DEAL, Andrew Stuart, 1918- the EFFECT of TEMPERATURE and MOISTURE on the DEVELOPMENT of FANNIA CANICULARIS (L.) and FANNIA FEMORALIS (STEIN) (DIPTERA: MUSCI- DAE

Total Page:16

File Type:pdf, Size:1020Kb

DEAL, Andrew Stuart, 1918- the EFFECT of TEMPERATURE and MOISTURE on the DEVELOPMENT of FANNIA CANICULARIS (L.) and FANNIA FEMORALIS (STEIN) (DIPTERA: MUSCI- DAE This dissertation has been microfihned exactly as received 6 8-2971 DEAL, Andrew Stuart, 1918- THE EFFECT OF TEMPERATURE AND MOISTURE ON THE DEVELOPMENT OF FANNIA CANICULARIS (L.) AND FANNIA FEMORALIS (STEIN) (DIPTERA: MUSCI- DAE. The Ohio State University, P h . D „ 1967 Entomology University Microfilms, Inc.. Ann Arbor, Michigan Copyright by Andrew Stuart Deal 1967 THE EFFECT OF TEMPERATURE AND MOISTURE ON THE DEVELOPMENT OF FANNIA CANICULARIS (L.) AND FANNIA FEMORALIS (STEIN) (DIPTERA: MUSCIDAE) DISSERTATION Presented in Partial Fulfillment of the Requirements for Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Andrew Stuart Dealg BoSo, MoSo ****** The Ohio State University 1967 Approved by Adviser Department of Zoology and Entomology ACKNOWLEDGMENTS The author gratefully acknowledges the cooperation and assistance of many people in making this study possible. Significant cbntributions were made by individuals and departments of the University of California at Riverside where the laboratory phases of the work were carried out. Thanks go to Dr« G, E, Carman of the Department of Entomology and to Dr. I, Mo Hall of the Department of Biological Control for use of space, materials and equipment. Dr, J, M, Rible of the Agricultural Extension Laboratory gave valuable assistance in making moisture determinations of the fly rearing medium. Others of the Riverside staff who-rendered valuable assistance were Drs, L, D, Anderson, E, C, Bay, W, H, Ewart, Go P, Georghiou, Daniel Gonzalez, R, N, Jefferson, E, L, Reeves, L, A, Riehl, and Mr, E, L, Atkins. Special thanks go to Dr, George B, Alcorn and Mr, H, W, SchwaIm of the Agricultural Extension Adminis­ trative Staff for granting the author time away from his regular duties to carry out the work, and to Miss Lucy M, Allen, Program Leader, Extension Education, and Mr. J. E. Tippett, Agriculturist Emeritus, for guidance in working out sabbatical leave details. Assistance from Dr, T, M, Little in analyzing the data is sincerely appreciated. I wish to express my gratitude to Dr, Ralph H. Davidson, Professor of Entomology at The Ohio State University for his guidance and encouragement throughout the duration of this project, I also wish to express my appreciation to Drs, Davidson, Donald J. Borror and Frank W, il Fisk for their suggestions during preparation of this manuscript. I am very grateful to my secretary, Mrs. Lucille M. Sanchez, and to my laboratory technician, Mr. W. R. Bowen, for patiently and effectively carrying out many of my regular duties during my leave of absence, and to Mrs. Freida M. Bailey for special help. I wish also to thank my wife, Audrey, for her assistance with some of the laboratory work, the typing, and for her enduring patience with author during the course of this work. Funds used for purchase of much of the materials and equipment for use in this project were provided by Julius Goldman's Egg City, Moorpark, California. iii VITA July 3, 1918 ....... B o m - Birch Tree, Missouri 1950 o « ............ B.S., University of California, Berkeley, California 1951 00000.00000 MoSo, University of California, Berkeley, California 1951-1952 0 0.00000 Entomologist, Bio Research Laboratory, California Spray Chemical Corporation, Richmond, California 1952-1956 00 0 0 .0 0 0 Farm Advisor (Entomology), University of California Agricultural Extension Service, El Centro, Imperial County, California 1956-present . Extension Entomologist, University of California, Riverside, California PUBLICATIONS Yellow clover aphid in state. Calif. Agric. 8(9): 5, 1954. Ground pearls on grape roots. Calif. Agric. 8(12): 5, 1954. The Egyptian alfalfa weevil. Calif. Agric. 9(6): 8, 1955. The omnivorous leaf roller, Platvnota stultana Wlshm.. on cotton in southern California: Damage and control. Jour. Econ. Ent. 50(1): 59-64, 1957. The "omnivorous leaf roller," Platvnota stultana Wlshm.. on cotton in California: Nomenclature, life history and bionomics (Lepidoptera, Tortricidae)o Ann. Ent. Soc. Amer. 50(3): 251-259, 1957. A survey of beet leafhopper populations on sugar beets in the Imperial Valley, California, 1953-1958. Jour. Econ. Ent. 52(3): 470-473, 1959. Insecticidal control of lygus bugs and effect on yield and grade of lima beans. Jour. Econ. Ent. 59(1): 124-126, 1965. IV Trials of Ruelene for cattle grub control in southern California. Jour, Econ. Ent, 58(2): 361-362, 1965. Timing lygus bug control increases lima bean yield and quality, Calif. Agric. 