RESEARCH Durmid Ladder Structure and Its Implications for The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismic Shift Diablo Canyon Literally and Figuratively on Shaky Ground
SEISMIC SHIFT DIABLO CANYON LITERALLY AND FIGURATIVELY ON SHAKY GROUND Five years ago, Pacific Gas and Electric (PG&E) informed the Nuclear Regulatory Commission (NRC) about a newly discovered fault offshore from its Diablo Canyon nuclear plant that could cause more ground motion during an earthquake than the plant was designed to withstand. In other words, there was a gap between seismic protection levels of the plant and the seismic threat levels it faced. When similar gaps were identified at other nuclear facilities in California, New York, Pennsylvania, Maine, and Virginia, the facilities were not permitted to generate electricity until the gaps were closed. The electricity generation gaps did not trump the seismic protection gaps: the need for safety was deemed more important than the need for electricity and its revenues. But the two reactors at Diablo Canyon continue operating despite the seismic protection gap. In the former cases the NRC would not allow nuclear facilities to operate until they demonstrated an adequate level of safety through compliance with federal regulations. It wasn’t that evidence showed disaster was looming on the horizon. Instead, it was that evidence failed to show that the risk of disaster was being properly managed. At Diablo Canyon the NRC has flipped the risk management construct. Despite solid evidence that Diablo Canyon does not conform to regulatory requirements, the nuclear version of the “no blood, no foul” rule is deemed close enough to let its reactors continue operating. This seismic shift places Diablo Canyon’s two aging reactors literally and figuratively on shaky ground. If an earthquake occurs, it may result in more damage than the nuclear plant can withstand, with dire consequences for tens of thousands of Californians. -
Section 3.3 Geology Jan 09 02 ER Rev4
3.3 Geology and Soils 3.3.1 Introduction and Summary Table 3.3-1 summarizes the geology and soils impacts for the Proposed Project and alternatives. TABLE 3.3-1 Summary of Geology and Soils Impacts1 Alternative 2: 130 KAFY Proposed Project: On-farm Irrigation Alternative 3: 300 KAFY System 230 KAFY Alternative 4: All Conservation Alternative 1: Improvements All Conservation 300 KAFY Measures No Project Only Measures Fallowing Only LOWER COLORADO RIVER No impacts. Continuation of No impacts. No impacts. No impacts. existing conditions. IID WATER SERVICE AREA AND AAC GS-1: Soil erosion Continuation of A2-GS-1: Soil A3-GS-1: Soil A4-GS-1: Soil from construction existing conditions. erosion from erosion from erosion from of conservation construction of construction of fallowing: Less measures: Less conservation conservation than significant than significant measures: Less measures: Less impact with impact. than significant than significant mitigation. impact. impact. GS-2: Soil erosion Continuation of No impact. A3-GS-2: Soil No impact. from operation of existing conditions. erosion from conservation operation of measures: Less conservation than significant measures: Less impact. than significant impact. GS-3: Reduction Continuation of A2-GS-2: A3-GS-3: No impact. of soil erosion existing conditions. Reduction of soil Reduction of soil from reduction in erosion from erosion from irrigation: reduction in reduction in Beneficial impact. irrigation: irrigation: Beneficial impact. Beneficial impact. GS-4: Ground Continuation of A2-GS-3: Ground A3-GS-4: Ground No impact. acceleration and existing conditions. acceleration and acceleration and shaking: Less than shaking: Less than shaking: Less than significant impact. -
Structure Preliminary Geotechnical Report
I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT S EPTEMBER 2020 Y ORBA L INDA, C ALIFORNIA APPENDIX F STRUCTURE PRELIMINARY GEOTECHNICAL REPORT P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA, C ALIFORNIA S EPTEMBER 2020 This page intentionally left blank P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Earth Mechanics, Inc. Geotechnical & Earthquake Engineering November 13, 2019 EMI Project No. 19-143 HNTB 200 E. Sandpointe Avenue, Suite 200 Santa Ana, California 92707 Attention: Mr. Patrick Somerville Subject: Structure Preliminary Geotechnical Report Yorba Linda Blvd Bridge over Santa Ana River (Widen), Bridge No. 55C-0509 Yorba Linda Boulevard and Savi Ranch Parkway Widening Project City of Yorba Linda, California Dear Mr. Somerville: Attached is our Structure Preliminary Geotechnical Report (SPGR) for the proposed widening of the Yorba Linda Boulevard Bridge over the Santa Ana River (Bridge No. 55C-0509) in the City of Yorba Linda, California. The bridge widening is part of the Yorba Linda Boulevard and Savi Ranch Parkway Widening Project. This report was prepared to support the Project Approval and Environmental Document (PA-ED) phase of the project. The SPGR includes information required by the 2017 California Department of Transportation (Caltrans) Foundation Reports for Bridges document. -
