Hadron Physics Lectures for the 19Th UK Nuclear Physics Summer School, Queen’S University Belfast D

Total Page:16

File Type:pdf, Size:1020Kb

Hadron Physics Lectures for the 19Th UK Nuclear Physics Summer School, Queen’S University Belfast D Hadron Physics Lectures for the 19th UK Nuclear Physics Summer School, Queen’s University Belfast D. G. Ireland (University of Glasgow) 30 August, 31 August and 1 September, 2017 2 d g ireland 1 Introduction Hadrons are the particles that feel the strong nuclear force. This force is described by the theory of Quantum ChromoDynamics (QCD), a field theory whose constituents are quarks (the particles) and gluons (the force carriers). QCD forms the strongly interacting sector of the standard model of particle physics, but has a unique character compared to the other forces of nature. One of the main features of the strong interaction is that the constituents have never been observed in isolation. Hadrons are composite particles, made from quarks and bound by gluons. They are the only physical manifestations of QCD that we can study. Nuclei are built from protons and neutrons (and very occasionally hyperons!) and are held together by pions, all of which are hadrons. An understanding of nuclear physics therefore rests on an under- standing of hadrons, even if the details of hadronic interactions at high energies are not relevant for understanding collective phenom- ena of heavy nuclei. With only three lectures on the topic, there is barely time to scratch the surface. However, rather than give a superficial overview of as much as possible, beyond a general introduction, I have cho- sen a few topics to look at in sufficient detail so as to stretch the participants during their time at the summer school. This document contains material presented on the lecture slides. As you can see, it does not look exactly the same, but these notes contain all the information on the slides, plus more. There are occa- sional extra comments (like this one) in these printed notes that do 1 1 There are also notes placed in the mar- not appear on the slides. To help you follow the lectures, the slide gins, like this one. The side notes are number is written, underlined, in the margin. used to highlight important informa- tion or provide some background. Please contact me ([email protected]) if you spot any mistakes, or would like further explanation. hadron physics 3 The Big Picture 2 The study of Hadron Physics is part of a wide spectrum of re- search that aims to be able to describe the nature of the matter that we observe in the universe. It sits at the interface between particle-, or high-energy physics, and nuclear physics. From particle physics it shares a “reductionist” philosophy - a desire to understand ev- erything from basic constituents. On the other hand it involves the study of the structure of composite particles, and thus shares a great deal of common ground with nuclear structure physics, such as a study of effects that are “emergent properties” due to the interaction of several constituents. In hadron physics, we study the hadrons, the particles in nature that feel the strong nuclear force. These are categorised in to mesons (bosons, with integer spin quantum numbers) and baryons (fermions, with half-integer spin). We want to know how many hadrons there are, how they interact with each other, how they decay, etc.. We also want to know about their properties: static quantities such as mass, shape, size, magnetic moment; dynamic quantities such as the distribution of charge and current that are measured with structure functions. 4 d g ireland The Nuclear Chart 3 Part of the reason for studying hadrons is that the basic con- stituents of nuclei (protons, neutrons, pions,...) are such particles. Without a full understanding of hadrons, therefore, we cannot really say that we understand nuclear matter. Quantum ChromoDynamics 4 The theory underlying the strong nuclear reaction is quantum chromodynamics (QCD), a quantum field theory that describes fields of “matter” particles, quarks, that interact via the exchange of force- carrying bosons called gluons. It is somewhat like quantum electro- dynamics (QED), the theory underlying electromagnetism, but there are some important differences that lead to quite unique phenomena. Due to the mathematical structure of the interaction, gluons carry “colour” charge, and can therefore interact with each other. This is quite different to QED, where the force carriers, the photons, do not hadron physics 5 interact with each other. In QCD this leads to many of the features that we are quite used to, such as superposition of photon states (e.g. lasers). QCD Running Coupling Constant Figure 1: Nucleons become more com- plex, the closer one looks at them. Figure 2: Models that retain features of QCD are needed for practical calcula- tions. 