19(7): 2-3, 1965. Fly control in cattle feedlots with residual sprays, Calif, Agric, 19(9): 6-7, 1965. The Egyptian alfalfa weevil and its control in southern California, Jour, Econ, Ent, 48(3): 297-300, 1955, TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................. ii VITA ............................................................ iv PUBLICATIONS ..................................................... iv LIST OF TABLES ................................................... viil LIST OF ILLUSTRATIONS .......................................... ix Chapter I. INTRODUCTION ............................................. 1 II. REVIEW OF THE LITERATURE ............................... 4 Distribution ........................................ 5 Importance to M a n ................................... 7 Biology ............................................ 13 Rearing Media ....................................... 19 III. RELEVANT MORPHOLOGICAL ASPECTS ........................ 25 The E g g s ............................................ 25 The L a r v a e .......................................... 29 The P u p a e ............................................ 36 IV. MATERIALS AND M E T H O D S ................................. 42 Colony Establishment .............................. 42 Rearing ............................................ 42 Adult Maintenance ................................... 43 Egg Collection ..................................... 45 Vi Chapter Page Obtaining Larvae ........................................ 47 Incubation at Various Temperatures ................... 49 Larval and Pupal Development at Various Temperatures 51 Temperature Cabinets ................................... 53 Effect of Moisture on Development ................... 53 V. THE EFFECT OF TEMPERATURE - RESULTS AND DISCUSSION . 61 Effect of Temperature on Incubation ................ 61 Effect of Temperature on Larval and Pupal Development ...................................... 69 VI. THE EFFECT OF MOISTURE - RESULTS AND DISCUSSION . 77 VII. CONCLUSIONS ........................................... 81 VIII. LITERATURE CITED .......................................... 87 vii LIST OF TABLES Table Page 1. Computation of moisture content of C.S.M.A. medium at end of ten days in moisture control apparatus .... 60 2. Effect of constant temperature on incubation period of Fannia canicularis eggs .............................. 62 3. Effect of temperature on hatch of eggs of Fannia canicularis ..................................... 65 4. Effect of incubation at 93 Fahrenheit for various periods of time on hatching of Fannia canicularis eggs . 65 5. Effect of constant temperature on incubation period of Fannia femoral is e g g s ........................ 67 6. Effect of temperature on hatch of eggs of Fannia femoralis ........................................ 68 7. Effect of incubation at 100 F for various periods of time on hatching of Fannia femoral is e g g s ............ 68 8. Effect of temperature on duration of instars and the total life cycle of Fannia canicularis .............. 71 9. Effect of temperature on the number of flies developing to the adult stage in Fannia canicularis ............ 72 10. Effect of temperature on duration of instars and the total life cycle of Fannia femoral i s ............ 74 11. Effect of temperature on the number of flies developing to the adult stage in Fannia femoral is ........ 75 12. Effect of moisture content of the rearing medium on larval and pupal development of Fannia canicularis . 79 13. Effect of moisture content of the rearing medium on larval and pupal development of Fannia femoralis . 79 viii LIST OF ILLUSTRATIONS Figure Page 1. Geographical distribution of Fannia canicularis . ........... 6 2. Geographical distribution of Fannia femoralis .............. .. 8 3. Eggs of Fannia femoral i s ......................................26 4. Drawing of end view of Fannia canicularis egg showing position of wings or flanges after egg is laid . 26 5. Drawing of dorsal aspect of Fannia canicularis egg showing reticulated pattern on the surface ....... 