IEA PVPS Reporting Countries, Becquerel Institute (BE), RTS Corporation (JP),A

Total Page:16

File Type:pdf, Size:1020Kb

IEA PVPS Reporting Countries, Becquerel Institute (BE), RTS Corporation (JP),A Task 1 Strategic PV Analysis and Outreach TRENDS IN PHOTOVOLTAIC APPLICATIONS 2019 REPORT IEA PVPS T1-36 : 2019 PHOTOVOLTAIC POWER SYSTEMS TECHNOLOGY COLLABORATION PROGRAMME PVPS WHAT IS IEA PVPS TCP? The International Energy Agency (IEA), founded in 1974, is an ‘Tasks,’ that may be research projects or activity areas. This autonomous body within the framework of the Organization for report has been prepared under Task 1, which deals with market Economic Cooperation and Development (OECD). The and industry analysis, strategic research and facilitates the Technology Collaboration Programme (TCP) was created with a exchange and dissemination of information arising from the belief that the future of energy security and sustainability starts overall IEA PVPS Programme. with global collaboration. The programme is made up of The IEA PVPS participating countries are Australia, Austria, thousands of experts across government, academia, and Belgium, Canada, Chile, China, Denmark, Finland, France, industry dedicated to advancing common research and the Germany, Israel, Italy, Japan, Korea, Malaysia, Mexico, Morocco, application of specific energy technologies. the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, The IEA Photovoltaic Power Systems Programme (IEA PVPS) is Switzerland, Thailand, Turkey, and the United States of America. one of the TCP’s within the IEA and was established in 1993. The The European Commission, Solar Power Europe, the Smart mission of the programme is to “enhance the international Electric Power Alliance (SEPA), the Solar Energy Industries collaborative efforts which facilitate the role of photovoltaic solar Association and the Copper Alliance are also members. energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the Programme’s participants Visit us at: www.iea-pvps.org have undertaken a variety of joint research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation member, which designates distinct AUTHORS Main Authors: G. Masson and I. Kaizuka. Analysis: I.Kaizuka (RTS Corporation), E. Bosch, A. Detollenaere, G. Neubourg, G. Masson, J. Van Wetter (Becquerel Institute). Data: IEA PVPS Reporting Countries, Becquerel Institute (BE), RTS Corporation (JP),A. Jaeger-Waldau (EU-JRC), Ch. Breyer. For the non-IEA PVPS countries: C. Werner, BSW, UNEF. Editor: G. Masson, IEA PVPS Task 1 Operating Agent. Design: Onehemisphere, Sweden. DISCLAIMER The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries Data for non-IEA PVPS countries are provided by official contacts or experts in the relevant countries. Data are valid at the date of publication and should be considered as estimates in several countries due to the publication date. COVER IMAGE Ground mounted PV installation in Sayaton, Spain. Copyright G. Neubourg. ISBN 978-3-906042-91-6: Trends in Photovoltaic Applications 2019. IEA PVPS TRENDS 2019 IN PHOTOVOLTAIC APPLICATIONS REPORT SCOPE AND OBJECTIVES The Trends report’s objective is to present and interpret This report presents the results of the 24th international survey. It developments in the PV power systems market and the evolving provides an overview of PV power systems applications, markets applications for these products within this market. These trends and production in the reporting countries and elsewhere at the are analysed in the context of the business, policy and end of 2018 and analyses trends in the implementation of PV nontechnical environment in the reporting countries. power systems between 1992 and 2018. Key data for this publication were drawn mostly from national survey reports and This report is prepared to assist those who are responsible for information summaries, which were supplied by representatives developing the strategies of businesses and public authorities, and from each of the reporting countries. Information from the to support the development of medium-term plans for electricity countries outside IEA PVPS are drawn from a variety of sources utilities and other providers of energy services. It also provides and, while every attempt is made to ensure their accuracy, the guidance to government officials responsible