Prospects for Measurements with Strange Hadrons at Lhcb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
B2.IV Nuclear and Particle Physics
B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ...................... -
Pion and Kaon Structure at 12 Gev Jlab and EIC
Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real. -
Pair Energy of Proton and Neutron in Atomic Nuclei
International Conference “Nuclear Science and its Application”, Samarkand, Uzbekistan, September 25-28, 2012 Fig. 1. Dependence of specific empiric function Wigner's a()/ A A from the mass number A. From the expression (4) it is evident that for nuclei with indefinitely high mass number ( A ~ ) a()/. A A a1 (6) The value a()/ A A is an effective mass of nucleon in nucleus [2]. Therefore coefficient a1 can be interpreted as effective mass of nucleon in indefinite nuclear matter. The parameter a1 is numerically very close to the universal atomic unit of mass u 931494.009(7) keV [4]. Difference could be even smaller (~1 MeV), if we take into account that for definition of u, used mass of neutral atom 12C. The value of a1 can be used as an empiric unit of nuclear mass that has natural origin. The translation coefficient between universal mass unit u and empiric nuclear mass unit a1 is equal to: u/ a1 1.004434(9). (7) 1. A.M. Nurmukhamedov, Physics of Atomic Nuclei, 72 (3), 401 (2009). 2. A.M. Nurmukhamedov, Physics of Atomic Nuclei, 72, 1435 (2009). 3. Yu.V. Gaponov, N.B. Shulgina, and D.M. Vladimirov, Nucl. Phys. A 391, 93 (1982). 4. G. Audi, A.H. Wapstra and C. Thibault, Nucl.Phys A 729, 129 (2003). PAIR ENERGY OF PROTON AND NEUTRON IN ATOMIC NUCLEI Nurmukhamedov A.M. Institute of Nuclear Physics, Tashkent, Uzbekistan The work [1] demonstrated that the structure of Wigner’s mass formula contains pairing of nucleons. Taking into account that the pair energy is playing significant role in nuclear events and in a view of new data we would like to review this issue again. -
Who Is the Inflaton ?
View metadata, citation and similar papers at core.ac.uk Who is the Inflaton ? brought to you by CORE provided by CERN Document Server R. Brout Service de Physique Th´eorique, Universit´e Libre de Bruxelles, CP 225, Bvd. du Triomphe, B-1050 Bruxelles, Belgium, (email: [email protected]). It is proposed that the inflaton field is proportional to the fluctuation of the number density of degrees of freedom of the fields of particle physics. These possess cut-off momenta at O (mP lanck), but this fluctuates since the fields propagate in an underlying space-time transplanckian substratum. If the latter is modeled as an instanton fluid in the manner of Hawking's space-time foam, then this identification, in the rough, is equivalent to the inflaton being the fluctuation of the spatial density of instantons. This interpretation is suggested by Volovik's analogy between space-time and the superfluid. (However, unlike for the latter, one cannot argue from the analogy that the cosmological constant vanishes). In our interpretation Linde's phenomenology of inflation takes on added luster in this way to look at things, since inflation and particle production follow quite naturally from familiar physical concepts operating on a "cisplanckian" level. I. INTRODUCTION In his lectures on cosmology at Erice 1999, Professor E. Kolb in extolling the virtues of the inflaton scenario of inflation closed his inspiring lesson with the resounding question : "Who is the inflaton ?" In the foregoing I shall hazard an answer. My intention, in the present paper, is to introduce more a theoretical framework of conjectural character than any quantitative realization. -
Supersymmetry and Inflation
