Design, Analyses, and ,. Simulation Results

Total Page:16

File Type:pdf, Size:1020Kb

Design, Analyses, and ,. Simulation Results NASA Technical Paper 3446 _:i,2 _ .,/, ! High-Alpha Research Vehicle (HARV) Longitudinal Controller: Design, Analyses, and ,. Simulation Results Aaron J. Ostroff Langley Research Center • Hampton, Virginia Keith D. Hoffler ViGYAN, Inc. • Hampton, Virginia Melissa S. Proffitt Lockheed Engineering & Sciences Company • Hampton, Virginia :' National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001 • : J July 1994 /: The use of trademarks or names of manufacturers in this i! report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Acknowledgment The authors wish to acknowledge the following individuals who made important contributions to the research described in this paper: Philip W. Brown, Michael R. Phillips, and Robert A. Rivers, all from NASA Langley Research Center, who served as test pilots and provided ratings and insightful comments for the piloted simulation tasks. Michael D. Messina, Lockheed Engineering & Sciences Company, Hampton, VA, who maintained the nonlinear batch simulation and organized test cases for transportingreal-time code. Susan W. Carzoo, Unisys Corporation, who maintained the real- time software for the piloted simulation. Dr. Barton J. Bacon, NASA Langley Research Center, who constructed and tested the real-lt algorithms used for robustness analysis. John V. Foster, NASA Langley Research Center, who performed some engineering-test pilot evaluations. J ! i • Contents Summary .................................. 1 Introduction ................................. 1 Symbols ................................... 2 Description of Facilities ............................ 5 Airplane ................................. 5 Simulation ................................. 5 Piloted Simulator .............................. 5 Feedback Controller Design .......................... 6 Modeling ................................. 6 Continuous model ............................. 6 Discrete model .............................. 7 Cost _nction ............................... 7 Stochastic-Weighting Process ......................... 8 Design Conditions ............................... 8 Design Weights ............................... 8 Feedback-Gain Matrix ............................ 9 Linear Analysis of Feedback Controller ..................... 9 Feedback Gains ............................... 9 Closed-Loop Eigenvalues ........................... 9 Stability Margins ............................. 10 Robustness ................................ 10 Loop Transfer and Servoelastic Frequency Response .............. 10 Feed-Forward Controller Design ........................ 11 Feed-Forward Command Generator (FFCG) ................. 11 Command Generator Tracker (CGT) .................... 12 Nonlinear Configuration ........................... 12 Nonlinear Batch Simulation Results ...................... 13 Design Guidelines ............................. 13 Pitch-Up Agility ............................. 13 Pitch-Down Agility ............................ 13 Angle-of-Attack Capture .......................... 13 Angle-of-Attack Regulation ........................ 14 Piloted Simulation Results .......................... 14 Nose-Up Angle-of-Attack Capture Tasks ................... 15 i Nose-Down Angle-of-Attack Capture Tasks .................. 15 g-Heading Capture Task .......................... 16 Coupling-During-Roll Evaluation Tasks .................. 16 Tracking Evaluation Tasks ......................... 17 Departure Resistance ........................... 17 Conclusions ........ : ............. .......... 18 Appendix--Open-Loop Models ........................ 20 References ................................. 31 Tables ................................. 32 Figures .................................. 38 111""° i_i _ Summary which generates very high nose-turning rates. Simu- lation studies have shown that operational capability This paper describes the design, analysis, and and good controllability in this high-a flight regime nonlinear simulation results (batch and piloted) for provide tactical maneuver advantages during close- a longitudinal controller scheduled to be flight-tested in air combat (refs. 1-4) with current missiles and on the High-Alpha Research Vehicle (HARV). The guns. The success in simulated air combat studies HARV is an F-18 airplane modified for and equipped have lead to research airplanes that have the capa- with multiaxis thrust vectoring. The longitudinal bility to maneuver at poststall angles of attack. controller consists of feedback and feed-forward con- trollers. The paper includes a description of the fa- In recent years, four high-c_ flight test airplanes cilities, a detailed review of the feedback controller (i.e., X-29, X-31, the High-Alpha Research Vehicle design, linear analysis results of the feedback con- (HARV), and the F-16 Multi-Axis Thrust Vector- troller, a description of the=feed-forward controller ing (MATV)) have been maneuvering successfully at design, nonlinear batch simulation results, and pi- poststall angles of attack which was not previously loted simulation results. achievable. (See ref. 5.) The X-29 airplane can main- tain controlled flight up to a = 40°; the X-31 airplane Linear analysis shows that the feedback controller and HARV are designed to maneuver at a's up to 70 ° meets the stability design guidelines, is highly robust with the application of multiaxis thrust vectoring. to stability and control derivative parameter changes, The F-16 MATV airplane has done sustained ma- has good closed-loop damping ratios, and attenuates neuvers up