Criteria for Acceptability of Medical Radiological Equipment Used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy

Total Page:16

File Type:pdf, Size:1020Kb

Criteria for Acceptability of Medical Radiological Equipment Used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy EUROPEAN COMMISSION RADIATION PROTECTION N° 162 Criteria for Acceptability of Medical Radiological Equipment used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy Directorate-General for Energy Directorate D — Nuclear Safety & Fuel Cycle Unit D4 — Radiation Protection 2012 This report was prepared by Quality Assurance Reference Centre for the European Commission under contract N°. ENER/10/NUCL/SI2.581655 and represents those organisations’ views on the subject matter. The views and opinions expressed herein do not necessarily state or reflect those of the European Commission and should not be relied upon as a statement of the Commission’s views. The European Commission does not guarantee the accuracy of the data included in this report, nor does it accept responsibility for any use made thereof. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2012 ISBN 978-92-79-27747-4 doi: 10.2768/22561 © European Union, 2012 Reproduction is authorised provided the source is acknowledged. Printed in Luxembourg 2 FOREWORD Luxembourg, October 2012 The work of the European Commission in the field of radiation protection is governed by the Euratom Treaty and the secondary legislation adopted under it. Council Directive 97/43/Euratom (the Medical Exposure Directive, MED) is the legal act defining the Euratom requirements on radiation protection of patients and of other individuals submitted to medical exposure. The MED requires the adoption of criteria of acceptability for equipment in order to indicate when remedial action is necessary (including, if appropriate, taking the equipment out of service). In 1997 the Commission issued publication Radiation Protection 91 (RP91) containing a non-binding set of criteria for acceptability of radiological installations. Later Commission guidance on transposition of the MED into national legislation notes that RP91 "gives only the absolute minimum requirements" and that "holders of installations should make effort(s) to adopt more stringent criteria.” The present report (RP162) updates and considerably expands the scope of RP91. The recommended approach to the establishment and the use of criteria for acceptability of radiological equipment, as well as the technical parameters and values contained in the document, have been extensively reviewed and discussed between 2007 and 2012. This was done in many technical meetings involving specialists in different areas, through an open public consultation from January to June 2010 and in a dedicated workshop held in Dublin in September 2011. The final result is a quite extensive set of non-binding criteria that will help holders of radiological installations assess the (continuing) acceptability of the equipment they use and undertake appropriate remedial action, if indicated. The report should also be useful for regulators when deciding on the adoption of national criteria for acceptability of radiological equipment. However, the Commission does not recommend the direct adoption of the RP162 suspension levels in national regulations, as this may pose unnecessarily stringent limitations on the use of equipment. The adoption of regulatory restrictions on equipment use should be based on careful and thorough evaluation of national circumstances. Hence, RP162 should be used by regulators only as an example of criteria to be considered. While primarily intended for holders of radiological equipment in clinical use and for regulators dealing with safety of such equipment, this report could also be useful for wider audiences. These include designers, manufacturers and suppliers of equipment as well as other players involved in different stages of the equipment lifecycle. The publication of this report in the Commission's Radiation Protection series of publications has been recommended by the Group of Experts established under Article 31 of the Euratom Treaty. It is our hope that it will contribute to a continuous improvement of the protection of the health of the European citizens against the risks accompanying the growing and generally beneficial use of ionising radiation in medicine. Augustin Janssens Head of Radiation Protection Unit Directorate General for Energy 3 CONTENTS FOREWORD ........................................................................................................................... 3 CONTENTS ............................................................................................................................ 5 1 INTRODUCTION ............................................................................................................. 9 1.1 Background and purpose ......................................................................................... 9 1.2 Basis for criteria for acceptability in the European directives ................................. 11 1.2.1 Requirements of the Medical Exposure Directive (MED) ................................ 11 1.2.2 Requirements of the Medical Devices Directives (MDD) and equipment standards ......................................................................................................... 13 1.3 To whom this document is addressed .................................................................... 14 1.4 Clarification of terminology and equipment lifecycle ............................................... 14 1.5 Criteria for acceptability .......................................................................................... 16 1.5.1 Approaches to criteria ..................................................................................... 16 1.6 Identifying and selecting suspension levels ............................................................ 17 1.7 Special considerations, exceptions and exclusions ................................................ 19 1.7.1 Special considerations .................................................................................... 