Supersymmetry and Inflation Sergio FERRARA (CERN – LNF INFN) July 14 , 2015 Fourteenth Marcel Grossmann Meeting, MG14 University of Rome “La Sapienza”, July 12-18 2015 S. Ferrara - MG14, U. Rome "La Sapienza" 1 July 2015 Contents 1. Single field inflation and Supergravity embedding 2. Inflation and Supersymmetry breaking 3. Minimal models for inflation: a. One chiral multiplet (sgoldstino inflation) b. Two chiral multiplets: T (inflaton), S (sgoldstino) 4. R + R2 Supergravity 5. Nilpotent inflation (sgoldstino-less models) 6. Models with two Supersymmetry breaking scales S. Ferrara - MG14, U. Rome "La Sapienza" July 2015 2 We describe approaches to inflaton dynamics based on Supergravity, the combination of Supersymmetry with General Relativity (GR). Nowadays it is well established that inflationary Cosmology is accurately explained studying the evolution of a single real scalar field, the inflaton, in a Friedmann, Lemaître, Robertson, Walker geometry. A fundamental scalar field, which described the Higgs particle, was also recently discovered at LHC, confirming the interpretation of the Standard Model as a spontaneously broken phase (BEH mechanism) of a non-abelian Yang-Mills theory (Brout, Englert, Higgs, 1964). S. Ferrara - MG14, U. Rome "La Sapienza" July 2015 3 There is then some evidence that Nature is inclined to favor, both in Cosmology and in Particle Physics, theories which use scalar degrees of freedom, even if in diverse ranges of energy scales. Interestingly, there is a cosmological model where the two degrees of freedom, inflaton and Higgs, are identified, the Higgs inflation model (Bezrukov, Shaposhnikov, 2008), where a non-minimal coupling 2 h R of the Higgs field h to gravity is introduced. -
Three Lectures on Meson Mixing and CKM Phenomenology
Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively. -
Detection of a Strange Particle
10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK. -
Arxiv:2107.01683V1 [Hep-Ph] 4 Jul 2021 Ai Prxmto Nte2 Oe Hog H Higgs-Dilat the field
Communications in Physics, Vol. 0, No. 0 (0), pp. 1-15 CONSTRAINT ON THE HIGGS-DILATON POTENTIAL VIA WARM INFLATION IN TWO-TIME PHYSICS VO QUOC PHONG AND NGO PHUC DUC LOC Department of Theoretical Physics, University of Science, Ho Chi Minh City, Vietnam Vietnam National University, Ho Chi Minh City, Vietnam Abstract. Within the SP (2, R) symmetry, the Two-time model (2T model) has six dimensions with two dimensions of time and the dilaton field that can be identified as inflaton in a warm inflation scenario with potential of the form ∼ φ4. From that consideration, we derive the range of parameters for the Higgs-Dilaton potential, the coupling constant between Higgs and Dialton − (α) is lager than 1.598 or smaller than 2.13 × 10 7 when the mass of Dilaton is lager than 200 GeV. Therefore, the 2T-model indirectly suggests that extra-dimension can also be a source of inflation. I. Introduction The 2T model [1, 2, 3, 4, 5, 6, 7] could be a well known choice. The model presents us with an unusual vision of time that advances on a plane, i.e., it has two dimensions of time. This model’s spontaneous symmetry breakdown is also different from the SM’s. The 2T physics is a combination of the standard model’s extended theory and the space-time or gravity theory. This theory has proposed expanding the number of spacetime dimensions to represent the whole cosmos, as well as the introduction of dilaton and its properties, for more than a decade (since 2008). -
Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
Date: April 19, 2018 Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings 14th - 15th February, 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A. M. Amaryan, M. Baalouch, G. Colangelo, J. R. de Elvira, D. Epifanov, A. Filippi, B. Grube, V. Ivanov, B. Kubis, P. M. Lo, M. Mai, V. Mathieu, S. Maurizio, C. Morningstar, B. Moussallam, F. Niecknig, B. Pal, A. Palano, J. R. Pelaez, A. Pilloni, A. Rodas, A. Rusetsky, A. Szczepaniak, and J. Stevens Editors: M. Amaryan, Ulf-G. Meißner, C. Meyer, J. Ritman, and I. Strakovsky Abstract This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of π K interactions. The precise data on π interaction will − K have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop arXiv:1804.06528v1 [hep-ph] 18 Apr 2018 has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant to the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator. -
JHEP05(2010)010 , 6 − Ing Springer and 10 May 4, 2010 9 : April 19, 2010 − : Tic Inflationary December 3, 2009 : Published Lar Potential, and No S