to a = 84 ° with excursions beyond that. the structural modes well below the design guideline. Thrust-vectored controls provide the X-31, HARV, and F-16 MATV with the added control power re- Batch simulation results include maximum pitch stick agility responses, angle-of-attack c_ captures, quired to maneuver in the high-a flight regime which and a regulation for full lateral stick rolls at several is not achievable with purely aerodynamic controls. c_'s. The controller meets most of the agility guide- The HARV is a modified F-18 airplane that began lines throughout the a range, has good c_ regulation, flight evaluation in midyear 1991. The main modifi- and has consistently good transient response for all cation is the addition of thrust-vectored controls in altitudes within the design region. the pitch and yaw axes, which resulted in an airplane that is approximately 4000 lb heavier than an un- Piloted simulation results include task descrip- modified F-18 airplane. The original thrust-vectored tions for several types of maneuvers, task guidelines, control laws were developed jointly by NASA and the corresponding Cooper-Harper ratings from three McDonnell Aircraft Company and are being used test pilots, and some pilot comments. The ratings show that desirable criteria were achieved for almost during the initial HARV flight evaluations that in- clude flight envelope expansion and maneuvering ca- all of the piloted simulation tasks, most of which pability. Revised controllers based upon modern con- had very stringent criteria. The control system was trol design methodologies and processes (ref. 6) will shown to be extremely departure resistant. then be installed on the HARV after the initial flights are completed. One of these revised controllers is the Introduction lofigitudinal controller described in this paper. Development of the short-to-medium range all- For completeness, much of the information in ref- aspect missiles have increased the need for a fighter erence 7 which pertains to the longitudinal controller airplane to rapidly point its nose at an opponent design is also contained in this paper. In particular, to obtain first shot opportunity during air combat reference 7 contains the following: maneuvering. Rapid nose pointing is of particular 1. An overview of the feedback controller with importance within visual range. Even though long- the application of variable-gain output feedback range missiles are also continually improving, fail- ures and rules of engagement will inevitably produce which generates a feedback gain functional that close-in encounters. During close-in air combat, the incorporates optima ! gain scheduling need to acquire a position in the opponent's rear 2. A derivation and description of the feed-forward quarter has diminished with the continual improve- command generator (FFCG) for pilot stick sensi- ment of short-to-medium range all-aspect missiles. tivity and mode selection Due to the enhanced capability of these missiles, a 3. Formulation of the command generator tracker great deal of research has gone into developing high- (CGT), which is a feed-forward control performance airplanes that can rapidly maneuver at angles of attack c_ greater than the maximum lift, 4. Control system design guidelines 5. Some linear analysis and nonlinear batch simula- scenarios, task guidelines, and Cooper-Harper rat- tion analysis ings (CHR) for the various maneuvers. Piloted tasks were developed to evaluate the longitudinal control A key part of reference 7 is the design procedure /, / : law acquisition capability, tracking capability, and for selection and adjustment of the optimal weights resistance to coupling (regulation of a during rolling used in the variable-gain output feedback design al- maneuvers). Cooper-Harper ratings and pilot com- gorithm. Note that the
Recommended publications
  • Semiempirical Simulation of Contemporary Fighter Planes
    | Mathematics | UDC 629.735.33.015.075 Zhelonkin M. V. Semiempirical simulation of contemporary fighter planes engaging in dogfight in order to estimate the possibility of using supermanoeuvrability modes The paper presents investigation results concerning employing supermanoeuvrability modes in dogfight. We selected one of the standard manoeuvres and demonstrated the efficiency of using it. Keywords: features, supermanoeuvrability, dogfight, semi-empirical simulation, tactical employment, Split S manoeuvre. Introduction of attack, which lead to intense deceleration of Fighter aviation is mostly used for dogfighting the aircraft and to a decrease in energy height, and one of the main tasks of preparation for en- therefore a Split S manoeuvre will compensate gaging enemy air targets is the training of flight such a decrease to some extent. personnel in operating fighter aircraft weapons in Thus, in order to evaluate the efficiency of order to achieve the best performance to destroy supermanoeuvrability modes, we have selected enemy aircraft during dogfighting in various a Split S manoeuvre. Fig. 1 shows the aircraft weather and operational conditions when acting flight path when making the manoeuvre. solo or as part of an aircraft group. Modern 4++ The most important parameter that defines and 5th generation fighters are able to fly in a su- tolerable conditions for making a Split S man- permanoeuvrability mode, i.e. at angles of attack oeuvre is minimum altitude loss during the ma- beyond stall while maintaining balanced control. noeuvre, which depends on the entry speed and That is why flight personnel need to be properly altitude, as well as on the current g-load and air- trained in order to use all the aircraft capabilities.