28 6. Drawing of ventral aspect of Fannia canicularis egg showing longitudinal ribbing on surface ................... 28 7. Drawing of dorsal aspect of Fannia canicularis larva showing long rat-tail-like processes which are characteristic of this s p e c i e s ............................. 30 8. Drawing of the dorsal aspect of Fannia femoralis larva showing characteristic dorsal and lateral processes. 30 9. Photomicrograph of the posterior spiracular stalks of the first instar larva of Fannia femoral is showing the two spiracular openings characteristic of this stage . 31 10. Drawing of the posterior spiracular stalks of the first instar larva of Fannia femoral is shown in Figure 9 ... 31 11. Photomicrograph of the left posterior spiracular stalk of the second instar larva of Fannia femoralis ......... 32 12. Photomicrograph of the left posterior spiracular stalk of the third instar larva of Fannia femoralis ............ 32 13. Drawing of
Recommended publications
  • Nuisance Insects and Climate Change
    www.defra.gov.uk Nuisance Insects and Climate Change March 2009 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Tel: 020 7238 6000 Website: www.defra.gov.uk © Queen's Printer and Controller of HMSO 2007 This publication is value added. If you wish to re-use this material, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/value-added-licence- information/index.htm. Alternatively applications can be sent to Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: [email protected] Information about this publication and further copies are available from: Local Environment Protection Defra Nobel House Area 2A 17 Smith Square London SW1P 3JR Email: [email protected] This document is also available on the Defra website and has been prepared by Centre of Ecology and Hydrology. Published by the Department for Environment, Food and Rural Affairs 2 An Investigation into the Potential for New and Existing Species of Insect with the Potential to Cause Statutory Nuisance to Occur in the UK as a Result of Current and Predicted Climate Change Roy, H.E.1, Beckmann, B.C.1, Comont, R.F.1, Hails, R.S.1, Harrington, R.2, Medlock, J.3, Purse, B.1, Shortall, C.R.2 1Centre for Ecology and Hydrology, 2Rothamsted Research, 3Health Protection Agency March 2009 3 Contents Summary 5 1.0 Background 6 1.1 Consortium to perform the work 7 1.2 Objectives 7 2.0
    [Show full text]
  • 10 Arthropods and Corpses
    Arthropods and Corpses 207 10 Arthropods and Corpses Mark Benecke, PhD CONTENTS INTRODUCTION HISTORY AND EARLY CASEWORK WOUND ARTIFACTS AND UNUSUAL FINDINGS EXEMPLARY CASES: NEGLECT OF ELDERLY PERSONS AND CHILDREN COLLECTION OF ARTHROPOD EVIDENCE DNA FORENSIC ENTOMOTOXICOLOGY FURTHER ARTIFACTS CAUSED BY ARTHROPODS REFERENCES SUMMARY The determination of the colonization interval of a corpse (“postmortem interval”) has been the major topic of forensic entomologists since the 19th century. The method is based on the link of developmental stages of arthropods, especially of blowfly larvae, to their age. The major advantage against the standard methods for the determination of the early postmortem interval (by the classical forensic pathological methods such as body temperature, post- mortem lividity and rigidity, and chemical investigations) is that arthropods can represent an accurate measure even in later stages of the postmortem in- terval when the classical forensic pathological methods fail. Apart from esti- mating the colonization interval, there are numerous other ways to use From: Forensic Pathology Reviews, Vol. 2 Edited by: M. Tsokos © Humana Press Inc., Totowa, NJ 207 208 Benecke arthropods as forensic evidence. Recently, artifacts produced by arthropods as well as the proof of neglect of elderly persons and children have become a special focus of interest. This chapter deals with the broad range of possible applications of entomology, including case examples and practical guidelines that relate to history, classical applications, DNA typing, blood-spatter arti- facts, estimation of the postmortem interval, cases of neglect, and entomotoxicology. Special reference is given to different arthropod species as an investigative and criminalistic tool. Key Words: Arthropod evidence; forensic science; blowflies; beetles; colonization interval; postmortem interval; neglect of the elderly; neglect of children; decomposition; DNA typing; entomotoxicology.
