does not guarantee the accuracy of the data included in this report, nor does it accept responsibility for any use made thereof. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2012 ISBN 978-92-79-27747-4 doi: 10.2768/22561 © European Union, 2012 Reproduction is authorised provided the source is acknowledged. Printed in Luxembourg 2 FOREWORD Luxembourg, October 2012 The work of the European Commission in the field of radiation protection is governed by the Euratom Treaty and the secondary legislation adopted under it. Council Directive 97/43/Euratom (the Medical Exposure Directive, MED) is the legal act defining the Euratom requirements on radiation protection of patients and of other individuals submitted to medical exposure.
    [Show full text]
  • III.2. POSITRON EMISSION TOMOGRAPHY – a NEW TECHNOLOGY in the NUCLEAR MEDICINE IMAGE DIAGNOSTICS (Short Review)
    III.2. POSITRON EMISSION TOMOGRAPHY – A NEW TECHNOLOGY IN THE NUCLEAR MEDICINE IMAGE DIAGNOSTICS (Short review) Piperkova E, Georgiev R Dept.of Nuclear Medicine and Dept of Radiotherapy, National Oncological Centre Hospital, Sofia Positron Emission Tomography (PET) is a technology which makes fast advance in the field of Nuclear Medicine. It is different from the X-ray Computed Tomography and Magnetic Resonance Imaging (MRI), where mostly anatomical structures are shown and their functioning could be evaluated only indirectly. In addition, PET can visualise the biological nature and metabolite activity of the cells and tissues. It also has the capability for quantitative determination of the biochemical, physiological and pathological process in the human body (1). The spatial resolution of PET is usually 4-5mm and when the concentration of the positron emitter in the cells is high enough, it allows to see small size pathological zones with high proliferative and metabolite activity ( 3, 7, 17). Following fast and continuous improvement, PET imaging systems have advanced from the Bismuth Germanate Oxide (BGO) circular detector technology to the modern Lutetium Orthosilicate (LSO) and Gadolinium Orthosilicate (GSO) detectors (2, 7, 16). On the other hand, the construction technology has undergone significant progress in the development of new combined PET-CT and PET-MRI systems which currently replace the conventional PET systems with integrated transmission and emission detecting procedures, shown in Fig. 1. Fig. 1 A modern PET-CT system with one gantry. The sensitivity and the accuracy of PET based methods are found to be considerably higher compared to the other existing imaging methods and they can achieve 90-100% in the localisation of different oncological lesions (4, 11, 13, 14).
    [Show full text]
  • Diagnostic Radiology Physics Diagnostic This Publication Provides a Comprehensive Review of Topics Relevant to Diagnostic Radiology Physics
    A Handbook for Teachers and Students A Handbook for Teachers Diagnostic Diagnostic This publication provides a comprehensive review of topics relevant to diagnostic radiology physics. It is intended to provide the basis for the education of medical physicists in the field of diagnostic radiology. Bringing together the work of 41 authors and reviewers from 12 countries, the handbook covers a broad range of topics including radiation physics, dosimetry and Radiology instrumentation, image quality and image perception, imaging modality specific topics, recent advances in digital techniques, and radiation biology and protection. It is not designed to replace the large number of textbooks available on many aspects of diagnostic radiology physics, but is expected Radiology Physics Physics to fill a gap in the teaching material for medical radiation physics in imaging, providing in a single manageable volume the broadest coverage of topics currently available. The handbook has been endorsed by several international professional bodies and will be of value to those preparing for their certification A Handbook for as medical physicists, radiologists and diagnostic radiographers. Teachers and Students D.R. Dance S. Christofides A.D.A. Maidment I.D. McLean K.H. Ng Technical Editors International Atomic Energy Agency Vienna ISBN 978–92–0–131010–1 1 @ DIAGNOSTIC RADIOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA OMAN ALBANIA GREECE PAKISTAN ALGERIA GUATEMALA
    [Show full text]
  • Diffraction-Enhanced X-Ray Imaging of in Vitro Breast Tumours
    UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HU-P-D113 DIFFRACTION-ENHANCED X-RAY IMAGING OF IN VITRO BREAST TUMOURS Jani Keyriläinen Division of X-ray Physics Department of Physical Sciences Faculty of Science University of Helsinki Helsinki, Finland Department of Oncology Helsinki University Central Hospital Helsinki, Finland ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium D101 of the Department of Physical Sciences (Physicum), Gustaf Hällströmin katu 2, on October 29th, 2004, at 12 o’clock noon. Helsinki 2004 ISSN 0356-0961 ISBN 952-10-1655-8 ISBN 952-10-1656-6 (pdf-version) http://ethesis.helsinki.fi/ Helsinki 2004 Yliopistopaino PREFACE This thesis is based on research done at the Division of X-ray Physics, Department of Physical Sciences, University of Helsinki (HU, Finland), at the Medical Beamline ID17, European Synchrotron Radiation Facility (ESRF, Grenoble, France), and at the departments of Oncology, Pathology and Radiology, Helsinki University Central Hospital (HUCH, Finland), all of which are acknowledged. I wish to express my gratitude to Professor Juhani Keinonen, Ph.D., Head of the Department of Physical Sciences, and to Professor Seppo Manninen, Ph.D., former Head of the Division of X-ray Physics, for the opportunity to work at the Department. I also wish to thank Professor Heikki Joensuu, M.D., Ph.D., Head of the Department of Oncology, and William Thomlinson, Ph.D., former Beamline Responsible, ID17, for allowing me to use the outstanding working facilities of their institutions. I am most grateful to my supervisors, Professor Pekka Suortti, Ph.D., Department of Physical Sciences, and Docent Mikko Tenhunen, Ph.D., Chief Physicist of the Department of Oncology, for proposing to me the topic of this study and guiding me throughout this research work.