    [Show full text]
  • NASA Technical Memorandum 102629
    NASA Technical Memorandum 102629 QUALITATIVE EVALUATION OF A CONFORMAL VELOCITY VECTOR DISPLAY FOR USE AT HIGH ANGLES-OF-ATTACK IN FIGHTER AIRCRAFT DENISE R. JONES JAMES R. BURLEY II JUNE 1990 (NA_A-F_-10752_) .._tJALITATIVL i_VALLIATIjN I-!F A L.'_;_:,JPi,!,_.L V_Lr)CI'IV VLzfi[i!K ,..;[SPLAY l--,.}E US.'_- AT _IGH A_C, LzS-OF-ATTACK IN FIuHI-_H, AIRCRAFT (NASA) i1 D L;SCL Oi.r, National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225 SUMMARY A piloted simulation study has been conducted in the Langley Differential Maneuvering Simulator (DMS) to evaluate the utility of a display device designed to illustrate graphically and conformally the approximate location of a fighter aircraft's velocity vector. The display device consisted of two vertical rows of light- emitting diodes (LED's) located toward the center of the cockpit instrument panel, with one row of lights visible to the left of the control stick and the other row visible to the right of the control stick. The light strings provided a logical extension of the head-up display (HUD) velocity vector symbol at flight-path angles which exceeded the HUD field-of-view. Four test subjects flew a modified F/A-18 model with this display in an air-to-air engagement task against an equally capable opponent. Their responses to a questionnaire indicated that the conformal velocity vector information could not be used during the scenarios investigated due to the inability to visually track a target and view the lights simultaneously. INTRODUCTION During the course of fighter aircraft display format research, many pilots have expressed a desire to have the direction in which the aircraft is traveling (aircraft's velocity vector) presented in the cockpit.
    [Show full text]
  • 22. Maneuvering at High Angle and Rate
    12/3/18 Maneuvering at High Angles and Angular Rates Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • High angle of attack and angular rates • Asymmetric flight • Nonlinear aerodynamics • Inertial coupling • Spins and tumbling Flight Dynamics 681-785 Airplane Stability and Control Chapter 8 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 http://www.princeton.edu/~stengel/FlightDynamics.html Tactical Airplane Maneuverability • Maneuverability parameters – Stability – Roll rate and acceleration – Normal load factor – Thrust/weight ratio – Pitch rate – Transient response – Control forces • Dogfights – Preferable to launch missiles at long range – Dogfight is a backup tactic – Preferable to have an unfair advantage • Air-combat sequence – Detection – Closing – Attack – Maneuvers, e.g., • Scissors • High yo-yo – Disengagement 2 1 12/3/18 Coupling of Longitudinal and Lateral-Directional Motions 3 Longitudinal Motions can Couple to Lateral-Directional Motions • Linearized equations have limited application to high-angle/high-rate maneuvers – Steady, non-zero sideslip angle (Sec. 7.1, FD) – Steady turn (Sec. 7.1, FD) – Steady roll rate " F FLon % F = $ Lon Lat−Dir ' $ FLat−Dir F ' # Lon Lat−Dir & Lon Lat−Dir FLat−Dir , FLon ≠ 0 4 2 12/3/18 Stability Boundaries Arising From Asymmetric Flight Northrop F-5E NASA CR-2788 5 Stability Boundaries with Nominal Sideslip, βo, and Roll Rate, po NASA CR-2788 6 3 12/3/18 Pitch-Yaw Coupling Due To Steady
    [Show full text]
  • 00002-X Challenges in High-Alpha Vehicle
