Aerodynamics (R18a2107) Course File Ii B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hoffmann Aircraft
HOFFMANN AIRCRAFT HOFFMANN AIRCRAFT CORP P.0: Box No. 100 A-1214 Vienna Austria Phone (0 22 2/39 88 18 or 39 89 05 INSTRUCTIONS FOR CONTINUED AIRWORTHINESS H36 DIMONA This Service and Maintenance Manual is for U.S. registered gliders. (Type Certificate Data Sheet No.: ………………….EU) Reg. No.:……………………… Ser. No.. ……………………………. Owner: …………………………………………………………………. ………………………………………………………………….. ………………………………………………………………….. Published 15 Nov 1985 Approval of translation has been done by best knowledge and judgment. In any case the original text in German language is authoritative. —1— Hoffmann General H 36 DIMONA 1. GENERAL: Table of contents Page 1. General ------------------------------------ 1 2. List of Revisions --------------------------- 2 3. System Description -------------------------- 3 4. Maintenance and Inspections --------- 23 5. Rigging ------------------------------------ 35 6. Weight and Balance --------------------------- 39 7 . Servicing ------------------------------------ 42 8. Repair ------------------------------------ 45 9. Table of consumables ------------------ 57 10. Airworthiness Limitations ------------------ 60 -2- Hoffmann Revisions H 36 Dimona 2. REVISIONS: 2. Revisions . Revision No Affected Pages Source Date Signature -3- Hoffmann Systems H 36 Dimona Description 3. SYSTEMS DESCRIPTION: Table of Contents Paragraph page 3.1 FLIGHT CONTROLS ------------------ 4 3.2 AIRBRAKES & WHEEL-BRAKES --- 5 3.3 TRIM UNIT ------------------------------- 5 3.4 FUEL SYSTEM ---------------------- 10 3.5 POWER PLANT ---------------------- -
Semiempirical Simulation of Contemporary Fighter Planes
| Mathematics | UDC 629.735.33.015.075 Zhelonkin M. V. Semiempirical simulation of contemporary fighter planes engaging in dogfight in order to estimate the possibility of using supermanoeuvrability modes The paper presents investigation results concerning employing supermanoeuvrability modes in dogfight. We selected one of the standard manoeuvres and demonstrated the efficiency of using it. Keywords: features, supermanoeuvrability, dogfight, semi-empirical simulation, tactical employment, Split S manoeuvre. Introduction of attack, which lead to intense deceleration of Fighter aviation is mostly used for dogfighting the aircraft and to a decrease in energy height, and one of the main tasks of preparation for en- therefore a Split S manoeuvre will compensate gaging enemy air targets is the training of flight such a decrease to some extent. personnel in operating fighter aircraft weapons in Thus, in order to evaluate the efficiency of order to achieve the best performance to destroy supermanoeuvrability modes, we have selected enemy aircraft during dogfighting in various a Split S manoeuvre. Fig. 1 shows the aircraft weather and operational conditions when acting flight path when making the manoeuvre. solo or as part of an aircraft group. Modern 4++ The most important parameter that defines and 5th generation fighters are able to fly in a su- tolerable conditions for making a Split S man- permanoeuvrability mode, i.e. at angles of attack oeuvre is minimum altitude loss during the ma- beyond stall while maintaining balanced control. noeuvre, which depends on the entry speed and That is why flight personnel need to be properly altitude, as well as on the current g-load and air- trained in order to use all the aircraft capabilities. -
1 Einleitung
