The Northern Eifel Reservoir-System
Total Page:16
File Type:pdf, Size:1020Kb
The northern Eifel Reservoir-System Dr.-Ing. Christof Homann Rur Catchment Germany The Netherlands Main River: Rur Catchment Area: 2087 km2 Belgium Inhabitants: 1,1 Mio. Rur Catchment North • Lowland • Agriculture and industry Germany The Netherlands • Flood protection • Precipitation 600-700 mm South Belgium • Low mountain range up to 620 mNN • Forrests • High precipitation up to 1200 mm • Linked system of reservoirs Reservoir-System Total Volume: 302 Mio. m3 Aachen Wehebach reservoir Düren Dreilägerbach Storage basin Obermaubach reservoir Hauptsee 10 Reservoirs Storage basin Roetgen o 7 WVER Kall reservoir Heimbach o 3 water supply companies o drinking water Obersee Urft reservoir Perlenbach reservoir Olef reservoir Reservoir-System Storage basin OBERMAUBACH HAUPTSEE Storage basin HEIMBACH URFT reservoir OBERSEE Reservoir-System Objectives Protection against floods • 70 Mio. m3 storage volume • reduction of the Rur peak discharge from 307 to 60 m3/s Low-water enrichment • NNQ of 0,45 m3/s increased to 5 m3/s Provision of Water (Total System) • 80 Mio. m3/a for drinking water (600.000 inhabitants) • 100 Mio. m3/a für industrial use Power generation • 60 Mio. kWh/a (minor role) • Start in 1905 for refinancing of Urft dam (art nouveau power station) Reservoir-System 465 mNN OLEF dam RUR URFT dam URFT WEHEBACH reservoir 322,50 mNN PAULUSHOF dam 251,80 mNN RURTALSPERRE OBERSEE HAUPTSEE 281,50 mNN SCHWAMMENAUEL 281,50 mNN Storage basin HEIMBACH 214,00 mNN Storage basin OBERMAUBACH 165,00 mNN RUR KERMETER - gallery Powerstation HEIMBACH Reservoir-System Opponent Tasks ▲ Low-water enrichment and provision demand full reservoirs ▼ Flood protection demands empty reservoirs Solution • Computer aided Lamellae operation plan • Different volumes for flood protection storage in summer and winter • TALSIM software: Computer aided dimensioning of distribution of water between reservoirs Reservoir-System Lamellae Plan 50 60 25 17 40 11 6 5 Reservoir-System Lamellae Plan • Long-time simulation (100 years) of reservoir behaviour • Optimization of rules of operation • Targets: - Avoidance of spilling over of Rur reservoir - Minimum discharge of 5 m3/s - More natural discharge behaviour - Aspects of recreation Reservoir-System Hypolimnion-level control for the Olef reservoir 1. Discharge according to Lamellae plan 2. Preceding discharge relative to an expected flood inflow volume • Dependent on current reservoir-content • On basis of measured inflow (1960-2006) 3. Reduce discharge on basis of hypolimnion- forecast . • Computation of forecast-series with TALSIM • Forecast on the basis of statistical analysis of computation results (for time-period may to september) Reservoir-System Hypolimnion-level control for the Olef reservoir Epilimnion Thermocline Hypolimnion drinking Extraction zone water Sedimentation AMICE Contribution of the WVER to AMICE: Provision of hydrological data for the Rur tributary Provision of knowledge for natural retention measures, flow control measures, alarm systems and crisis management Development of adaption strategies to mitigate climate change effects Implementation of modelling and risk analysis for the river Rur to prepare adaption of the reservoir flow