for setting energy validity of some of these data cannot be assured with the same policy and preparing national energy plans. The scope of the level of confidence as for IEA PVPS member countries. report is limited to PV applications with a rated power of 40 W or more. National data supplied are as accurate as possible at the time of publication. Data accuracy on production levels and system prices varies, depending on the willingness of the relevant national PV industry to provide data. ACKNOWLEDGEMENT This report has been prepared under the supervision by Task 1 participants. A special thanks to all of them. The report authors also gratefully acknowledge special support of Mary Brunisholz, IEA PVPS and NET Ltd. IEA PVPS TRENDS IN PHOTOVOLTAIC APPLICATIONS 2019 / 3 IEA PVPS TRENDS 2019 IN PHOTOVOLTAIC APPLICATIONS FOREWORD On behalf of the IEA PVPS Technology Collaboration capacity of 103 GW. Regardless of this strong concentration, the Programme, I am pleased to present the 24th international number of countries that are entering the PV market with survey report on Trends in Photovoltaic (PV) Applications to you. significant market developments is increasing. This report, based on careful analysis of the growing and On the cost side, further record PPAs have been announced for diversifying market for photovoltaic power systems, has been large scale PV systems at below 2 USDcents per kWh, confirming prepared by the IEA PVPS Task 1 expert group “Strategic PV the increasing competitiveness that PV can reach under the best Analysis and Outreach”. With a particular focus on IEA PVPS conditions. Despite these very competitive prices in a favourable members, the report aims to provide a detailed picture of the market environment, the regulatory framework and its further worldwide and country-specific photovoltaic market trends, the evolution towards market mechanisms remain significantly various drivers and policies, the status of the industry and important for the further development of worldwide PV markets. discusses the increasing role of PV in the energy system. This In recent years, utility-scale PV systems have dominated the PV year’s report covers the market and industry development up to market; however, distributed PV systems, namely on commercial 2018 and highlights some more recently observed trends. and industrial premises, are becoming more important in many Similar to the year before, 103 GW of PV power systems have countries, due to their favourable economics; in particular when been installed globally in 2018, bringing the total installed capacity combined with increased self-consumption. The ongoing cost to over 512 GW or half a TW. We observe a confirmation of the reduction of PV systems also favours increasing off-grid markets strong role of PV deployment in Asia. Despite an important whereby – due to their very small size – these are better reduction in China’s PV market (from 52,9 GW in 2017 to 44,3 GW characterized by their large number (millions) of installed systems in 2018), due to changing framework conditions during 2018, this than their installed capacity. Their role in massively bringing country kept its leadership, both in annual as well as total installed affordable electricity services to rural areas in emerging and capacity. China’s annual installed PV capacity is followed by India developing countries is another important trend observed in the (10,8 GW), the United States (10,7 GW), Japan (6,7 GW) and PV market. Finally, with its rising level of penetration in electric Australia (3,8 GW). Eleven countries installed more than 1 GW in grids, PV is more and more affecting electricity systems as a 2018 and 31 countries reached a cumulative capacity of 1 GW and whole and the integration into various technical, application and more. The countries with the ten largest annually installed PV market environments becomes crucial. These are just a few capacities account for about 87% of the total annual installed highlights of the wealth of information that this 24th edition of the IEA PVPS Trends report hopes to provide to you! Stefan Nowak Chairman IEA PVPS Programme IEA PVPS TRENDS IN PHOTOVOLTAIC APPLICATIONS 2019 / 4 IEA PVPS TRENDS 2019 IN PHOTOVOLTAIC APPLICATIONS TABLE OF CONTENTS FOREWORD 4 1. INTRODUCTION TO THE CONCEPTS AND METHODOLOGY 7 PV TECHNOLOGY 