19 1.7.2 Old equipment ................................................................................................. 19 1.7.3 Rapidly evolving technologies ......................................................................... 19 1.7.4 Exclusions ....................................................................................................... 20 1.8 Establishing conformity with criteria for acceptability ............................................. 21 1.9 Wider issues for the hospital, the MPE and the regulator ...................................... 22 1.10 Conclusions ............................................................................................................ 22 2 Diagnostic Radiology ..................................................................................................... 23 2.1 Introduction ............................................................................................................. 23 2.2 X-ray generators and equipment for general radiography ...................................... 23 2.2.1 Introductory remarks and qualitative criteria ................................................... 23 2.2.2 Suspension levels for X-ray generators and general radiography................... 25 2.3 Radiographic image receptors ................................................................................ 29 2.3.1 Introductory remarks ....................................................................................... 29 2.3.2 Suspension levels for image receptors ........................................................... 30 2.4 Mammography ........................................................................................................ 33 2.4.1 Introductory remarks and qualitative criteria ................................................... 33 2.4.2 Suspension levels for mammograph ............................................................... 34 2.5 Dental radiography ................................................................................................. 36 2.5.1 Introductory remarks and qualitative criteria ................................................... 36 5 2.5.2 Suspension levels for dental equipment .......................................................... 37 2.6 Fluoroscopic systems ............................................................................................. 40 2.6.1 Introductory remarks and qualitative criteria ................................................... 40 2.6.2 Suspensions levels for fluoroscopy equipment ............................................... 40 2.7 Computed tomography ........................................................................................... 42 2.7.1 Introductory remarks and qualitative criteria ................................................... 42 2.7.2 Suspension levels for CT scanners ................................................................. 43 2.8 Dual energy x-ray absorptiometry .......................................................................... 44 2.8.1 Introductory remarks and qualitative criteria ................................................... 44 2.8.2 Suspension levels for DXA systems ................................................................ 45 3 Nuclear Medicine ..........................................................................................................
Recommended publications
  • Radiation Protection Guidance for Diagnostic X Rays
    Disclaimer - For assistance accessing this document or additional information, please contact [email protected]. EPA 520/4-76-019 FEDERAL GUIDANCE REPORT NO. 9 RADIATION PROTECTION GUIDANCE FOR DIAGNOSTIC X RAYS ENVIRONMENTAL PROTECTION AGENCY INTERAGENCY WORKING GROUP ON MEDICAL RADIATION FEDERAL GUIDANCE REPORT NO. 9 RADIATION PROTECTION GUIDANCE FOR DIAGNOSTIC X RAYS Interagency Working Group on Medical Radiation U.S. Environmental Protection Agency Washington, D.C. 20460 October 1976 PREFACE The authority of the Federal Radiation Council to provide radiation protection guidance was transferred to the Environmental Protection Agency on December 2, 1970, by Reorganization Plan No. 3. Prior to this transfer, the Federal Radiation Council developed reports which provided the basis for guidance recommended to the President for use by Federal agencies in developing standards for a wide range of radiation exposure circumstances. This report, which was prepared in cooperation with an Interagency Working Group on Medical Radiation formed on July 5, 1974, constitutes a similar objective to provide the basis for recommendations to reduce unnecessary radiation exposure due to medical uses of diagnostic x rays. The Interagency Working Group developed its recommendations with the help of two subcommittees. The Subcommittee on Prescription of Exposure to X rays examined factors to eliminate clinically unproductive examinations and the Subcommittee on Technic of Exposure Prevention examined factors to assure the use of optimal technic in performing x-ray examinations. Both subcommittees also considered the importance of appropriate and properly functioning equipment in producing radiographs of the required diagnostic quality with minimal exposure. Reports by these subcommittees were made available for public comment.
    [Show full text]
  • Cone Beam Computed Tomography (CBCT) Page 1 of 13
    Cone Beam Computed Tomography (CBCT) Page 1 of 13 Dental Policy An Independent licensee of the Blue Cross Blue Shield Association Title: Cone Beam Computed Tomography (CBCT) Professional Institutional Original Effective Date: January 1, 2007 Original Effective Date: January 1, 2007 Revision Date(s): May 14, 2013; Revision Date(s): May 14, 2013; December 31, 2013; May 13, 2015; December 31, 2013; May 13, 2015; April 27, 2016; January 18, 2017; April 27, 2016; January 18, 2017; February 15, 2018; July 3, 2019; February 15, 2018; July 3, 2019, October 1, 2020; May 21, 2021 October 1, 2020; May 21, 2021 Current Effective Date: May 21, 2021 Current Effective Date: May 21, 2021 State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact Blue Cross and Blue Shield of Kansas Customer Service. The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice. If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.