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
DCL-2011-600.Pdf
Central Coastal California Seismic Imaging Project Attachment 1 ATTACHMENT 1 PACIFIC GAS and ELECTRIC COMPANY APPLICATION FOR RESOURCE LEASE, PERMIT OR OTHER ENTITLEMENT FOR USE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT Part 1, Section A, Item1. The following PG&E personnel are the project contacts throughout the environmental analysis and permitting processes for the Central Coastal California Seismic Imaging Project (CCCSIP): Mr. Mark Krause, Director, State Agency Relations 1415 L. Street, Suite 280 Sacramento, California 95814 Phone: 916-721-5709 Fax: 916-386-6720 e-mail: [email protected] Mr. Loren Sharp, Senior Director, Technical Services Diablo Canyon Power Plant Mail Code 104/6/603 PO Box 56 Avila Beach, California 93424 Phone: 805-781-9785 Fax: 805-545-4884 e-mail: [email protected] Dr. Stuart Nishenko, Senior Seismologist, Geosciences Mail Code N4C PO Box 770000 San Francisco, California 94177 Phone: 415-973-1213 Fax: 415-973-1409 e-mail: [email protected] Sarah Gassner, Supervisor, Land-Environmental Planning and Permitting 1455 E. Shaw Avenue Fresno, California 93710 Phone: 559-263-5073 Fax: 559-263-5262 e-mail: [email protected] Part 1, Section A, Item 2. PG&E has designated following company/personnel as agents for the Offshore Seismic Imaging Project: Mr. Ray de Wit, Senior Project Manager Padre Associates, Inc. 1485 Enea Court, Bldg. G, Suite 1480 Concord, California 94520 Phone: 925-685-9441 X 21 Fax: 925-685-8401 e-mail: [email protected] Page - 1 Central Coastal California Seismic Imaging Project Attachment 1 Mr. Simon Poulter, Partner Padre Associates, Inc. 5290 Overpass Road, Suite 217 Goleta, California 93111 Phone: 805-683-1233 X 4 Fax: 805-683-3944 e-mail: [email protected] Page - 2 Central Coastal California Seismic Imaging Project Attachment 2 ATTACHMENT 2 PACIFIC GAS and ELECTRIC COMPANY APPLICATION FOR RESOURCE LEASE, PERMIT OR OTHER ENTITLEMENT FOR USE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT DESCRIPTION Part I, Section E, Item 1. -
3.6 Geology and Soils
3. Environmental Setting, Impacts, and Mitigation Measures 3.6 Geology and Soils 3.6 Geology and Soils This section describes and evaluates potential impacts related to geology and soils conditions and hazards, including paleontological resources. The section contains: (1) a description of the existing regional and local conditions of the Project Site and the surrounding areas as it pertains to geology and soils as well as a description of the Adjusted Baseline Environmental Setting; (2) a summary of the federal, State, and local regulations related to geology and soils; and (3) an analysis of the potential impacts related to geology and soils associated with the implementation of the Proposed Project, as well as identification of potentially feasible mitigation measures that could mitigate the significant impacts. Comments received in response to the NOP for the EIR regarding geology and soils can be found in Appendix B. Any applicable issues and concerns regarding potential impacts related to geology and soils that were raised in comments on the NOP are analyzed in this section. The analysis included in this section was developed based on Project-specific construction and operational features; the Paleontological Resources Assessment Report prepared by ESA and dated July 2019 (Appendix I); and the site-specific existing conditions, including geotechnical hazards, identified in the Preliminary Geotechnical Report prepared by AECOM and dated September 14, 2018 (Appendix H).1 3.6.1 Environmental Setting Regional Setting The Project Site is located in the northern Peninsular Ranges geomorphic province close to the boundary with the Transverse Ranges geomorphic province. The Transverse Ranges geomorphic province is characterized by east-west trending mountain ranges that include the Santa Monica Mountains. -