    Pergan~,on Prog. Aerospace ScL Vol. 31, pp. 291-334, 1995 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0376-0421(95)00002-X 0376-0421/95 $29.00 CHALLENGES IN HIGH-ALPHA VEHICLE DYNAMICS Lars E. Ericsson Engineering Consultant, Mountain View, California, U.S.A. Abstract--The evolution of aerospace vehicles towards ever-increasing maneuverability, including flight at high angles of attack and vehicle motions of large amplitudes and high angular rates, has led to the need for prediction of veh:Lcleaerodynamics that are dominated by unsteady separated flow effects. The existing data base is reviewed lo determine to what degree the following critical issues are understood: 1. Cause and effect of asymmetric fo:~ebody flow separation with associated vortices. 2. Cause of slender wing rock. 3. Effect of vehicle motion on dynamic airfoil stall. 4. Extrapolation from subscale tests to full-scale free flight. To extend the present knowledge to include the coupling existing between novel aerodynamic controls and the vehicle dynamics is the challenge facing designers of future agile aircraft operating at high angles of attack. CONTENTS NOTATION 1. INTRODUCTION 292 2. ASYMMETI~:IC FOREBODY FLOW SEPARATION 292 2.1. Introduction 292 2.2. Yaw characteristics 294 2.2.1. Moving wall effects 295 2.2.2. Flat spin 296 2.2.3. Reversal of coning motion 300 2.3. Roll characteristics 300 2.3.1. Dynamic forebody/leading-edge vortex interaction 301 2.4. Summary 306 3. SLENDER WING ROCK 306 3.1. Introduction 306 3.2. Recent e~perimental results and discussion 307 3.3.
    [Show full text]
  • Aeronautical Engineering
    NASA SP-7037 (275) February 1992 AERONAUTICAL ENGINEERING A CONTINUING BIBLIOGRAPHY WITH INDEXES (NASA-SP-7017(27t>» AERONAUTICAL N92-28&79 ENGINFERING: A CONTINUING BIBLIOGRAPHY ** INDEX ! .PPLEMENT 275) (NASA) 112 p Uncl 00/01 0099273 STI PROGRAM SCIENTIFIC & TECHNICAL IMCORMATION NASA SP-7037 (275) February 1992 AERONAUTICAL ENGINEERING A CONTINUING BIBLIOGRAPHY WITH INDEXES National Aeronautics and Space Administration Scientific and Technical Information Program NASA Washington, DC 1992 INTRODUCTION This issue of Aeronautical Engineering—A Continuing Bibliography (NASA SP-7037) lists 379 reports, journal articles, and other documents originally announced in January 1992 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). Accession numbers cited in this issue are: STAR (N-10000 Series) N92-10001 - N92-11965 IAA (A-10000 Series) A92-10001 - A92-13248 The coverage includes documents on the engineering and theoretical aspects of design, con- struction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and develop- ment in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine STAR specific categories and the remaining STAR major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original ac- cession numbers from the respective announcement journals. Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included. A cumulative index for 1992 will be published in early 1993.
    [Show full text]
  • Time-Optimization of High Performance Combat Maneuvers
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-06 Time-optimization of high performance combat maneuvers Carter, Benjamin R. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/2176 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TIME-OPTIMIZATION OF HIGH PERFORMANCE COMBAT MANEUVERS by Benjamin R. Carter June 2005 Thesis Advisor: R.M. Howard Co-Advisor: I.M. Ross Approved for public release; distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June 2005 Master’s Thesis 4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS Time-Optimization of High Performance Combat Maneuvers 6. AUTHOR(S) LTjg Benjamin R. Carter, USN 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11.