5 The Strong Coupling constant, which measures the strength of the interaction, varies with energy and at the scale of hadron masses, its value approaches unity. Any scheme that relies on a small param- eter to use perturbation theory for calculations is therefore bound to fail for hadrons. 6 Confinement Figure 3: If mesons are “pulled” apart, the energy stored in the gluon string is enough to create a quark-antiquark pair if the string breaks. 7 Since gluons interact with each other, this gives rise to an observed phenomenon know as confinement: quarks and gluons have 2 2 never been observed in isolation. In relativistic heavy ion collisions the quark-gluon plasma has been shown to form as a new state of matter. This is sometimes referred to as a de-confined phase. However at the energy scales relevant to ordinary hadronic matter, all hadronic states are confined. 6 d g ireland The Origin of Mass 8 The Higgs Mechanism is only responsible for about 1-2% of the mass of nucleons, though the generation of quark mass. That means that around 98% of the visible mass in the universe must be gener- ated by an additional mechanism. Recent calculations have shown that even if quarks were to have no mass from the interaction with the Higgs field, it is possible via a mechanism called dynamical chiral symmetry breaking (DCSB) for QCD to give mass to quarks. The simple picture is that quarks moving through the “glue” acquire inertia due to the interaction with the “stickiness”. The situation is a little more complicated than that, but it has been proven that DCSB is a feature of QCD, and is thought to be related to confinement. However it has not yet been proved that confinement is a predictable consequence of QCD. Light and Heavy Particles 9 In these lectures we will concentrate on what is referred to as the light quark sector, which generally encompasses hadrons that contain hadron physics 7 combinations of up, down or strange quarks. The heavy quark sector (charm, bottom and top) is still very much the purview of high- energy physics, although the boundary between the two is bot fuzzy and arbitrary. Scattering Experiments Figure 4: Conceptually, most mea- surements are identical to Rutherford’s original experiment 10 As with other areas of nuclear physics, most of the infor- mation about hadrons comes from scattering experiments. We will primarily discuss experiments that involve beams of photons and electrons, although will note in passing that a large amount of infor- mation has been derived from hadron beam experiments. Cross Sections • Select beam (type and current), target (type and thickness) • Measure number of particles in detector, beam charge Reaction a + b ! X We imagine an experiment where a beam of particles a hits a target containing particles b. We want to know how a reacts with b. 8 d g ireland • Flux: 1 dN F = a = n v a A dt a a where na is beam particle density, A is the illuminated target area and va is the beam velocity. • Number of target particles Nb = nb Ad where nb is target particle density, A is the illuminated target area and d is the target thickness. • Luminosity: dN L = F N = a n d a b dt b which has dimensions L2T−1. 11 Differential Cross Section Consider a detector, area A, angle q and distance r from beam A DW = r2 Number of reactions seen by detector in time Dt is ds (E, q) N (E, q) = L DWDt dW where the piece ds (E, q) dW is the differential cross section ds (E, q) 12 An angular distribution is the variation of with angle q. dW If the detector determines energy E0 of scattered particles d2s (E, E0, q) dWdE0 is the double differential cross section The total cross section is the integral ZZ d2s (E, E0, q) s = dWdE0 tot dWdE0 13 hadron physics 9 Scattering Theory Assumptions Wavefunction of beam represented by plane waves. i.e. ∝ yi exp (iki.r) 14 The momentum transfer is given by q = h¯ (ki − k f ) Using quantum collision theory, it can be shown that the differ- ential cross-section is equal to the square magnitude of a function called the scattering amplitude: ds = j f (q)j2 dW where • m Z iq.r f (q) = − V(r) exp dr 2ph¯ 2 h¯ • m = mass of electron • V(r) = potential between target and electron 15 Now q.r = qr cos q0 10 d g ireland dr = r2 sin q0drdq0df so the expression for the scattering amplitude becomes 2m Z ¥ f (q) = V (r) r sin (qr/¯h) dr hq¯ 0 16 Coulomb Scattering As an example of how to calculate scattering amplitudes, we start with a point charge scattering from a point charge (Rutherford scat- tering). Screened Coulomb potential: Ze2 V (r) = exp (−r/a) r the scattering amplitude becomes: 2mZe2 Z ¥ qr −r f (q) = sin exp dr hq¯ 0 h¯ a [N.B.