    [Show full text]
  • Radiation Safety in Dental Radiography
    Dental Radiography Series Radiation Safety in dental radiography. The goal of dental radiography is to obtain diagnostic information while keeping the exposure to the patient and dental staff at minimum levels. While some exposure to radiation is acceptable in medical practice, it should be understood that levels of radiation exposure to patients, dental staff, and other nearby occupants should be kept to As Low As Reasonably Achievable (ALARA) to reduce health risks from ionizing radiation. Any methods that can reduce patient and area radiation exposures without major difficulty, great expense or inconvenience, should be practiced. Practitioners must always consider the risk of patient exposure with the benefit of diagnosis. Radiograph Guidelines 4 Radiation safety considerations 4 Exposure 5 Patient selection 5 Film 6 Rectangular Collimation 7 Image Density 7 Film Cassettes 7 Minimal Exposure 8 Exposure Protection Basic principals of radiation safety Additional radiation safety controls commonly utilized for dental facilities Engineering controls 9 Summary 9 References Radiograph Guidelines One way to do this is with the use of radiographic patient All x-ray equipment, regardless of date of manufacture, is selection criteria. subject to state and federal x-ray equipment regulations. Guidelines for the prescription of dental radiographs have Although proper filtration is not usually a problem with been developed by an expert panel of dentists sponsored modern equipment, older x-ray machines should be tested by the public health service. by a radiation physicist or qualified technician to verify the presence of the correct amount of filtration. A free brochure is available from Carestream Dental (see last page for ordering information) publication The kilovoltage or kVp setting is one of the most 8616 “Guidelines for prescribing dental radiographs.” important factors that determines the image contrast, The guidelines are voluntary and are intended only as a as well as dosage to the patient.
    [Show full text]
  • Emission Tuned-Aperture Computed Tomography: a Novel Approach to Scintimammography
    Emission Tuned-Aperture Computed Tomography: A Novel Approach to Scintimammography Frederic H. Fahey, Kerry L. Grow, Richard L. Webber, Beth A. Harkness, Ersin Bayram, and Paul F. Hemler Division of Radiologic Sciences, Wake Forest University School of Medicine, and Department of Physics, Wake Forest University, Winston-Salem, North Carolina 1 or more distant sites (3). Early detection, therefore, plays Emission tuned-aperture computed tomography (ETACT) is a an essential role in the fight against breast cancer. Although new approach to acquiring and processing scintimammography mammography is currently the best imaging approach for data. A gamma camera with a pinhole collimator is used to breast cancer screening, several factors may limit its accu- acquire projections of the radionuclide distribution within the racy. Dense breasts, breast implants, or scars may either breast. Fiducial markers are used to reconstruct these projec- tions into tomographic slices. Simulation and phantom experi- resemble a tumor or hide true small tumors on the mam- ments were performed to evaluate the potential of the ETACT mogram. As a result, false-positive as well as false-negative method. Methods: In the simulation study, a hemispheric object incidents are increased. Mammography has a relatively high of 15 cm in diameter was constructed to model a breast. A sensitivity (88%), although dense or large breasts may re- ray-tracing technique was used to generate ideal projections. duce this. However, it has a low specificity (67%) (4). These were blurred and noise was added to create images that Scintimammography using 99mTc-labeled sestamibi has resemble scintigraphic images. Tumor size, pinhole size, and target-to-nontarget radioactivity ratios (TNTs) were varied.