User Manual ATOS C Version: 29.01.2002 English translation: 9 August 2002 by Heiner Biesel Please read before flying! Congratulations on your purchase, and welcome to the ATOS world! Your ATOS C is a high performance glider. To fully exploit its capabilities while remaining well within safe limits, you should become thoroughly familiar with the contents of this manual. If you have any questions or need support, do not hesitate to contact the A.I.R. Team. Your A.I.R. Team Version: 01/02 1 1. Transport • By car The carbon fiber D-tube can be damaged by point loading. For safe transport the glider should always be supported by a large padded area. A ladder with several padded steps is one possibility. If the D- tube is supported at only two places, these supports need to be padded at least 4 inches in length, and wide enough to support the full width of the glider. Anything less is likely to result in transport damage, which can seriously reduce the strength of the main spar and the entire D-tube. Do not tie down the glider too tightly, and use wide tubular of flat webbing to minimize point loading. If the glider is likely to get exposed to rain, and especially to salt water, a watertight cover bag is strongly recommended. If the ATOS C gets wet, dry it as quickly as possible to avoid staining the sail, or causing corrosion of the metal parts. Exposure to salt water should always be followed by a thorough rinse in sweet water. -
NASA Technical Memorandum 102629
NASA Technical Memorandum 102629 QUALITATIVE EVALUATION OF A CONFORMAL VELOCITY VECTOR DISPLAY FOR USE AT HIGH ANGLES-OF-ATTACK IN FIGHTER AIRCRAFT DENISE R. JONES JAMES R. BURLEY II JUNE 1990 (NA_A-F_-10752_) .._tJALITATIVL i_VALLIATIjN I-!F A L.'_;_:,JPi,!,_.L V_Lr)CI'IV VLzfi[i!K ,..;[SPLAY l--,.}E US.'_- AT _IGH A_C, LzS-OF-ATTACK IN FIuHI-_H, AIRCRAFT (NASA) i1 D L;SCL Oi.r, National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225 SUMMARY A piloted simulation study has been conducted in the Langley Differential Maneuvering Simulator (DMS) to evaluate the utility of a display device designed to illustrate graphically and conformally the approximate location of a fighter aircraft's velocity vector. The display device consisted of two vertical rows of light- emitting diodes (LED's) located toward the center of the cockpit instrument panel, with one row of lights visible to the left of the control stick and the other row visible to the right of the control stick. The light strings provided a logical extension of the head-up display (HUD) velocity vector symbol at flight-path angles which exceeded the HUD field-of-view. Four test subjects flew a modified F/A-18 model with this display in an air-to-air engagement task against an equally capable opponent. Their responses to a questionnaire indicated that the conformal velocity vector information could not be used during the scenarios investigated due to the inability to visually track a target and view the lights simultaneously. INTRODUCTION During the course of fighter aircraft display format research, many pilots have expressed a desire to have the direction in which the aircraft is traveling (aircraft's velocity vector) presented in the cockpit. -
1/3-Scale Unlimited Aerobatic ARF
TM® WE GET PEOPLE FLYING 1/3-Scale Unlimited Aerobatic ARF INSTRUCTION MANUAL • Superior controllability and aerobatic flight characteristics • Lightweight construction • Designed by veteran TOC competitor Mike McConville • 90% built 1/3-scale ARF • Plug-in wings for easy transport and field assembly Specifications Wingspan: . 97 in (2463.8 mm) Length: . 88.7 in (2253 mm) Wing Area: . 1810 sq in (116.7 sq dm) Weight: . 22.5–25.5 lb (10.2–11.6 kg) Recommended Engines: . 60–80cc Table of Contents Introduction . 4 Warning . 4 Additional Required Equipment . 5 Other Items Needed (not included in the kit) . 6 Tools and Adhesives Needed (not included in the kit) . 6 Additional Items Needed . 6 Contents of Kit . 7 Section 1. Installing the Wing to the Fuselage . 8 Section 2. Installing the Aileron Servos . 9 Section 3. Installing the Aileron Control Horns . 11 Section 4. Hinging and Sealing the Aileron Control Surfaces . 13 Section 5. Installing the Aileron Linkages . 16 Section 6. Installing the Rudder and Elevator Servos . 18 Section 7. Installing the Elevator, Control Horns, and Linkages . 19 Section 8. Installing the Rudder, Control Horns, and Linkages . 22 Section 9. Attaching the Tail Wheel . 24 Section 10. Installing the Landing Gear and Wheelpants . 25 Section 11. Installing the Receiver, Battery, and Fuel Tank . 28 Section 12. Mounting the Engine and Cowl . 30 Section 13. Hatch Assembly . 33 Section 14. Balancing the Model . 34 Section 15. Radio Setup . 34 Section 16. Control Throws . 35 Section 17. Preflight at the Field . 35 Section 18. Setup and Flight Information by Mike McConville . 36 AMA Safety Code . -
Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GSSRR.ORG: International Journals: Publishing Research Papers in all Fields International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied --------------------------------------------------------------------------------------------------------------------------- Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis Abderrahmane BADIS Electrical and Electronic Communication Engineer from UMBB (Ex.INELEC) Independent Electronics, Aeronautics, Propulsion, Well Logging and Software Design Research Engineer Takerboust, Aghbalou, Bouira 10007, Algeria [email protected] Abstract This paper exposes a simplified preliminary conceptual integrated method to design an aircraft wing in subsonic speeds up to Mach 0.85. The proposed approach is integrated, as it allows an early estimation of main aircraft aerodynamic features, namely the maximum lift-to-drag ratio and the total parasitic drag. First, the influence of the Lift and Load scatterings on the overall performance characteristics of the wing are discussed. It is established that the optimization is achieved by designing a wing geometry that yields elliptical lift and load distributions. Second, the reference trapezoidal wing is considered the base line geometry used to outline the wing shape layout. As such, the main geometrical parameters and governing relations for a trapezoidal wing are -
Nflight Report: Canadair's Corporate RJ
PILOT REPORT nflight Report: Canadair’s Corporate RJ I A business aircraft designed to make the “corporate commuter” a practical reality. By FRED GEORGE December 1992, Document No. 2404 (9 pages) Stand by for a startling change in the way a business trips are representative of the air travel patterns of large aircraft is justified. Canadair claims its new Corporate U.S. companies that could take advantage of a 24- to- Regional Jet (RJ for short) can challenge the airlines 30-seat corporate shuttle aircraft. head-to-head in a seat-mile cost showdown and win. The seat-mile costs of a 30-seat RJ assume a utiliza- Whatever happened to all those subjective intangi- tion of 1,000 hours per year. While such annual bles we’ve heard for decades? Time-honored terms usage may be modest by airline standards, it repre- such as “value of executive time” “lost opportunity sents a lot of flight hours to a company accustomed to cost,” and “productivity index” are missing from on-demand business aircraft operations. A shuttle Canadair’s RJ marketing materials. That’s because the operation, though, typically might fly two, two-hour company cuts straight to bottom line operating eco- legs per weekday that would add up to 1,000 hours nomics. Canadair salespeople claim a company oper- in a 50 week period. ating a 24- to 30-seat, business-class configured Canadair didn’t cut corners on estimating the costs Corporate RJ will spend less for air transportation on involved with operating the Corporate RJ. The projec- most trips than if it bought coach fare seats on sched- tions cover capital costs in the form of lease payments; uled airlines. -
The «Active Aeroelasticity» Concept – the Main Stages and Prospects of Development
THE «ACTIVE AEROELASTICITY» CONCEPT – THE MAIN STAGES AND PROSPECTS OF DEVELOPMENT 1 G.A. Amiryants, 2 A.V. Grigorev, 3 Y.A. Nayko, 4 S.E. Paryshev, 1 Main scientific researcher, 2 Junior Scientific researcher, 3 Scientific researcher, 4 Head of department Central Aero-hydrodynamic Institute – TsAGI, Russia Keywords: active aeroelasticity, multidisciplinary investigations, elastically scaled model From the very beginning of static aeroelasticity supervision by A.Z. Rekstin and research it’s important part was searching for V.G. Mikeladze. However, the common rational ways of providing airplanes’ safety drawback of these