    [Show full text]
  • Whole Body MR
    Whole Body MR: Techniques and Staging in Oncology ‐ How To • Extent of disease and staging • Response to treatment – Early assessment of response to treatment may allow more individualized therapy • Surveillance • Complications – Osteonecrosis – Infection • Cancer predisposition syndromes screening Condition Associated neoplasms Surveillance NF type I Optic nerve glioma, neurofibromas, leukemia (especially juvenile Annual physical examination; annual ophthalmologic examination in early childhood (to age 5 y); regular myelomonocytic leukemia developmental assessment and blood pressure monitoring; appropriate monitoring by a specialist and myelodysplastic syndromes, MPNST (lifetime risk of 8%–13%), GIST according to CNS, skeletal, or cardiovascular abnormalities (lifetime risk of 6%), pheochromocytoma (1%), rhabdomyosarcoma, neuroblastoma Beckwith- Wilms tu (40%–43%), hepatoblastoma (12-20%), adrenocortical ca, Abdominal US every 3 mo to age 7 y; measurement of serum AFP level every 3 mo to age 4 y; daily Wiedemann neuroblastoma, rhabdomyosarcoma abdominal examination by the caretaker at the discretion of the caretaker or parent; abdominal syndrome examination by a physician every 6 mo MEN 1 Parathyroid gland adenomas (65%–90%), pancreatic neuroendocrine tumors Screening starting at age 5–10 y, including measurement of fasting glucose, calcium, PTH, insulin, (50%–70%), and anterior pituitary gland adenomas (25%–65%) prolactin, and IGF1 levels; annual pancreatic US; pancreatic and pituitary MR imaging every 3–5 y; yearly abdominal CT or MR
    [Show full text]
  • Procedure Guideline for Equilibrium Radionuclide Ventriculography
    Procedure Guideline for Equilibrium Radionuclide Ventriculography Mark D. Wittry, Jack E. Juni, Henry D. Royal, Gary V. Heller and Steven C. Port Saint Louis University, St. Louis, Missouri; William Beaumont Hospital, Royal Oak, Michigan; Mallinckrodt Institute of Radiology, St. Louis, Missouri; Hartford Hospital, Hartford, Connecticut; and Cardiovascular Associates, Ltd., Milwaukee, Wisconsin a. To distinguish ischemie from nonischemic causes. Key Words: gated blood-pool imaging;practice guideline;radionu- b. To distinguish systolic from diastolic causes. clide ventriculography; cardiac function; heart 3. Evaluation of cardiac function in patients undergoing J NucíMed 1997; 38:1658-1661 chemotherapy. 4. Assessment of ventricular function in patients with PART I: PURPOSE valvular stenosis and/or insufficiency. The purpose of this guideline is to assist nuclear medicine An RVG may be used in the conditions listed above for: practitioners in recommending, performing, interpreting and (a) determining long-term prognosis, (b) assessing short- reporting the results of gated equilibrium radionuclide ventricu term risk (e.g., pre-operative evaluation) and (c) moni lography. toring the response to surgery or other therapeutic inter ventions. PART II: BACKGROUND INFORMATION AND DEFINITIONS Gated equilibrium radionuclide ventriculography (RVG) is a PART IV: PROCEDURE procedure in which the patient's blood is radiolabeled and A. Patient Preparation ECG-gated cardiac scintigraphy is obtained. Single or multiple 1. Rest measurements of left and/or right ventricular function are made. No special preparation is required for a resting RVG. Alternative terminologies for this technique include gated A fasting state is generally preferred. It is not neces cardiac blood-pool imaging, multigated acquisition (MUGA) sary to withhold any medications.
    [Show full text]
  • Pet/Ct) Imaging
    The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Adopted 2017 (Resolution 26)* ACR–SPR–STR PRACTICE PARAMETER FOR THE PERFORMANCE OF CARDIAC POSITRON EMISSION TOMOGRAPHY - COMPUTED TOMOGRAPHY (PET/CT) IMAGING PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1.
    [Show full text]