7 PV APPLICATIONS AND MARKET SEGMENTS 8 METHODOLOGY FOR THE MAIN PV MARKET DEVELOPMENT INDICATORS 9 2. PV MARKET DEVELOPMENT TRENDS 10 THE GLOBAL PV INSTALLED CAPACITY 10 THE MARKET EVOLUTION 11 PV DEVELOPMENT PER REGION AND SEGMENT 20 PV PENETRATION PER CAPITA 21 THE AMERICAS 21 ASIA PACIFIC 25 EUROPE 31 MIDDLE EAST AND AFRICA 42 3. POLICY FRAMEWORK 47 PV MARKET DRIVERS 48 THE SUPPORT SCHEMES 49 COST OF SUPPORT SCHEMES 53 SOFT COSTS 54 INNOVATIVE BUSINESS MODELS 54 GRID INTEGRATION 54 SUSTAINABLE BUILDING REQUIREMENTS 55 ELECTRICITY STORAGE 56 4. TRENDS IN THE PV INDUSTRY 58 THE UPSTREAM PV SECTOR 58 DOWNSTREAM SECTOR 68 TRADE CONFLICTS 70 5. SOCIETAL IMPLICATIONS OF PV 72 VALUE FOR THE
Recommended publications
  • Electric Vehicles
    PwC global power & utilities Capturing value from disruption Technology and innovation in an era of energy transformation www.pwc.com/utilities Contents Introduction 3 Executive summary 4 Technologies and disruption 8 High-efficiency gas turbines 9 Small modular reactors 10 Distributed generation 11 Micro-grids and smart grid networks 13 Energy storage 15 Electric vehicles 16 Beyond the meter 18 Early-stage technologies 20 Possible futures 21 ‘Losing touch’ 23 ‘Off grid’ 24 ‘Mobile and virtual’ 25 ‘Data rich’ 26 ‘Scaled down’ 27 Scenario round-up 28 A whole new emphasis on innovation 29 Winning in tomorrow’s market 32 This report has been written by a team from Strategy& in conjunction with PwC’s global power and utilities centre of excellence to assist companies in the fast-changing power utilities environment. It is part of a series of PwC reports examining the various market and business models that could emerge in the power sector, the implications of the new energy ecosystem for customer strategies, and the increasing importance of innovation for success in the sector.1 1 http://www.pwc.com/gx/en/industries/energy-utilities-mining/power-utilities/ publications.html Introduction In the next 20 years, more innovation will occur in the utilities sector than has occurred to date since the time of Thomas Edison. Whether companies enjoy the promise of this innovation depends on how they embrace the potential of new technology as the vanguard for industry evolution. The pace of technology-driven change As today’s utility CEOs think about In this report we look at the is accelerating well beyond the speed how to reposition their company for technologies that are likely to drive the power sector believed possible.
    [Show full text]
  • Unlocking Performance Gains in Electricity Distribution and Retailing in India
    Lighting the Way: Unlocking Performance Gains in Electricity Distribution and Retailing in India Will Talbott Harvard Kennedy School May 2013 M-RCBG Associate Working Paper Series | No. 12 The views expressed in the M-RCBG Fellows and Graduate Student Research Paper Series are those of the author(s) and do not necessarily reflect those of the Mossavar-Rahmani Center for Business & Government or of Harvard University. The papers in this series have not undergone formal review and approval; they are presented to elicit feedback and to encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only. Mossavar-Rahmani Center for Business & Government Weil Hall | Harvard Kennedy School | www.hks.harvard.edu/mrcbg LIGHTING THE WAY: UNLOCKING PERFORMANCE GAINS IN ELECTRICITY DISTRIBUTION AND RETAILING IN INDIA Will Talbott Harvard Kennedy School of Government, MPA/ID Candidate 2013 March 2013 Advisor: William Hogan Seminar Leader: Ishac Diwan Written in fulfillment of the requirements for the degree of Master of Public Administration in International Development at the John F. Kennedy School of Government, Harvard University ACKNOWLEDGEMENTS I would like to thank Professor William Hogan and Professor Ishac Diwan, who provided helpful guidance and feedback throughout the process of preparing this report. Bernard Neenan also generously shared his time and expertise. Nick Bayard and Ning Fu offered valuable comments on an initial draft. The findings, interpretations, and conclusions in this paper are those of the author and should not be attributed in any way to the Harvard Kennedy School. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY ...........................................................................................................