Recommended publications
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • Two Tests of Isospin Symmetry Break
    THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Smarajit Triambak Alejandro Garc¶³a, Director Umesh Garg, Director Graduate Program in Physics Notre Dame, Indiana July 2007 c Copyright by ° Smarajit Triambak 2007 All Rights Reserved THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING Abstract by Smarajit Triambak This dissertation describes two high-precision measurements concerning isospin symmetry breaking in nuclei. 1. We determined, with unprecedented accuracy and precision, the excitation energy of the lowest T = 2; J ¼ = 0+ state in 32S using the 31P(p; γ) reaction. This excitation energy, together with the ground state mass of 32S, provides the most stringent test of the isobaric multiplet mass equation (IMME) for the A = 32, T = 2 multiplet. We observe a signi¯cant disagreement with the IMME and investigate the possibility of isospin mixing with nearby 0+ levels to cause such an e®ect. In addition, as byproducts of this work, we present a precise determination of the relative γ-branches and an upper limit on the isospin violating branch from the lowest T = 2 state in 32S. 2. We obtained the superallowed branch for the 0+ 0+ Fermi decay of ! 32Ar. This involved precise determinations of the beta-delayed proton and γ branches. The γ-ray detection e±ciency calibration was done using pre- cisely determined γ-ray yields from the daughter 32Cl nucleus from an- other independent measurement using a fast tape-transport system at Texas Smarajit Triambak A&M University.
    [Show full text]
  • Pair Energy of Proton and Neutron in Atomic Nuclei
    International Conference “Nuclear Science and its Application”, Samarkand, Uzbekistan, September 25-28, 2012 Fig. 1. Dependence of specific empiric function Wigner's a()/ A A from the mass number A. From the expression (4) it is evident that for nuclei with indefinitely high mass number ( A ~ ) a()/. A A a1 (6) The value a()/ A A is an effective mass of nucleon in nucleus [2]. Therefore coefficient a1 can be interpreted as effective mass of nucleon in indefinite nuclear matter. The parameter a1 is numerically very close to the universal atomic unit of mass u 931494.009(7) keV [4]. Difference could be even smaller (~1 MeV), if we take into account that for definition of u, used mass of neutral atom 12C. The value of a1 can be used as an empiric unit of nuclear mass that has natural origin. The translation coefficient between universal mass unit u and empiric nuclear mass unit a1 is equal to: u/ a1 1.004434(9). (7) 1. A.M. Nurmukhamedov, Physics of Atomic Nuclei, 72 (3), 401 (2009). 2. A.M. Nurmukhamedov, Physics of Atomic Nuclei, 72, 1435 (2009). 3. Yu.V. Gaponov, N.B. Shulgina, and D.M. Vladimirov, Nucl. Phys. A 391, 93 (1982). 4. G. Audi, A.H. Wapstra and C. Thibault, Nucl.Phys A 729, 129 (2003). PAIR ENERGY OF PROTON AND NEUTRON IN ATOMIC NUCLEI Nurmukhamedov A.M. Institute of Nuclear Physics, Tashkent, Uzbekistan The work [1] demonstrated that the structure of Wigner’s mass formula contains pairing of nucleons. Taking into account that the pair energy is playing significant role in nuclear events and in a view of new data we would like to review this issue again.
    [Show full text]
  • The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
    34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T.