Published for SISSA by Springer Received: December 3, 2009 Accepted: April 19, 2010 Published: May 4, 2010 Light inflaton hunter’s guide JHEP05(2010)010 F. Bezrukova and D. Gorbunovb aMax-Planck-Institut f¨ur Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany bInstitute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312, Russia E-mail: [email protected], [email protected] Abstract: We study the phenomenology of a realistic version of the chaotic inflationary model, which can be fully and directly explored in particle physics experiments. The inflaton mixes with the Standard Model Higgs boson via the scalar potential, and no additional scales above the electroweak scale are present in the model. The inflaton-to- Higgs coupling is responsible for both reheating in the Early Universe and the inflaton production in particle collisions. We find the allowed range of the light inflaton mass, 270 MeV . mχ . 1.8 GeV, and discuss the ways to find the inflaton. The most promising are two-body kaon and B-meson decays with branching ratios of orders 10−9 and 10−6, respectively. The inflaton is unstable with the lifetime 10−9–10−10 s. The inflaton decays can be searched for in a beam-target experiment, where, depending on the inflaton mass, from several billions to several tenths of millions inflatons can be produced per year with modern high-intensity beams. Keywords: Cosmology of Theories beyond the SM, Rare Decays ArXiv ePrint: 0912.0390 Open Access doi:10.1007/JHEP05(2010)010 Contents 1 Introduction 1 2 The model 3 3 Inflaton decay palette 6 4 Inflaton from hadron decays 10 JHEP05(2010)010 5 Inflaton production in particle collisions 12 6 Limits from direct searches and predictions for forthcoming experiments 14 7 Conclusions 16 A The νMSM extension 16 1 Introduction In this paper we present an example of how (low energy) particle physics experiments can directly probe the inflaton sector (whose dynamics is important at high energies in the very Early Universe). -
Kaon to Two Pions Decays from Lattice QCD: ∆I = 1/2 Rule and CP
Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2012 Qi Liu All Rights Reserved Abstract Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu We report a direct lattice calculation of the K to ππ decay matrix elements for both the ∆I = 1/2 and 3/2 amplitudes A0 and A2 on a 2+1 flavor, domain wall fermion, 163 32 16 lattice ensemble and a 243 64 16 lattice ensemble. This × × × × is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non- perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this work we take a major step towards the computation of the physical K ππ amplitudes by performing → a complete calculation at unphysical kinematics with pions of mass 422MeV and 329MeV at rest in the kaon rest frame. With this simplification we are able to 3 resolve Re(A0) from zero for the first time, with a 25% statistical error on the 16 3 lattice and 15% on the 24 lattice. The complex amplitude A2 is calculated with small statistical errors. -
Physics 29000 – Quarknet/Service Learning
Physics 29000 – Quarknet/Service Learning Lecture 3: Ionizing Radiation Purdue University Department of Physics February 1, 2013 1 Resources • Particle Data Group: http://pdg.lbl.gov • Summary tables of particle properties: http://pdg.lbl.gov/2012/tables/contents_tables.html • Table of atomic and nuclear properties of materials: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-atomic-nuclear-prop.pdf 2 Some Subatomic Particles – electron , and positron , – proton , and neutron , – muon , and anti-muon , • When we don’t care which we usually just call them “muons” or write ± – photon , – electron neutrino , and muon neutrino , – charged pions , ± and charged kaons , ± – neutral pions , and neutral kaons , – “lambda hyperon ”, Some are fundamental (no substructure) while others are not. 3 Subatomic Particles • Fundamental particles (as far as we know): Quarks Leptons • electrons, muons and neutrinos are fundamental. • protons, neutrons, kaons, pions are made of quarks: – baryons have 3 quarks: – mesons are pairs: • what about the photon? 4 Subatomic Particles • fundamental particles of matter interact with fundamental “force carriers” called “gauge bosons”: – Electromagnetic force: photon ( ) – Weak nuclear force, responsible for -decay: , – Strong nuclear force: gluons ( ) • The force carriers “couple” to the “charge” of the matter particle: – photons couple to electric charge (not neutrinos) – W’s couple to “weak hypercharge” (all particles) – gluons couple to “color charge” (only quarks) – mesons and baryons are “colorless”