    [Show full text]
  • Thrust Vectoring for Lateral
    tv:'ASA-C"?- / ~C:, O/(P NASA Contractor Report 186016 Thrust Vectoring for Lateral .. Directional Stability Lee R. Peron and Thomas Carpenter Contract NCC 2-586 March 1992 NI\S/\ National Aeronautics and Space Administration 1111111111111 /1/11111111111 11111 I111I 11111111' . NF00259 NASA Contractor Report 186016 Thrust Vectoring for Lateral­ Directional Stability Lee R. Peron and Thomas Carpenter California Polytechnic State University, San Luis Obispo, California Prepared for Dryden Flight Research Facility Edwards, California Under Contract NCC 2-586 1992 NI\S/\ National Aeronautics and Space Administration Dryden Flight Research Facility Edwards, California 93523-0273 This Page Intentionally Left Blank CONTENTS ABSTRACT 1 INTRODUCTION 1 Purpose ............................................. 1 Aircraft Description . 1 Project Scope . 2 Organization. 3 NOMENCLATURE 3 ADVANTAGES OF THRUST VECTORING CONTROL SYSTEMS 6 Agility .............................................. 6 Poststall Maneuvering ..................................... 7 Stealth .............................................. 8 Thrust Vectoring Concepts . 8 THRUST VECTORING CONTROL SYSTEM 10 Postexit Vanes. 10 Thrust Vectoring Simulation . 12 Aircraft Configuration ..................................... 12 AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM 14 Stability Coefficients . 14 Vertical Tail Considerations .................................. 15 TVCS Aerodynamic-Induced Results ............................. 15 Drag Effects . 16 Spinning ............................................
    [Show full text]
  • Vectored Propulsion, Supermaneuverability and Robot Aircraft
    Benjamin Gal-Or Vectored Propulsion, Supermaneuverability and Robot Aircraft With 190 Figures Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Professor Benjamin Gal-Or Technion-Israel Institute of Technology Department of Aeronautical Engineering 32000 Haifa Israel Library of Congress Cataloging-in-Publication Data Gal-Or, Benjamin. Vectored propulsion, supermaneuverability, and robot aircraft / by Benjamin Gal-Or. P. em. I. Airplanes - Jet propulsion. 2. Drone aircraft. 3. Jet planes, Military. 4. stealth aircraft. I. Title. TL685.3.G23 1989 629. I 34'353-dc20 89-21797 © 1990 by Benjamin Gal-Or All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the copyright holder, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, elec­ tronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as under­ stood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Typeset, Printed, and Bound by Keterpress, Jerusalem, Israel ISBN-13: 978-0-387-97161-2 e-ISBN-13: 978-1-4613-8961-3 DOl: 10.1007/978-1-4613-8961-3 Dedicated to my family; Leah, Amir and Gillad, who, by their respective professions, and by their encouragement, have given me invaluable help in preparing this volume, and to the members of the Jet Propulsion Laboratory Team, Azar, B.; Cohen, Z.; Dekel, E.; Friedman, E.; Golijow, E.; Mashiach, E.; Rasputnis, A.; Soreq, I.; Turgemann M.; and Vorobeichik, S., to whom I am greatly indebted.
    [Show full text]
  • IBP7*717771Ttitl Secretary of the Air Force Edward C
    ^ y.i / m ] -1 /AJ f A f J IBP7*717771TTiTl Secretary of the Air Force Edward C. Aldridge, Jr. Air Force Chief of Staff Gen Larry D. Welch Commander, Air University Lt Gen Truman Spangrud Commander, Center for Aerospace Doctrine, Research, and Education Col Sidney J. Wise Professional Staff Editor Col Keith W. Geiger Associate Editor Maj Michael A. Kirtland Contributing Personnel Hugh Richardson, Associate Editor John A. Westcott, Art Director and Production Manager The Airpower Journal, published quarterly, is the professional journal of the United States Air Force. It is designed to serve as an open forum for presenting and stimulating innovative thinking on m ilitary doctrine, strategy, tactics, force struc- ture, readiness, and other national defense mat- ters. The views and opinions expressed or implied in the Journal are those of the authors and should not be construed as carrying the official sanction of the Department of Defense, the Air Force, Air University, or other agencies or departments of the US government. Articles in this edition may be reproduced in whole or in part without permis- sion. If reproduced, the Airpower Journal re- quests a courtesy line. Editorial— Blinders, Too, Are Made of Leather 2 The Essence of Leadership: Views of a Form er C om m ander Lt Gen Evan W. Rosencrans, USAF, Retired 6 Soviet “Tactical” Aviation in the Postwar Period: Technological Change, Organizational Innovation, and Doctrinal Continuity Dr Jacob W. Kipp 8 Soviet Maskirovka Charles L. Smith 28 Doctrinal Deficiencies in Prisoner of War Command Col John R. Brancato, USAF 40 Superm aneuverability: Fighter Technology of the Future Col William D.