    [Show full text]
  • PVSAT-8 Programme 26-03-12.Pdf
    The Solar Energy Society and PV-Net UK www.pvsat.org.uk www.uk-ises.org 8th Photovoltaic Science, Applications and Technology Conference C94 PVSAT-8 Northumbria University Newcastle upon Tyne, England 2-4 April 2012 PROGRAMME Sponsored and supported by The Solar Energy Society, PO Box 489, Abingdon on Thames OX14 4WY, UK Tel: 0044 (0)7760 163559; Fax: 0044 (0)1235 848684; Email: [email protected]; www.uk-ises.org; www.pvsat.org.uk PVSAT-8 Programme Monday 2nd April 2012 11:00 OPENING SESSION Chair: Tim Bruton, TMB Consulting 11:00 Welcome – Prof Ian Postlethwaite Deputy Vice Chancellor Northumbria University Tim Bruton, Conference Chair TMB Consulting Alex Cole, Programme Chair Narec Solar Nicola Pearsall, Local Host Northumbria University 11:30 Invited – Nigel Mason Outlook for c-Si PV Cell PV Consulting Ltd Technologies 12:00 Invited - Nicola Pearsall Using Environmental Impact Northumbria University Analysis to Inform PV Development 12:30 to Lunch 13:30 13:30 POSTER SESSION A Chair: Ian Forbes Northumbria University to 14:30 SESSION 1 Chair: Ralph Gottschalg Loughborough University 14:30 Invited - Finlay Colville The PV Industry in 2012: Market Solarbuzz Growth & Technology Trends 15:00 H.M. Yates, P. Evans, D.W. The Development of High Salford University Sheel, S. Nicolay, L. Ding, Performance SnO2:F as TCOs for C.Ball Thin Film Silicon Solar Cells 15:15 L.M. Brown, K. Drew, A. Cole Review of Narec’s achievements Narec Solar and K. Heasman within the EU Seventh Framework Programme ASPIS project 15:30 C. J. M. Emmott, B.
    [Show full text]
  • Electricity Retailing Decision Making Based on Data Mining Techniques
    ELECTRICITY RETAILING DECISION MAKING BASED ON DATA MINING TECHNIQUES By JIAJIA YANG B.E. M.E. A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Electrical Engineering and Telecommunications Faculty of Engineering April 2018 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Yang First name: Jiajia Other name/s: Abbreviation for degree as given in the University calendar: PhD School: School of Electrical Engineering and Faculty: Faculty of Engineering Telecommunications Title: Electricity Retailing Decision Making Based on Data Mining Techniques Abstract 350 words maximum: (PLEASE TYPE) With the continuous development of Smart Grid, especially the emergence of Energy Internet, there is an increasing amount of measurement data available collected from power system end-users. Through data mining techniques, these measurement data can enable a better understanding of the load composition and end-user consumption behaviours, and therefore would provide great potentials for developing more flexible and targeted or even customized pricing schemes for electricity retail. This research starts with a comprehensive literature survey on decision-making for electricity retailers. Publications on electricity retailing in the last two decades are surveyed and discussed in detail. Then, key business framework of electricity retailers is studied. It elaborates the typical business process of electricity retailers and its procedure of creating a new sales agreement. Considering the drawbacks of existing load data mining methods, a new non-intrusive load monitoring method is proposed which is able to cope with the big load data in the Smart Grid environment. After obtained the status of all identified appliances, a statistical residential load model is developed.