control AMICE General Objectives of Action Plans • 1.08./1.09 Measures in water management • 3.23. Rur reservoirs, models • 3.24. Rur reservoirs, risk assessment • 5.08. Site visits AMICE General Objectives of Action Plan • 1.08./1.09 Measures in water management • 3.23. Rur reservoirs, models − Model implementation, calculation of current and ¨ future situation − Operational rainfall-runoff models for the whole Rur catchment area − Operational 1D-2D hydraulic models of the river Rur • 3.24. Rur reservoirs, risk assessment • 5.08. Site visits Climate scenarios Humidity szenarios: Time periods: • dry • 2021 to 2050 • wet • 2070 to 2100 Resulting in four scenarios: Szenario 1: dry, 2021 to 2050 Szenario 2: wet, 2021 to 2050 Szenario 3: dry, 2070 to 2100 Szenario 4: wet, 2070 to 2100 Measured reference period 1971 to 2000 hydrological simulations • 3 simulation periods • 1960-1990 (d), 1971-2000 (h) • 2021-2050 (dry, wet) • 2071-2100 (dry, wet) • 2 temporal resolutions (1h, 1d) • hourly: ExUS (N), KLAVE (T) • daily: E-OBS 2.0 (Haylock, 2009) • 2 rainfall runoff models (NASIM, GR4J) • evaluation for HW, MW, NW climate scenarios • Input for scenarios: delta-approach • NRW-change-signals from ZWEK-project •REMO •CLM • WETTREG •STAR Table 1: changes in mean temperature [°C] and mean precipitation amounts [%] in comparison to 1971-2000 wet (WETTREG) dry(CLM) 2021-2050 2071-2100 2021-2050 2071-2100 ΔN ΔT ΔN ΔT ΔN ΔT ΔN ΔT Winter 20 1,5 55 3,8 -5 1,5 15 3,8 Spring 10 0,0 5 1,0 5 0,5 5 2,0 Summer -5 0,5 -10 2,0 -5 1,5 -25 3,8 Autumn 0 0,5 0 2,0 5 1,5 -5 3,5 climate scenarios 2021-2050 2071-2100 dry wet climate scenarios 2071-2100 Δ N Δ T MaasPrudence - gemittelt NRW Simulation für Maas-Mittelwerte und NRW-Faktoren rainfall runoff models discharge at Obermaubach necessary simulation with TALSIM TALSIM requires a.o. inflows to reservoirs rainfall runoff models not area- wide available assumption: discharge developing of river Inde transferable Open pit filling begins 2030- 2050 for mining area “Inden” goodness of fit - Rur (d) mmA HQ AM7 goodness of fit - Rur (h) mmA HQ results Rur - mmd Mean monthly discharges Change factors for mean monthly discharges Gauge Stah, daily timestep (NASIM) Gauge Stah, daily timestep (NASIM) observed (1961-1990) (2021-2050 dry) / simulated (1961-1990) simulated (1961-1990) (2021-2050 wet) / simulated (1961-1990) simulated (2021-2050 dry) (2071-2100 dry) / simulated (1961-1990) simulated (2021-2050 wet) (2071-2100 wet) / simulated (1961-1990) simulated (2071-2100 dry) simulated (2071-2100 wet) [-] NASIM (d) Q [m³/s] 10 20 30 40 50 AB 0.00.51.01.52.0 JFMAMJJASOND JFMAMJJASOND Month Month Mean monthly discharges Change factors for mean monthly discharges Gauge Stah, daily timestep (GR4J) Gauge Stah, daily timestep (GR4J) observed (1961-1990) (2021-2050 dry) / simulated (1961-1990) simulated (1961-1990) (2021-2050 wet) / simulated (1961-1990) Maximum rise: 13% simulated (2021-2050 dry) (2071-2100 dry) / simulated (1961-1990) simulated (2021-2050 wet) (2071-2100 wet) / simulated (1961-1990) simulated (2071-2100 dry) (February, wet scenario for simulated (2071-2100 wet) 2071-2100, NASIM (1h)) [-] GR4J (d) Q [m³/s] 10 20 30 40 50 CDMaximum lowering: 63% 0.0 0.5 1.0 1.5 2.0 JFMAMJJASOND JFMAMJJASOND (September, dry scenario for Month