    [Show full text]
  • Fly Fauna of Livestock's of Marvdasht County of Fars Province In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 85–98 (2019) DOI: 10.1556/038.54.2019.008 Fly Fauna of Livestock’s of Marvdasht County of Fars Province in the South of Iran A. ANSARI POUR1, S. TIRGARI1*, J. SHAKARAMI2, S. IMANI1 and A. F. DOUSTI3 1Department of Entomology, Science and Research Branch, Islamic Azad University, Tehran, Iran 2Department of Plant Protection, Faculty of Agriculture, Lorestan University, Lorestan, Iran 3Department of Plant Protection, Islamic Azad University, Jahrom Branch, Jahrom, Fars Iran (Received: 5 August 2018; accepted: 13 August 2018) Flies damage the livestock industry in many ways, including damages, physical disturbances, the transmissions of pathogens and the emergence of problems for livestock like Myiasis. In this research, the fauna of flies of Marvdasht County was investigating, which is one of the central counties of Fars province in southern Iran. In this study, a total of 20 species of flies from 6 families and 15 genera have been identified and reported. The species collected are as follows: Muscidae: Musca domestica Linnaeus, 1758, Musca autumnalis* De Geer, 1776, Stomoxys calci- trans** Linnaeus, 1758, Haematobia irritans** Linnaeus, 1758 Fanniidae: Fannia canicularis* Linnaeus, 1761 Calliphoridae: Calliphora vomitoria* Linnaeus, 1758, Chrysomya albiceps* Wiedemann, 1819, Lu- cilia caesar* Linnaeus, 1758, Lucilia sericata* Meigen, 1826, Lucilia cuprina* Wiedemann, 1830 Sarcophagidae: Sarcophaga africa* Wiedemann, 1824, Sarcophaga aegyptica* Salem, 1935, Wohl- fahrtia magnifica** Schiner, 1862 Tabanidae: Tabanus autumnalis* Linnaeus, 1761, Tabanus bromius* Linnaeus, 1758 Syrphidae: Eristalis tenax* Linnaeus, 1758, Syritta pipiens* Linnaeus, 1758, Eupeodes nuba* Wiede- mann, 1830, Syrphus vitripennis** Meigen, 1822, Scaeva albomaculata* Macquart, 1842 Species identified with * for the first time in the county and the species marked with ** are reported for the first time from the Fars province.
    [Show full text]
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Diptera: Calyptratae
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile DOMÍNGUEZ, M. CECILIA; ROIG-JUÑENT, SERGIO A. Historical biogeographic analysis of the family Fanniidae (Diptera: Calyptratae), with special reference to the austral species of the genus Fannia (Diptera: Fanniidae) using dispersal-vicariance analysis Revista Chilena de Historia Natural, vol. 84, núm. 1, 2011, pp. 65-82 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944297005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative HISTORICAL BIOGEOGRAPHY OF FANNIIDAE (DIPTERA) 65 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 84: 65-82, 2011 © Sociedad de Biología de Chile RESEARCH ARTICLE Historical biogeographic analysis of the family Fanniidae (Diptera: Calyptratae), with special reference to the austral species of the genus Fannia (Diptera: Fanniidae) using dispersal-vicariance analysis Análisis biogeográfico histórico de la familia Fanniidae (Diptera: Calyptratae), con referencia especial a las especies australes del genero Fannia (Diptera: Fanniidae) usando análisis de dipersion-vicarianza M. CECILIA DOMÍNGUEZ* & SERGIO A. ROIG-JUÑENT Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), Centro Científico Tecnologico (CCT-CONICET, Mendoza), Av. Adrián Ruiz Leal s/n, Parque Gral. San Martin, Mendoza, Argentina, CC: 507, CP: 5500 *Corresponding author: [email protected] ABSTRACT The purpose of this study was to achieve a hypothesis explaining the biogeographical history of the family Fanniidae, especially that of the species from Patagonia, the Neotropics, Australia, and New Zealand.