    [Show full text]
  • X. Charge Conjugation and Parity in Weak Interactions →
    Charge conjugation and parity in weak interactions Particle Physics X. Charge conjugation and parity in weak interactions REMINDER: Parity The parity transformation is the transformation by reflection: → xi x'i = –xi A parity operator Pˆ is defined as Pˆ ψ()()xt, = pψ()–x, t where p = +1 Charge conjugation The charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments ˆ Ψ Ψ C a = c a where c = +1 meaning that from the particle in the initial state we go to the antiparticle in the final state. Oxana Smirnova & Vincent Hedberg Lund University 248 Charge conjugation and parity in weak interactions Particle Physics Reminder Symmetries Continuous Lorentz transformation Space-time Translation in space Symmetries Translation in time Rotation around an axis Continuous transformations that can Space-time be regarded as a series of infinitely small steps. symmetries Discrete Parity Transformations that affects the Space-time Charge conjugation space-- and time coordinates i.e. transformation of the 4-vector Symmetries Time reversal Minkowski space. Discrete transformations have only two elements i.e. two transformations. Baryon number Global Lepton number symmetries Strangeness number Isospin SU(2)flavour Internal The transformation does not depend on Isospin+Hypercharge SU(3)flavour symmetries r i.e. it is the same everywhere in space. Transformations that do not affect the space- and time- Local gauge Electric charge U(1) coordinates. symmetries Weak charge+weak isospin U(1)xSU(2) Colour SU(3) The
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • Prospects for Measurements with Strange Hadrons at Lhcb
    Prospects for measurements with strange hadrons at LHCb A. A. Alves Junior1, M. O. Bettler2, A. Brea Rodr´ıguez1, A. Casais Vidal1, V. Chobanova1, X. Cid Vidal1, A. Contu3, G. D'Ambrosio4, J. Dalseno1, F. Dettori5, V.V. Gligorov6, G. Graziani7, D. Guadagnoli8, T. Kitahara9;10, C. Lazzeroni11, M. Lucio Mart´ınez1, M. Moulson12, C. Mar´ınBenito13, J. Mart´ınCamalich14;15, D. Mart´ınezSantos1, J. Prisciandaro 1, A. Puig Navarro16, M. Ramos Pernas1, V. Renaudin13, A. Sergi11, K. A. Zarebski11 1Instituto Galego de F´ısica de Altas Enerx´ıas(IGFAE), Santiago de Compostela, Spain 2Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 3INFN Sezione di Cagliari, Cagliari, Italy 4INFN Sezione di Napoli, Napoli, Italy 5Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom, now at Universit`adegli Studi di Cagliari, Cagliari, Italy 6LPNHE, Sorbonne Universit´e,Universit´eParis Diderot, CNRS/IN2P3, Paris, France 7INFN Sezione di Firenze, Firenze, Italy 8Laboratoire d'Annecy-le-Vieux de Physique Th´eorique , Annecy Cedex, France 9Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Kalsruhe, Germany 10Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Kalsruhe, Germany 11School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 12INFN Laboratori Nazionali di Frascati, Frascati, Italy 13Laboratoire de l'Accelerateur Lineaire (LAL), Orsay, France 14Instituto de Astrof´ısica de Canarias and Universidad de La Laguna, Departamento de Astrof´ısica, La Laguna, Tenerife, Spain 15CERN, CH-1211, Geneva 23, Switzerland 16Physik-Institut, Universit¨atZ¨urich,Z¨urich,Switzerland arXiv:1808.03477v2 [hep-ex] 31 Jul 2019 Abstract This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons.
    [Show full text]
  • Charge Conjugation Symmetry
    Charge Conjugation Symmetry In the previous set of notes we followed Dirac's original construction of positrons as holes in the electron's Dirac sea. But the modern point of view is rather different: The Dirac sea is experimentally undetectable | it's simply one of the aspects of the physical ? vacuum state | and the electrons and the positrons are simply two related particle species. Moreover, the electrons and the positrons have exactly the same mass but opposite electric charges. Many other particle species exist in similar particle-antiparticle pairs. The particle and the corresponding antiparticle have exactly the same mass but opposite electric charges, as well as other conserved charges such as the lepton number or the baryon number. Moreover, the strong and the electromagnetic interactions | but not the weak interactions | respect the change conjugation symmetry which turns particles into antiparticles and vice verse, C^ jparticle(p; s)i = jantiparticle(p; s)i ; C^ jantiparticle(p; s)i = jparticle(p; s)i ; (1) − + + − for example C^ e (p; s) = e (p; s) and C^ e (p; s) = e (p; s) . In light of this sym- metry, deciding which particle species is particle and which is antiparticle is a matter of convention. For example, we know that the charged pions π+ and π− are each other's an- tiparticles, but it's up to our choice whether we call the π+ mesons particles and the π− mesons antiparticles or the other way around. In the Hilbert space of the quantum field theory, the charge conjugation operator C^ is a unitary operator which squares to 1, thus C^ 2 = 1 =) C^ y = C^ −1 = C^:; (2) ? In condensed matter | say, in a piece of semiconductor | we may detect the filled electron states by making them interact with the outside world.