control surfaces too was from aileron reversal and divergence as well as negative influence of structural elasticity on providing weight efficiency and high these surfaces’ effectiveness. aerodynamic performance of airplanes. The studies by Ja.M.. Parchomovsky, G.A. Amiryants, D.D. Evseev, S.Ja. Sirota, One of the most promising directions of aircraft V.A. Tranovich, L.A. Tshai, Ju.F. Jaremchuk design worldwide today is related to the term of performed in 1950-1960 in TsAGI “exploitation of structural elasticity” or the systematically demonstrated the possibilities to “active aerolasticity” concept. The early 1960s increase control surfaces effectiveness (and faced the urgent need to increase stiffness of solving other static aeroelasticity problems) thin low-aspect-ratio wings of supersonic M-50 using “traditional” approaches: rational increase and R-020 airplanes to diminish negative of wing stiffness (by changing wing skin influence of structural elastic deformations on thickness distribution, airfoil thickness, roll control. As it turned out, even with the choosing the position of stiffness axis, wing optimal increase of structural stiffness to solve spar stiffness), variation of position and shape severe aileron reversal problem the increase of of conventional ailerons and rudders, the airframe weight was unacceptable. -
Design, Analyses, and ,. Simulation Results
NASA Technical Paper 3446 _:i,2 _ .,/, ! High-Alpha Research Vehicle (HARV) Longitudinal Controller: Design, Analyses, and ,. Simulation Results Aaron J. Ostroff Langley Research Center • Hampton, Virginia Keith D. Hoffler ViGYAN, Inc. • Hampton, Virginia Melissa S. Proffitt Lockheed Engineering & Sciences Company • Hampton, Virginia :' National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001 • : J July 1994 /: The use of trademarks or names of manufacturers in this i! report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Acknowledgment The authors wish to acknowledge the following individuals who made important contributions to the research described in this paper: Philip W. Brown, Michael R. Phillips, and Robert A. Rivers, all from NASA Langley Research Center, who served as test pilots and provided ratings and insightful comments for the piloted simulation tasks. Michael D. Messina, Lockheed Engineering & Sciences Company, Hampton, VA, who maintained the nonlinear batch simulation and organized test cases for transportingreal-time code. Susan W. Carzoo, Unisys Corporation, who maintained the real- time software for the piloted simulation. Dr. Barton J. Bacon, NASA Langley Research Center, who constructed and tested the real-lt algorithms used for robustness analysis. John V. Foster, NASA Langley Research Center, who performed some engineering-test -
NATIONAL ADTSSORY COMMITTEE No. 475 for AERONAUTICS +“” T= EFI'ect 03' SPLIT TIUILING-EDGE ??ING FLAPS on TEE AERODYNAMI
,.{ .. ”..-. .,-‘-} .. * _-d.& . ---- —.. -- +“” NATIONAL ADTSSORY COMMITTEE FOR AERONAUTICS No. 475 . -r..—. —— . ..> ..- >+ 1“ ... .“ T= EFI’ECT 03’ SPLIT TIUILING-EDGE ??ING FLAPS ON TEE AERODYNAMIC CHAIUIOTERISTICS OF A PARASOL MONOPLANE By Rudolf l?. Wallace .- Langley Memorial Aeronautical Laboratory “ -. t J..-,-- -. -w “-”Washington Novonber 1933 -. ..:”- . > 1 -.. L s I?.4TIOITALADVISORY COMMITTEE I’ORAERONAUTICS ——- -- . TECHNICAL NOTE NO. 475 --* —— . THE EFFECT OF SPLIT TRAILING-I!!DGE WING FLAPS ON — THE AERODYNAMIC CHARACTERISTICS OF A PARASOL MONOPLANE By Rudolf N. Wallace SUMMARY This paper presents the results of tests conducted in a the N.A.C,A, full-scale wind tunnel on a Fairchild F-22 —; airplane equipped with a special wing having split trailing- —* edge flaps. The flaps extendefl over the outer 90 pertien~----- of the wing span, and were of the fixed-b-inge” “type having a “-...2 --- width equal to 20 percent of the wing chord. The results show that with a flap setting of 590 the maximum lift of the wing was increased 42 percent, .a-gdthat the range of available gliding angies the flaps increased .— -- --4 froin 2.7° to 7.Oo. De-flection of” the split fkps did not increase the stalling angle or seriously affect the longi- tudinal baiance of the airplane. With flaps d-own”the land- .. ing speed of the airplane is decreased, but the talc-ulated clim-~ and level-flight performance is inferior to that with the normal wing. Calculations indicate that tke- ~~e:of”~ distance required to clear an obstacle 100 feet high–ig not affected ky flap settings from @to 20° hut is greatly in- creased by larger flap angles. -