Month Mean monthly discharges Change factors for mean monthly discharges 2071-2100, GR4J (1d)) Gauge Stah, hourly timestep (NASIM) Gauge Stah, hourly timestep (NASIM) observed (1971-2000) (2021-2050 dry) / simulated (1971-2000) simulated (1971-2000) (2021-2050 wet) / simulated (1971-2000) simulated (2021-2050 dry) (2071-2100 dry) / simulated (1971-2000) simulated (2021-2050 wet) (2071-2100 wet) / simulated (1971-2000) simulated (2071-2100 dry) simulated (2071-2100 wet) [-] NASIM (h) Q [m³/s] 10 20 30 40 50 AB 0.0 0.5 1.0 1.5 2.0 JFMAMJJASOND JFMAMJJASOND Month Month results Rur - HQ(Tn) Winter maximum discharges (1961-1990) Winter maximum discharges (1961-1990) Winter maximum discharges (1971-2000) Gauge Stah, daily timestep (NASIM) Gauge Stah, daily timestep (GR4J) Gauge Stah, hourly timestep observed (1961-1990) observed (1961-1990) observed (1971-2000) simulated (1961-1990) simulated (1961-1990) simulated (1971-2000) simulated (2021-2050 dry) simulated (2021-2050 dry) simulated (2021-2050 dry) simulated (2021-2050 wet) simulated (2021-2050 wet) simulated (2021-2050 wet) simulated (2071-2100 dry) simulated (2071-2100 dry) simulated (2071-2100 dry) simulated (2071-2100 wet) simulated (2071-2100 wet) simulated (2071-2100 wet) Q [m³/s] Q [m³/s] Q [m³/s] 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 A B 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 Recurrence interval T[years] Recurrence interval T[years] Recurrence interval T[years] NASIM (d) GR4J (d) NASIM (h) HQ100 Maximum rise: 10% (wet scenario for 2071-2100, NASIM (1h)) Maximum lowering: 57% (dry scenario for 2071-2100, GR4J (1d)) results Rur - AM7(Tn) Summer AM7-values (1961-1990) Gauge Stah, daily timestep (GR4J) simulated (1961-1990) simulated (2021-2050 dry) simulated (2021-2050 wet) simulated (2071-2100 dry) simulated (2071-2100 wet) GR4J (d) Q [m³/s] 0 5 10 15 2 5 10 20 50 Recurrence interval T[years] AM7 (Tn=50 a) Minimum lowering : 20% (wet scenario for 2071-2100) Maximum lowering: 91% (dry scenario for 2071-2100) comparison of changes (Rur) 2021-2050 2071-2100 Climate scenarios national • Input for szenarios based on variations with delta-method • Variations of inflows to reservoirs are devolved from changes in rainfall-runoff model Inde/Vicht for climate szenarios • Variation of signals from project ZWEK (DWD 2007) Table 1: Variation of the mean temperature [°C] and the mean precipitation [%] in comparison to 1971-2000 wet (WETTREG) dry (CLM) 2021-2050 2071-2100 2021-2050 2071-2100 ΔN ΔT ΔN ΔT ΔN ΔT ΔN ΔT winter 20 1,5 55 3,8 -5 1,5 15 3,8 spring 10 0,0 5 1,0 5 0,5 5 2,0 summer -5 0,5 -10 2,0 -5 1,5 -25 3,8 autumn 0 0,5 0 2,0 5 1,5 -5 3,5 Hauptsee Rurtalsperre Schwammenauel Maximum water level 181.500 Tm³ 281,50 mNN Maximum water level winter 175.680 Tm³ 280,50 mNN Normal water level 149.300 Tm³ 276,00 mNN Minimum operating water level 530 Tm³ 221,00 mNN Bottom of valley 0 Tm³ 214,00 mNN OLEF reservoir WEHEBACH reservoir URFT reservoir HAUPTSEE a a a a Hauptsee Rurtalsperre Schwammenauel Dauerlinieduration - Hauptsee curve – HauptseeSchwammenauel comparisonVergleich of climate Szenarien szenarios 200000 160000 120000 80000 Vol [Tsd.m³] 40000 0 0 0,2 0,4 0,6 0,8 1 Pu [-] Referenz Szenario 1 Szenario 2 Szenario 3 Normal Szenario 4 Stauzielwater level AbsenkzielMin.