    [Show full text]
  • The Taste of New Physics: Flavour Violation from Tev-Scale Phenomenology to Grand Unification Björn Herrmann
    The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification Björn Herrmann To cite this version: Björn Herrmann. The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification. High Energy Physics - Phenomenology [hep-ph]. Communauté Université Grenoble Alpes, 2019. tel-02181811 HAL Id: tel-02181811 https://tel.archives-ouvertes.fr/tel-02181811 Submitted on 12 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification Habilitation thesis presented by Dr. BJÖRN HERRMANN Laboratoire d’Annecy-le-Vieux de Physique Théorique Communauté Université Grenoble Alpes Université Savoie Mont Blanc – CNRS and publicly defended on JUNE 12, 2019 before the examination committee composed of Dr. GENEVIÈVE BÉLANGER CNRS Annecy President Dr. SACHA DAVIDSON CNRS Montpellier Examiner Prof. ALDO DEANDREA Univ. Lyon Referee Prof. ULRICH ELLWANGER Univ. Paris-Saclay Referee Dr. SABINE KRAML CNRS Grenoble Examiner Prof. FABIO MALTONI Univ. Catholique de Louvain Referee July 12, 2019 ii “We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time.” T.
    [Show full text]
  • And G-Parity: a New Definition and Applications —Version Viib—
    BNL PREPRINT BNL-QGS-13-0901 Cparity7b.tex C- and G-parity: A New Definition and Applications |Version VIIb| S. U. Chung α Physics Department Brookhaven National Laboratory, Upton, NY 11973, U.S.A. β Department of Physics Pusan National University, Busan 609-735, Republic of Korea γ and Excellence Cluster Universe Physik Department E18, Technische Universit¨atM¨unchen,Germany δ September 29, 2013 abstract A new definition for C (charge-conjugation) and G operations is proposed which allows for unique value of the C parity for each member of a given J PC nonet. A simple straightforward extension of the definition allows quarks to be treated on an equal footing. As illustrative examples, the problems of constructing eigenstates of C, I and G operators are worked out for ππ, KK¯ , NN¯ and qq¯ systems. In particular, a thorough treatment of two-, three- and four-body systems involving KK¯ systems is given. α CERN Visiting Scientist (part time) β Senior Scientist Emeritus γ Research Professor (part time) δ Scientific Consultant (part time) 1 Introduction The purpose of this note is to point out that the C operation can be defined in such a way that a unique value can be assigned to all the members of a given J PC nonet. In conventional treatments in which antiparticle states are defined through C, one encounters the problem that anti-particle states do not transform in the same way (the so-called charge-conjugate representation). That this is so is obvious if one considers the fact that a C operation changes sign of the z-component of the I-spin, so that in general C and I operators do not commute.
    [Show full text]
  • Dark Matter in Nuclear Physics
    Dark Matter in Nuclear Physics George Fuller (UCSD), Andrew Hime (LANL), Reyco Henning (UNC), Darin Kinion (LLNL), Spencer Klein (LBNL), Stefano Profumo (Caltech) Michael Ramsey-Musolf (Caltech/UW Madison), Robert Stokstad (LBNL) Introduction A transcendent accomplishment of nuclear physics and observational cosmology has been the definitive measurement of the baryon content of the universe. Big Bang Nucleosynthesis calculations, combined with measurements made with the largest new telescopes of the primordial deuterium abundance, have inferred the baryon density of the universe. This result has been confirmed by observations of the anisotropies in the Cosmic Microwave Background. The surprising upshot is that baryons account for only a small fraction of the observed mass and energy in the universe. It is now firmly established that most of the mass-energy in the Universe is comprised of non-luminous and unknown forms. One component of this is the so- called “dark energy”, believed to be responsible for the observed acceleration of the expansion rate of the universe. Another component appears to be composed of non-luminous material with non-relativistic kinematics at the current epoch. The relationship between the dark matter and the dark energy is unknown. Several national studies and task-force reports have found that the identification of the mysterious “dark matter” is one of the most important pursuits in modern science. It is now clear that an explanation for this phenomenon will require some sort of new physics, likely involving a new particle or particles, and in any case involving physics beyond the Standard Model. A large number of dark matter studies, from theory to direct dark matter particle detection, involve nuclear physics and nuclear physicists.
    [Show full text]