Geology of Hawk Canyon, Anza-Borrego Desert State Park, California
GEOLOGY OF HAWK CANYON, ANZA-BORREGO DESERT STATE PARK, CALIFORNIA By Jeffrey D. Pepin Geological Sciences Department California State Polytechnic University Pomona, California 2011 Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Geology Degree Table of Contents Abstract ...............................................................................................................................1 Introduction ........................................................................................................................2 Purpose and Objectives ....................................................................................................2 Regional Geology .............................................................................................................4 Field Site Description .......................................................................................................9 Discussion of Previous Work Done in Hawk Canyon ...................................................11 Observational Data ..........................................................................................................12 Field Techniques ............................................................................................................12 Global Positioning System (GPS) Data and Notes ........................................................14 Orientation Data by Structure ........................................................................................20 Lithology ........................................................................................................................21 -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
5.4 Geology and Soils
BEACH BOULEVARD SPECIFIC PLAN DRAFT EIR CITY OF ANAHEIM 5. Environmental Analysis 5.4 GEOLOGY AND SOILS This section of the Draft Environmental Impact Report (DEIR) evaluates the potential for implementation of the Beach Boulevard Specific Plan (Proposed Project) to impact geological and soil resources in the City of Anaheim. 5.4.1 Environmental Setting Regulatory Setting California Alquist-Priolo Earthquake Fault Zoning Act The Alquist-Priolo Earthquake Fault Zoning Act was signed into state law in 1972. Its primary purpose is to mitigate the hazard of fault rupture by prohibiting the location of structures for human occupancy across the trace of an active fault. The act delineates “Earthquake Fault Zones” along faults that are “sufficiently active” and “well defined.” The act also requires that cities and counties withhold development permits for sites within an earthquake fault zone until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting. Pursuant to this act, structures for human occupancy are not allowed within 50 feet of the trace of an active fault. Seismic Hazard Mapping Act The Seismic Hazard Mapping Act (SHMA) was adopted by the state in 1990 to protect the public from the effects of nonsurface fault rupture earthquake hazards, including strong ground shaking, liquefaction, seismically induced landslides, or other ground failure caused by earthquakes. The goal of the act is to minimize loss of life and property by identifying and mitigating seismic hazards. The California Geological Survey (CGS) prepares and provides local governments with seismic hazard zone maps that identify areas susceptible to amplified shaking, liquefaction, earthquake-induced landslides, and other ground failures. -
A 21-Event, 4,000-Year History of Surface Ruptures in the Anza
A 21-Event, 4,000-Year History of Surface Ruptures in the Anza Seismic Gap, San Jacinto Fault, and Implications for Long- term Earthquake Production on a Major Plate Boundary Fault Thomas K. Rockwell, Timothy E. Dawson, Jeri Young Ben-Horin & Gordon Seitz Pure and Applied Geophysics pageoph ISSN 0033-4553 Pure Appl. Geophys. DOI 10.1007/s00024-014-0955-z 1 23 Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0955-z Pure and Applied Geophysics 1 A 21-Event, 4,000-Year History of Surface Ruptures in the Anza Seismic Gap, 2 San Jacinto Fault, and Implications for Long-term Earthquake Production 3 on a Major Plate Boundary Fault 4 1 2 3 2 5 THOMAS K. ROCKWELL, TIMOTHY E. DAWSON, JERI YOUNG BEN-HORIN, and GORDON SEITZ 6 Abstract—Paleoseismic work completed at Hog Lake on the 1. Introduction 3940 7 San Jacinto Fault (SJF) near Anza, California, indicates that at least 8 21 surface ruptures have occurred in the Anza Seismic gap over the 9 past 4,000 years. The ages of the ruptures are constrained by 111 Long records of past earthquakes on major plate 41 10 radiocarbon dates, 97 of which fall in stratigraphic order. The boundary faults reveal the long-term temporal and 42 11 average recurrence interval for all ruptures for this period is about spatial patterns of moderate to large earthquake pro- 43 12 185 ± 105 years, although some ruptures, such as occurred in the duction, thus providing a means of testing whether 44 13 April 1918 earthquake, caused only minor displacement. -