    [Show full text]
  • A Sur Hamp Peter 25 Ju Autho Rvey of Th Pton Brow Borough Ne 2015
    A survey of the inverttebrates of the Hampton brownfield study site, Peterborough 25 June 2015 Authors: Buglife and BSG Ecology BLANK PAGE Acknowledgements: Buglife and BSG would like to thank O&H Hampton Ltd for undertaking the habitat creation work and providing access and support Report title A survey of the invertebrates of the Hampton brownfield study site, Peterborough Draft version/final FINAL File reference OH Hampton Draft Report_Final_240715 Buglife - The Invertebrate Conservation Trust is a registered charity at Bug House, Ham Lane, Orton Waterville, Peterborough, PE2 5UU Company no. 4132695, Registered charity no. 1092293, Scottish charity no. SC04004 BSG Ecology - Registered in: England and Wales | No. OC328772 | Registered address: Wyastone Business Park, Monmouth, NP25 3SR Contents 1 Summary ....................................................................................................................................................... 2 2 Introduction .................................................................................................................................................... 3 3 Site Description ............................................................................................................................................. 4 4 Methods ......................................................................................................................................................... 9 5 Results ........................................................................................................................................................
    [Show full text]
  • The Role of Wild and Domestic Ungulates in Forming the Helminth Fauna of European Bison in Belarus
    Sviatlana Polaz et al. European Bison Conservation Newsletter Vol 10 (2017) pp: 79–86 The role of wild and domestic ungulates in forming the helminth fauna of European bison in Belarus Sviatlana Polaz, Alena Anisimova, Palina Labanouskaya, Aksana Viarbitskaya, Vasili Kudzelich The State Research-Production Association “The Scientifically-Practical Centre of the National Academy of Sciences of Belarus for bio-resources”, Minsk, Belarus Abstract: Discussed is the role of wild and domestic ungulates in the formation of helminth fauna of the European bison in the Republic of Belarus. The current status of helminth infection of E. bison was determined and comparative analysis was conducted regarding the helminth fauna of other wild and domestic ungulates of the Republic of Belarus. Key words: European bison, helminth infection, Belarus Introduction The European bison (Bison bonasus) is a rare terrestrial mammal inhabiting a num- ber of countries including the territory of the Republic of Belarus. To facilitate fur- ther increase of its population, measures for conservation and sound management have been developed, aiming at preserving the already existing European bison population and enriching it with new individuals through an import of animals from other countries. One of present urgent problems in maintenance of European bison are parasitic infestations, since breeding programs carried out in Belarus concern not only the European bison but also other species of large mammals. Therefore an access to complete information about the types of helminths that are capable to affect the health of the E. bison and about factors that influence the formation of helmin- thiases is very important. One of these aspects is the transfer of helminths from one organism to another.
    [Show full text]
  • A Systematic Review of Human Pathogens Carried by the Housefly
    Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly.