    [Show full text]
  • Global Smart Grid Federation Report
    2 < < The Global Smart Grid Federation 2012 REPORT > > 3 Letter from the Chair TABle of contents Dear Colleagues, I am extremely pleased to present findings from the Global Smart Grid Federation smart grid 2 Letter from the Chair comparison work. In the following pages, you will find insightful analysis of the member’s About the Global Smart Grid Federation energy markets and project summaries reflecting leading edge deployments of smart grid Acknowledgements technology around the world. This report clearly articulates a key goal of our organization, 3 Table of Contents namely how global collaboration can help accelerate the critical transformation of our energy infrastructure. Creating and sharing international best practices is the best way to maximize 4 Introduction consumer involvement, apply both proven and new technologies, and adapt policy and Research Methodology regulatory structures to support this new environment. We believe you will find this analysis 5 Executive Summary highly instructive as you attempt to navigate a course toward a technology and public policy path to advance smart grid deployment. Sincerely, CHAPTER I: KEY THEMES Guido Bartels 7 Smart Grid: The Opportunity Chair, Global Smart Grid Federation 8 Challenges to Smart Grid Success 12 Role of Government About the Global changes to their countries’ electric systems to enhance security, : increase flexibility, reduce emissions, and maintain affordable, CHAPTER II Country Reports Smart Grid reliable, and accessible power. 14 Australia In addition, the Global Smart Grid Federation works with the 17 Canada Federation International Smart Grid Action Network as well as with national 20 europe The Global Smart Grid Federation is committed to creating smarter, and international government policymakers to address the broad cleaner electricity systems around the world.
    [Show full text]
  • General Notice, Notice 834 of 2004
    Government Gazette REPUBLIC OF SOUTH AFRICA Vol. 467 Pretoria 28 May 2004 No. 26366 AIDS HELPLINE: 0800-0123-22 Prevention is the cure STAATSKOERANT, 28 ME1 2004 No. 26366 3 GENERALNOTICE NOTICE 834 OF 2004 The Minister of Minerals and Energy has approved that the draft Electricity Pricing Policy of the South African Electricity Industry be released for public comments. Comments on the draft Electricity Pricing Policyshould be forwarded to: The Director-General Attention: Mr. Ompie L. Aphane Department of Minerals and Energy Electricity Chief Directorate Private Bag X59 PRETORIA 0001 Fax: (012) 317 9539 E-mail: [email protected] The deadline for the submissions of commentsis I8June 2004. e THE ELECTRICITY PRICING POLICY OF THE SOUTH AFRICAN ELECTRICITY INDUSTRY DEPARTMENT OF MINERALS AND ENERGY 05 April 2004 ESI Pricing Policy Ministerial Foreword In line with the Government policy to make affordable electricity to all, the challenges for the restructuring of the electricity industry are equally daunting. In order to balance the need for the Electricity Distribution Industry (EDI), to improve its livelyhood, to obtain reasonable returns on investment, to deliver services at least cost to needy and poor communities, it has become imperative to address issues of electricity industry restructuring, corporatization, privatisation and the socio-economic upliftment. On the other hand, in order to ensure development and sustainability of the South Africa economy, it is equally imperative to ensure lower input costs to the industrial sector, which is the backbone of the economy. This is particularly so in respect of bulk consumers of electricity. The challenge will always be how to strike a balance between ensuring sustainability and facilitating growth of the Electricity Supply Industry (ESI) and the socio-economic demands placed upon it.
    [Show full text]
  • Wafer Silicon-Based Solar Cells
    Wafer Silicon-Based Solar Cells Lectures 10 and 11 – Oct. 13 & 18, 2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Prof. Tonio Buonassisi Silicon-Based Solar Cells Tutorial • Why Silicon? • Current Manufacturing Methods • Next-Gen Silicon Technologies MIT 2.626/2.627 – October 13 & 18, 2011 2 Rationale for Si-based PV . Scalability: . Earth abundance of Si. Capable of reaching TW scales. Non-toxic. “If you want solar cells dirt cheap, you have to make them out of dirt.” Inspired by a quote Prof. Donald Sadoway applies to batteries. Source: U.S. Geological Survey Fact Sheet 087-02 Available online: http://pubs.usgs.gov/fs/2002/fs087-02/ MIT 2.626/2.627 – October 13 & 18, 2011 3 Rationale for Si-based PV . Passivating Oxide Layer . Low surface recombination velocity. Effective diffusion barrier Courtesy of Chris Hodson and Erwin Kessels. Used with permission. http://www.pennenergy.com/index/power/display/7519461660/articles/Photovoltaics-World/volume-2009/Issue_4/features/minimizing-losses.html MIT 2.626/2.627 – October 13 & 18, 2011 4 Rationale for Si-based PV . Momentum: . Most common semiconductor material . 50+ years of manufacturing and R&D experience . $50B industry today . Technology acceptance results in low interest rates MIT 2.626/2.627 – October 13 & 18, 2011 5 Silicon-Based Solar Cells Tutorial • Why Silicon? • Current Manufacturing Methods – Overview: Market Shares – Feedstock Refining – Wafer Fabrication – Cell Manufacturing – Module Manufacturing • Next-Gen Silicon Technologies MIT 2.626/2.627 – October 13 & 18, 2011 6 Photovoltaics: State of the Art Renewable Energy Law, D 100 000 Roofs Program, D Residential Roof Program, JPN 1000 Roofs Program, Slide courtesy of Gerhard Willeke, D Fraunhofer ISE (Freiburg, Germany) Courtesy of Gerhard Willeke.