And Short-Term Stress Interaction of the 2019 Ridgecrest Sequence and Coulomb-Based Earthquake Forecasts Shinji Toda*1 and Ross S
Special Section: 2019 Ridgecrest, California, Earthquake Sequence Long- and Short-Term Stress Interaction of the 2019 Ridgecrest Sequence and Coulomb-Based Earthquake Forecasts Shinji Toda*1 and Ross S. Stein2 ABSTRACT We first explore a series of retrospective earthquake interactions in southern California. M ≥ ∼ We find that the four w 7 shocks in the past 150 yr brought the Ridgecrest fault 1 bar M M closer to failure. Examining the 34 hr time span between the w 6.4 and w 7.1 events, M M we calculate that the w 6.4 event brought the hypocentral region of the w 7.1 earth- M quake 0.7 bars closer to failure, with the w 7.1 event relieving most of the surrounding M stress that was imparted by the first. We also find that the w 6.4 cross-fault aftershocks M shut down when they fell under the stress shadow of the w 7.1. Together, the Ridgecrest mainshocks brought a 120 km long portion of the Garlock fault from 0.2 to 10 bars closer to failure. These results motivate our introduction of forecasts of future seismicity. Most attempts to forecast aftershocks use statistical decay models or Coulomb stress transfer. Statistical approaches require simplifying assumptions about the spatial distribution of aftershocks and their decay; Coulomb models make simplifying assumptions about the geometry of the surrounding faults, which we seek here to remove. We perform a rate– state implementation of the Coulomb stress change on focal mechanisms to capture fault complexity. After tuning the model through a learning period to improve its forecast abil- ity, we make retrospective forecasts to assess model’s predictive ability. -
Anza-Borrego Desert State Park Bibliography Compiled and Edited by Jim Dice
Steele/Burnand Anza-Borrego Desert Research Center University of California, Irvine UCI – NATURE and UC Natural Reserve System California State Parks – Colorado Desert District Anza-Borrego Desert State Park & Anza-Borrego Foundation Anza-Borrego Desert State Park Bibliography Compiled and Edited by Jim Dice (revised 1/31/2019) A gaggle of geneticists in Borrego Palm Canyon – 1975. (L-R, Dr. Theodosius Dobzhansky, Dr. Steve Bryant, Dr. Richard Lewontin, Dr. Steve Jones, Dr. TimEDITOR’S Prout. Photo NOTE by Dr. John Moore, courtesy of Steve Jones) Editor’s Note The publications cited in this volume specifically mention and/or discuss Anza-Borrego Desert State Park, locations and/or features known to occur within the present-day boundaries of Anza-Borrego Desert State Park, biological, geological, paleontological or anthropological specimens collected from localities within the present-day boundaries of Anza-Borrego Desert State Park, or events that have occurred within those same boundaries. This compendium is not now, nor will it ever be complete (barring, of course, the end of the Earth or the Park). Many, many people have helped to corral the references contained herein (see below). Any errors of omission and comission are the fault of the editor – who would be grateful to have such errors and omissions pointed out! [[email protected]] ACKNOWLEDGEMENTS As mentioned above, many many people have contributed to building this database of knowledge about Anza-Borrego Desert State Park. A quantum leap was taken somewhere in 2016-17 when Kevin Browne introduced me to Google Scholar – and we were off to the races. Elaine Tulving deserves a special mention for her assistance in dealing with formatting issues, keeping printers working, filing hard copies, ignoring occasional foul language – occasionally falling prey to it herself, and occasionally livening things up with an exclamation of “oh come on now, you just made that word up!” Bob Theriault assisted in many ways and now has a lifetime job, if he wants it, entering these references into Zotero.