    [Show full text]
  • Essential Tips for Dental Radiographers
    Essential Tips for Dental Radiographers The Academy of Dental Learning and OSHA Training, LLC, designates this activity for 2 continuing education credits (2 CEs). Martin S. Spiller, DMD Health Science Editor: Megan Wright, RDH, MS Publication Date: May 2010 Updated Date: December 2019 Expiration Date: December 2021 The Academy of Dental Learning and OSHA Training, LLC is an ADA CERP Recognized Provider. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints about a CE provider may be directed to the provider or to the Commission for Continuing Education Provider Recognition at ADA.org/CERP. Conflict of Interest Disclosure: ADL does not accept promotional or commercial funding in association with its courses. In order to promote quality and scientific integrity, ADL's evidence- based course content is developed independent of commercial interests. Refund Policy: If you are dissatisfied with the course for any reason, prior to taking the test and receiving your certificate, return the printed materials within 15 days of purchase and we will refund your full tuition. Shipping charges are nonrefundable. California Registered Provider Number: RP5631 Answer Sheet: Essential Tips for Dental Radiographers 1. _______ 3. _______ 5. _______ 7. _______ 9. _______ 2. _______ 4. _______ 6. _______ 8. _______ 10. _______ Name: ________________________________________ Profession: _________________________ License State: ____________ License Number: ________________ Expiration Date Address City: ____________________________________ State: __________ Zip Code: Telephone:________________________________ Fax: ____________________________________ E-mail: If you have downloaded the course and printed the answer sheet from the Internet please enter payment information below.
    [Show full text]
  • Dental Radiography
    Dental Radiology Made Easy - Tips and Tricks for Great Rads! Mary L. Berg, BS, LATG, RVT, VTS(Dentistry) Beyond the Crown Veterinary Education Lawrence, KS [email protected] Here are some quick tips for great x-rays every time: 1. You need a diagnostic x-ray – not a perfect x-ray. A diagnostic x-ray allows for the visualization of 2-3 mm of bone around the apex of the root and the level of the alveolar bone. The crown does not need to be on the x-ray. 2. The entire tooth does not need to be on one view. If both roots are visible but on two separate x-rays, it’s okay! 3. Get all the teeth in as few views as possible. This saves time and gives a quick survey of the oral cavity. If more detail is needed, additional view should be obtained. 4. Every patient, every time! Not only will this help you become faster at taking x-rays, but it is also better medicine. Remember the patients can’t tell us where it hurts. 5. Proper positioning of the animal is key! Place the animal (both dog and cat) in sternal recumbency for the maxillary views and dorsal recumbency for the mandibular. Ensure that the dental arcade is parallel to the table, and the mouth is straight, not tilted in either direction. 6. The sensor (film) should always be placed with the teeth on the very edge of the sensor with the remainder of the sensor inside the mouth, and the sensor should be flat or parallel to the table for maxillary views.
    [Show full text]
  • Maxillofacial Imaging
    3 ▼ MAXILLOFACIAL IMAGING SHARON L. BROOKS, DDS, MS ▼ SELECTION CRITERIA The role of imaging in oral medicine varies greatly with the ▼ IMAGING MODALITIES AVAILABLE IN DENTAL type of problem being evaluated. Certain problems, such as OFFICES AND CLINICS pain in the orofacial region, frequently require imaging to Intraoral and Panoramic Radiography determine the origin of the pain. For other conditions, how- Digital Imaging ever, such as soft-tissue lesions of the oral mucosa, imaging Conventional Tomography offers no new diagnostic information. ▼ IMAGING MODALITIES AVAILABLE IN HOSPITALS The variety of imaging techniques available to the clinician AND RADIOLOGY CLINICS has grown in number and in degree of sophistication over the Computed Tomography years. While this means that there is an imaging procedure Magnetic Resonance Imaging that will provide the information desired by the clinician, it Ultrasonography Nuclear Medicine also means that choosing the best technique is not necessarily Contrast-Enhanced Radiography an easy process. This chapter first explores the underlying principles the ▼ IMAGING PROTOCOLS Orofacial Pain clinician should consider when deciding whether imaging is Disease Entities Affecting Salivary Glands appropriate for the case in question and then discusses the Jaw Lesions imaging techniques that are available in dental offices and in ▼ BENEFITS AND RISKS referral imaging centers. Examples of specific imaging proto- cols are then described, followed by a discussion of risk-ben- efit analysis of imaging in oral medicine. ▼SELECTION CRITERIA The decision to order diagnostic imaging as part of the evalu- ation of an orofacial complaint should be based on the prin- ciple of selection criteria. Selection criteria are those histori- cal and/or clinical findings that suggest a need for imaging to provide additional information so that a correct diagnosis and an appropriate management plan can be determined.