    [Show full text]
  • Implication of Competition Law Enforcement in the Electricity Sector: Comparative Analysis of the UK and the US
    Francisca Kusi-Appiah Implication of Competition Law Enforcement in the Electricity Sector: Comparative Analysis of the UK and the US Introduction Competition policies and laws are being adopted and introduced by countries, especially developing countries, in order to gain investment. 1 This research examines literature on competition in the energy sector with specific focus on electricity. Critical analysis is made of the competition legal regimes as exist in the electricity markets of UK (England and Wales, and Scotland) and US (PJM). The comparative analysis of the implication of competition on electricity in the US (PJM) and the UK electricity or power markets will rely on indicators for both competition and electricity security. The indicator for competition will consist of the substantive competition law/legal regime while the indicators for electricity security, will consist of availability (generational capacity), fuel diversity (environmental concerns) and affordability. Competition Legal Regime United States Competition in the electricity markets in the United States started in the 1990s but majority of the states adopted this new approach in the 2000s. 2 In 2000, the Federal Energy Regulatory Commission introduced independent system operator (ISO) or regional transmission organisation (RTO) and in October of that same year, FERC 1 Francisca Kusi-Appiah ordered the compulsory adoption of either an ISO or RTO by all utilities. 3Competition in the Unites States of America was only in respect of wholesaling. 4 Currently, most states have implemented competition of electricity retailing with the emergence of electricity service providers who do not have to produce their own electricity but buy from the market place and resell to consumers.
    [Show full text]
  • PDF Download(PDF Format, 885Kb)
    COVER STORY Energy Solutions for Future Earth Activities 1 Achieving a Sustainable Society through Digital Innovation in the Electric Power Industry —Establishing Digital Solutions for the North American Power Grid— The deregulation of electricity retailing, combined with greater adoption of renewable energy sources and distrib- uted generation have produced advances in digital technologies that are bringing major changes to the energy industry. This trend is occurring throughout the global market and in the electric power industry in particular. The changing nature of this industry is driving the value chain towards more sophisticated ways of operating power plants, maintaining equipment, realigning roles, and reordering the relationships between suppliers and consum- ers. The traditional model is evolving toward a system of supply and demand, away from the tightly regulated systems and practices that once governed the main grid. With this as a backdrop, electric utilities are starting to recognize that the use of digital technologies will result in superior operating decisions that are based on effective data management. For example, greater integration and compatibility between in-house systems incorporating fi eld data from the grid can use that data for improving performance measures. In North America, a market where electric utilities number more than 3,000 companies, Hitachi is engaging in collaborative creation with customers in order to incorporate digital solutions that address the challenges facing customers. These solutions
    [Show full text]
  • Electricity Supply Industry Restructuring
    Electricity Supply Industry Restructuring: Options for the Organisation of Government Assets April 2016 TRADE & INDUSTRIAL POLICY STRATEGIES Document Reference: Teljeur, E., Sheik Dasarath, F., Kolobe, T., Da Costa, D., 2016, Electricity Supply Industry Restructuring: Options for the Organisation of Government Assets, Pretoria and Johannesburg: Trade & Industrial Policy Strategies and Business Leadership South Africa. Date: April 2016 Contact Information Genesis Analytics (Pty) Ltd Office 3, 50 Sixth Road Hyde Park, 2196, Johannesburg South Africa Post to: PO Box 413431, Craighall, 2024 Johannesburg, South Africa Tel: +27 (11) 994 7000 Fax: +27 (11) 994 7099 www.genesis-analytics.com Authors Ethèl Teljeur, Fathima Sheik, Tshekishi Kolobe, Danita da Costa Contact Person Ethèl Teljeur Partner - Competition and Regulation email | [email protected] switchboard | +27 (0)11 994 7000 mobile | +27 (0)82 493 0251 ii Table of Contents 1. INTRODUCTION ..................................................................................... 