    [Show full text]
  • NASA Aeronautics Book Series
    . Douglas A. Joyce Library of Congress Cataloging-in-Publication Data Joyce, Douglas A. Flying beyond the stall : the X-31 and the advent of supermaneuverability / by Douglas A. Joyce. pages cm Includes bibliographical references and index. 1. Stability of airplanes--Research--United States. 2. X-31 (Jet fighter plane) 3. Research aircraft--United States. 4. Stalling (Aerodynamics) I. Title. TL574.S7J69 2014 629.132’360724--dc23 2014022571 During the production of this book, the Dryden facility was renamed the Armstrong Flight Research Center. All references to the Dryden facility have been preserved for historical accuracy. Copyright © 2014 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. ISBN 978-1-62683-019-6 90000 9 781626 830196 This publication is available as a free download at http://www.nasa.gov/ebooks. Author Dedication v Foreword: The World’s First International X-Airplane vii Prologue: The Participants xi Chapter 1: Origins and Design Development .......................................................1 In the Beginning…: The Quest for Supermaneuverability ........................3 Defining a Supermaneuverable Airplane: The Path to EFM ......................5 Design and Development of the X-31 ................................................. 13 Fabrication to Eve of First Flight .........................................................
    [Show full text]
  • Some High Alpha and Handling Qualities Aerodynamics
    Some High Alpha and Handling Qualities Aerodynamics W.H. Mason Configuration Aerodynamics Class Slide 1 4/19/18 Issues in Hi-α Aero • General Aviation – Prevention/recovery from spins – Beware: Tail Damping Power Factor (TDPF) » Sometimes advocated for use in design » Has been shown to be inaccurate! • Fighters – Resistance to “departure” from controlled flight – Carefree hi-α air combat maneuvering » Fuselage pointing » Velocity vector rolls » Supermaneuverability » etc. • Transports – Control/prevention of pitchup and deep stall (the DC-9 case study) Slide 2 4/19/18 High Angle of Attack • Aerodynamics are nonlinear - A lot of flow separation - Complicated component interactions (vortices) - Depends heavily on WT data for analysis - This means critical conditions outside linear aero range • Motion is highly dynamic - often need unsteady aero • Keys issues (from a fighter designer’s perspective): - adequate nose down pitching moment to recover - roll rate at high alpha - departure avoidance - adequate yaw control power - the role of thrust vectoring Slide 3 4/19/18 The Hi-α Story Longitudinal Typical unstable modern fighter – the envelope is the key thing to look at + Max nose up moment Pinch often around α ~ 30°-40° Cm 0° Cm* α 90° Max nose down moment - Minimum Cm* allowable is an open question Issue of including credit for thrust vectoring Suggested nose down req’t: Pitch accel in 1st sec: -0.25 rad/sec2 Slide 4 4/19/18 Example: F-16 An α-limiter was Found in flight, and put in the control also in tests at the system to prevent NASA Full Scale pilots from going Tunnel, other above 28° tunnels didn’t find this, and so the design was made with this “issue” NASA TP-1538, Dec.
    [Show full text]
  • Fighter Agility Metrics, Research, and Test Phase I
    FIGHTER AGILITY METRICS, RESEARCH, AND TEST PHASE I REPORT KU-FRL-831-2 by: Randall K. Liefer, John Valasek and David P. Eggold Supervised by: Dr. David R. Downing THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. Flight Research Laboratory Lawrence, Kansas ABSTRACT Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A complete set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currendy available. Simulation documentation and user instructions are provided in an appendix. Table of Contents Abstract ............................................. i Table of Contents ...................................... ii List of Figures ......................................... vi List of Tables ......................................... ix List of Abbreviations .................................... x 1. Introduction
    [Show full text]