    [Show full text]
  • SPR 2013 Postgraduate Course May 14-15, 2013 SAM Questionnaire Tuesday, May 14, 2013 CHEST Digital Radiography Robert Macdougal
    SPR 2013 Postgraduate Course May 14-15, 2013 SAM Questionnaire Tuesday, May 14, 2013 CHEST Digital Radiography Robert MacDougall, MSc 1. Which of the following is unaffected by the selection of Value of Interest Look Up Table (VOI-LUT): A. Diagnostic information in the processed image B. Target Exposure (ET) C. Exposure Index (EI) D. Deviation Index (DI) E. Brightness and contrast of the displayed image Correct Answer: B 2. Exposure Index (EI) represents: A. The exposure at the entrance to the patient B. The exposure at the detector plane measured with an ion chamber C. The brightness of the displayed image D. The exposure at the detector calculated from the mean signal response of the detector within the Values of Interest E. The deviation from a target exposure Correct Answer: D References 1. An Exposure Indicator for Digital Radiography: Report of AAPM Task Group 116. American Association of Physicists in Medicine. Accessed April 10, 2013. https://www.aapm.org/pubs/reports/RPT_116.pdf 2. Internation Electrotechnical Commission. Medical Electrical Equipment. Exposure Index of Digital X-ray Imaging Systems - Part 1: Definitions and Requirements for General Radiography. IEC Publication No. 62494-1. Geneva, Switzerland: International Electrotechnical Commission, 2002. Functional Chest MR Imaging Hyun Woo Goo, MD, PhD 3. Which one of the followings is the LEAST likely limitation of thoracic MR imaging? A. Low signal-to-noise ratio due to the low proton density of the lung B. Potential hazards from ionizing radiation C. Motion artifacts from respiratory motion and cardiac pulsation D. Relatively long examination time E. Susceptibility artifacts from multiple air-tissue interfaces Correct Answer: B References 1.
    [Show full text]
  • Updated December 13, 2020
    WWW.SNMMI.ORG October 2020 Compared to Final 2021 Rates Medicare Hospital Outpatient Prospective Payment System HOPPS (APC) Medicine Procedures, Radiopharmaceuticals, and Drugs October 2020 Rates CY 2021 Final Rule Updated December 13, 2020 Status Item/Code/Service OPPS Payment Status Indicator Services furnished to a hospital outpatient that are paid under a fee schedule or Not paid under OPPS. Paid by MACs under a fee schedule or payment system other than OPPS. payment system other than OPPS,* for example: A ● Separately Payable Clinical Diagnostic Laboratory Services (Not subject to Services are subject to deductible or coinsurance unless indicated otherwise. deductible or coinsurance.) D Discontinued Codes Not paid under OPPS or any other Medicare payment system. Items and Services: ● Not covered by any Medicare outpatient benefit category Not paid by Medicare when submitted on outpatient claims (any outpatient bill type). E1 ● Statutorily excluded by Medicare ● Not reasonable and necessary Items and Services: E2 ● for which pricing information and claims data are not Not paid by Medicare when submitted on outpatient claims (any outpatient bill type). available G Pass-Through Drug/ Biologicals Paid under OPPS; separate APC payment NonPass-Through Drugs and nonimplantable Biologicals, including Therapeutic Paid under OPPS; separate APC payment K Radiopharmaceuticals Paid under OPPS; payment is packaged into payment for other services. Therefore, Items and Services packaged into APC rate N there is no separate APC payment. Paid under OPPS; Addendum B displays APC assignments when services are separately payable. (1) Packaged APC payment if billed on the same claim as a HCPCS code assigned STV-Packaged status indicator “S,” “T,” or “V.” Q1 Codes (2) Composite APC payment if billed with specific combinations of services based on OPPS composite-specific payment criteria.