1 2. THE SOUTH AFRICAN ELECTRICITY SECTOR LANDSCAPE............ 3 2.1. Electricity supply industry reforms in South Africa ................................... 3 2.2. Current structure of the electricity industry in South Africa ...................... 7 2.3. Drivers for the restructuring of the South African electricity industry ....... 8 2.4. Summary of reform agenda for the South African electricity supply industry ................................................................................................
    [Show full text]
  • National Regulatory Reporting for Electricity Distribution and Retailing Businesses
    NATIONAL REGULATORY REPORTING FOR ELECTRICITY DISTRIBUTION AND RETAILING BUSINESSES Utility Regulators Forum March 2002 © Commonwealth of Australia 2002 ISBN This work is copyright. Apart from any use as permitted under the Copyright Act 1968 no part may be reproduced by any process without permission from the Australian Competition and Consumer Commission. Requests and inquiries concerning reproduction and rights should be addressed to the Director Publications, ACCC, Dickson ACT 2602. Background The Utility Regulators Forum was established in recognition of the need for cooperation in a federal system among State-based regulators. The forum consists of regulators operating in industries where utilities that traditionally operated as monopolies are being opened up to competition as a result of the competition reform process. By acting as a focal point for regulators in different jurisdictions the forum seeks to: < foster understanding of issues and concepts faced by regulators on similar industries; < minimise overlap of regulations for large users who operate across jurisdictions; < provide a means of exchanging information; and < enhance the prospects of consistency in the application of regulatory functions. The following paper is released by the Regulators Forum to encourage discussion in a range of important regulatory issues. CONTENTS 1. Introduction ...................................................................................................................... 1 2. Electricity Distribution Businesses ................................................................................
    [Show full text]
  • The Digital Transformation of the Retail Electricity Market in Spain
    energies Article The Digital Transformation of the Retail Electricity Market in Spain Julián Chaparro-Peláez, Emiliano Acquila-Natale * , Ángel Hernández-García and Santiago Iglesias-Pradas Departamento de Ingeniería de Organización, Administración de Empresas y Estadística, ETSI de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] (J.C.-P.); [email protected] (Á.H.-G.); [email protected] (S.I.-P.) * Correspondence: [email protected]; Tel.: (+34)-910-672-047 Received: 18 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: The deregulation of the electricity markets in the European Union and the transformation caused by digital technologies and customer-centric strategies have altered the industry ecosystem, forcing companies to adapt to the new scenario. This research study aims to give a global overview of the digital transformation and channel integration of free-market electricity retailers in Spain from a consumer’s perspective. The analysis includes all free-market electricity retailers that operate at the national scale, explores the level of digital transformation and channel integration of these companies based on a structured set of indicators, and measures them using the mystery shopper technique. The results show important differences between leading retailers and the rest of companies, evidence an important lag of the sector when compared to other retail markets and an overall lack of multichannel and omnichannel strategies, show a strong effort of retailers in online billing and self-service customer data management, and reveal shortcomings in the availability of communication channels with customers. Keywords: electricity retailing; channel integration; digital transformation; end user 1.
    [Show full text]