    [Show full text]
  • Arthropods Associated with Wildlife Carcasses in Lowland Rainforest, Rivers State, Nigeria
    Available online a t www.pelagiaresearchlibra ry.com Pelagia Research Library European Journal of Experimental Biology, 2013, 3(5):111-114 ISSN: 2248 –9215 CODEN (USA): EJEBAU Arthropods associated with wildlife carcasses in Lowland Rainforest, Rivers State, Nigeria Osborne U. Ndueze, Mekeu A. E. Noutcha, Odidika C. Umeozor and Samuel N. Okiwelu* Entomology and Pest Management Unit, Department of Animal and Environmental Biology, University of Port Harcourt, Nigeria _____________________________________________________________________________________________ ABSTRACT Investigations were conducted in the rainy season August-October, 2011, to identify the arthropods associated with carcasses of the Greater Cane Rat, Thryonomys swinderianus; two-spotted Palm Civet, Nandina binotata, Mona monkey, Cercopithecus mona and Maxwell’s duiker, Philantomba maxwelli in lowland rainforest, Nigeria. Collections were made from carcasses in sheltered environment and open vegetation. Carcasses were purchased in pairs at the Omagwa bushmeat market as soon as they were brought in by hunters. They were transported to the Animal House, University of Port Harcourt. Carcasses of each species were placed in cages in sheltered location and open vegetation. Flying insects were collected with hand nets, while crawling insects were trapped in water. Necrophages, predators and transients were collected. The dominant insect orders were: Diptera, Coleoptera and Hymenoptera. The most common species were the dipteran necrophages: Musca domestica (Muscidae), Lucilia serricata
    [Show full text]
  • WAAVP2019-Abstract-Book.Pdf
    27th Conference of the World Association for the Advancement of Veterinary Parasitology JULY 7 – 11, 2019 | MADISON, WI, USA Dedicated to the legacy of Professor Arlie C. Todd Sifting and Winnowing the Evidence in Veterinary Parasitology @WAAVP2019 @WAAVP_2019 Abstract Book Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference WAAVP2019 27th Conference of the World Association for the Advancements of Veterinary Parasitology 64th American Association of Veterinary Parasitologists Annual Meeting 1 63rd Annualwww.WAAVP2019.com Livestock Insect Workers Conference #WAAVP2019 Table of Contents Keynote Presentation 84-89 OA22 Molecular Tools II 89-92 OA23 Leishmania 4 Keynote Presentation Demystifying 92-97 OA24 Nematode Molecular Tools, One Health: Sifting and Winnowing Resistance II the Role of Veterinary Parasitology 97-101 OA25 IAFWP Symposium 101-104 OA26 Canine Helminths II 104-108 OA27 Epidemiology Plenary Lectures 108-111 OA28 Alternative Treatments for Parasites in Ruminants I 6-7 PL1.0 Evolving Approaches to Drug 111-113 OA29 Unusual Protozoa Discovery 114-116 OA30 IAFWP Symposium 8-9 PL2.0 Genes and Genomics in 116-118 OA31 Anthelmintic Resistance in Parasite Control Ruminants 10-11 PL3.0 Leishmaniasis, Leishvet and 119-122 OA32 Avian Parasites One Health 122-125 OA33 Equine Cyathostomes I 12-13 PL4.0 Veterinary Entomology: 125-128 OA34 Flies and Fly Control in Outbreak and Advancements Ruminants 128-131 OA35 Ruminant Trematodes I Oral Sessions
    [Show full text]
  • Diptera) of Finland 369 Doi: 10.3897/Zookeys.441.7527 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441: 369–382 (2014)Checklist of the family Anthomyiidae (Diptera) of Finland 369 doi: 10.3897/zookeys.441.7527 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Anthomyiidae (Diptera) of Finland Verner Michelsen1 1 Natural History Museum of Denmark (Zoological Museum), Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark Corresponding author: Verner Michelsen ([email protected]) Academic editor: J. Kahanpää | Received 15 March 2014 | Accepted 8 May 2014 | Published 19 September 2014 http://zoobank.org/4946FF28-E271-4E73-BFE5-12B71572C9F3 Citation: Michelsen V (2014) Checklist of the family Anthomyiidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 369–382. doi: 10.3897/zookeys.441.7527 Abstract An updated checklist of the the genera and species of Anthomyiidae (Diptera) found in Finland is provided. Keywords Checklist, Finland, Diptera, Anthomyiidae Introduction The family Anthomyiidae is a large and taxonomically difficult group of flies that has for the same reason suffered from unstable taxonomy and nomenclature. A checklist of the anthomyiid species known from pre-war Finland was compiled by their leading regional specialist of calyptrate flies Lauri Tiensuu (1906−1980) and published in Frey et al. (1941). The Anthomyiidae were then not recognized as a separate family but combined with the fanniid and true muscid flies in a comprehensive Muscidae fam- ily equivalent of the present Muscoidea less Scathophagidae. Tiensuu’s list included confirmed records of 199 anthomyiid species classified in 41 genera and subgenera. No less than 34% of the species names and 58% of the genus-group names in that list are Copyright Verner Michelsen.
    [Show full text]