AP3456 the Central Flying School (CFS) Manual of Flying: Volume 4 Aircraft Systems
AP3456 – 4-1- Hydraulic Systems CHAPTER 1 - HYDRAULIC SYSTEMS Introduction 1. Hydraulic power has unique characteristics which influence its selection to power aircraft systems instead of electrics and pneumatics, the other available secondary power systems. The advantages of hydraulic power are that: a. It is capable of transmitting very high forces. b. It has rapid and precise response to input signals. c. It has good power to weight ratio. d. It is simple and reliable. e. It is not affected by electro-magnetic interference. Although it is less versatile than present generation electric/electronic systems, hydraulic power is the normal secondary power source used in aircraft for operation of those aircraft systems which require large power inputs and precise and rapid movement. These include flying controls, flaps, retractable undercarriages and wheel brakes. Principles 2. Basic Power Transmission. A simple practical application of hydraulic power is shown in Fig 1 which depicts a closed system typical of that used to operate light aircraft wheel brakes. When the force on the master cylinder piston is increased slightly by light operation of the brake pedals, the slave piston will extend until the brake shoe contacts the brake drum. This restriction will prevent further movement of the slave and the master cylinder. However, any increase in force on the master cylinder will increase pressure in the fluid, and it will therefore increase the braking force acting on the shoes. When braking is complete, removal of the load from the master cylinder will reduce hydraulic pressure, and the brake shoe will retract under spring tension. -
Redesign of the Gossamer Albatross Using a Boxwing Armando R
Redesign of the Gossamer Albatross using a Boxwing Armando R. Collazo Garcia III, Undergraduate Student-Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, [email protected] April 12, 2017 ABSTRACT Historically, human powered aircraft (HPA) have been known to have very large wingspans; the main reason being for aerodynamic performance. During low speeds, the predominant type of drag is the induced drag which is a by-product of large wing tip vortices generated at higher lift coefficients. In order to reduce this phenomenon, higher aspect ratio wings are used which is the reason behind the very large wingspans for HPA. Due to its high Oswald efficiency factor, the boxwing configuration is presented as a possible solution to decrease the wingspan while not affecting the aerodynamic performance of the airplane. The new configuration is analyzed through the use of VLAERO+©. The parasitic drag was estimated using empirical methods based on the friction drag of a flat plate. The structural weight changes in the boxwing design were estimated using “area weights” derived from the original Gossamer Albatross. The two aircraft were compared at a cruise velocity of 22 ft./s where the boxwing configuration showed a net drag reduction of approximately 0.36 lb., which can be deduced from a decrease of 0.81 lb. of the induced drag plus an increase of the parasite drag of around 0.45 lb. Therefore, for an aircraft with approximately half the wingspan, easier to handle, and more practical, the drag is essentially reduced by 4.4%. INTRODUCTION METHODOLOGY RESULTS Because of the availability of information and data, the Gossamer A boxwing of roughly half the span of the Albatross with the same airfoil, root chord, fuselage and taper ratio was modeled in VLAERO+©.