    [Show full text]
  • Confidential: for Review Only
    BMJ Confidential: For Review Only Temporal trends in the use of tests in UK primary care: a retrospective analysis of 250 million tests, 2000 – 2015. Journal: BMJ Manuscript ID BMJ.2018.044789 Article Type: Research BMJ Journal: BMJ Date Submitted by the Author: 26-Apr-2018 Complete List of Authors: O'Sullivan, Jack; University of Oxford, Centre for Evidence-based medicine, Nuffield Department of Primary Care Health Sciences Stevens, Sarah; University of Oxford, Primary Care Health Sciences Hobbs, FD Richard; University of Oxford, Nuffield Department of Primary Care Health Science Salisbury, Chris; University of Bristol, Centre for Academic Primary Care, School of Social and Community Medicine Little, Paul; University of Southampton, Medical School, Goldacre, Ben; University of Oxford, Primary Care Health Sciences Bankhead, Clare; University of Oxford, Nuffield Department of Primary Care Health Sciences Aronson, Jeffrey; University of Oxford, Primary Health Care Perera, Rafael; University of Oxford, Primary Health Care Heneghan, Carl; Oxford University, Primary Health Care Too much medicine, Primary Care, Imaging, Laboratory tests, Radiology, Keywords: Workload https://mc.manuscriptcentral.com/bmj Page 1 of 100 BMJ 1 2 3 Temporal trends in the use of tests in UK primary care: a retrospective analysis of 250 million 4 tests, 2000 – 2015. 5 Jack W. O’Sullivan,1,2 Sarah Stevens,2 FD Richard Hobbs,2 Chris Salisbury,3 Paul Little,4 Ben 6 1,2 1,2 1,2 1,2 1,2 7 Goldacre, Clare Bankhead, Jeffrey K. Aronson, Rafael Perera, and Carl Heneghan . 8 9 10 1CentreConfidential: for Evidence-Based Medicine, Nuffield For Department Review of Primary Care HealthOnly Sciences, 11 University of Oxford, OX2 6GG, UK 12 2 13 Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, UK 14 3Centre for Academic Primary Care, School of Social and Community Medicine, University of 15 16 Bristol, BS8 2PS, UK 17 4Primary Care and Population Sciences, University of Southampton, Southampton, SO17 1BJ, UK 18 19 20 21 Jack W.
    [Show full text]
  • Dental Radiography Series Intraoral Radiography Successful
    Dental Radiography Series Successful Intraoral Radiography Successful Intraoral Radiography Every dental professional would like to achieve the goal First, the film must be properly positioned to ensure of producing consistent, quality intraoral radiographs. A proper geometry and prevent distortion and overlap. quality intraoral radiograph will reveal maximum image Second, the exposure technique factors must be detail with anatomic accuracy and optimal density and appropriate for the patient and the film selected. contrast, providing the highest diagnostic yield. This And last, proper processing time, temperature and pamphlet will address some of the common errors in handling requirements must be followed to produce capturing and processing intraoral radiographs and explain a quality radiograph. how to prevent and correct them. For similar information on panoramic radiography, please refer to the publication entitled “Successful Panoramic Radiography”. Quality Radiography The goal of all radiography should be to produce a Positioning high quality radiograph. Such a radiograph will exhibit maximum detail to resolve fine objects. It will show the teeth and anatomic structures accurately without distortion or magnification. It will have the optimal density and contrast (visual characteristics) to maximize its use Exposure Processing for the detection of dental disease. To create such a film, the dental staff must pay attention to all three steps in the production of the radiograph including: positioning, exposure and processing. Figure 1 Three steps In producing a quality radiograph Proper Film Positioning Step 1: Proper Film Positioning Film placement for proper anatomic coverage is beyond the scope of this pamphlet and can be reviewed in any quality dental radiography text.
    [Show full text]
  • Diagnostic Radiology Physics Diagnostic This Publication Provides a Comprehensive Review of Topics Relevant to Diagnostic Radiology Physics
    A Handbook for Teachers and Students A Handbook for Teachers Diagnostic Diagnostic This publication provides a comprehensive review of topics relevant to diagnostic radiology physics. It is intended to provide the basis for the education of medical physicists in the field of diagnostic radiology. Bringing together the work of 41 authors and reviewers from 12 countries, the handbook covers a broad range of topics including radiation physics, dosimetry and Radiology instrumentation, image quality and image perception, imaging modality specific topics, recent advances in digital techniques, and radiation biology and protection. It is not designed to replace the large number of textbooks available on many aspects of diagnostic radiology physics, but is expected Radiology Physics Physics to fill a gap in the teaching material for medical radiation physics in imaging, providing in a single manageable volume the broadest coverage of topics currently available. The handbook has been endorsed by several international professional bodies and will be of value to those preparing for their certification A Handbook for as medical physicists, radiologists and diagnostic radiographers. Teachers and Students D.R. Dance S. Christofides A.D.A. Maidment I.D. McLean K.H. Ng Technical Editors International Atomic Energy Agency Vienna ISBN 978–92–0–131010–1 1 @ DIAGNOSTIC RADIOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA OMAN ALBANIA GREECE PAKISTAN ALGERIA GUATEMALA
    [Show full text]