Composition of Foods Raw, Processed, Prepared

Total Page:16

File Type:pdf, Size:1020Kb

Composition of Foods Raw, Processed, Prepared Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 27 Documentation and User Guide August 2014 Revised, May 2015 US Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory 10300 Baltimore Avenue Building 005, Room 107, BARC-West Beltsville, Maryland 20705 Suggested Citation: US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 27 (slightly revised). Version Current: May 2015. Internet: http://www.ars.usda.gov/ba/bhnrc/ndl Disclaimers: Mention of trade names, commercial products, or companies in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture over others not mentioned. The US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Issued August 2014, revised May 2015 i The USDA National Nutrient Database for Standard Reference, Release 27 was prepared by the following staff members of the Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture: Co-Coordinators David B. Haytowitz and Jaspreet K.C. Ahuja Senior Scientists Jaspreet K.C. Ahuja David B. Haytowitz Pamela R. Pehrsson Janet M. Roseland Scientists Jacob Exler (Ret.) Mona Khan Melissa Nickle Quynh Anh Nguyen Kris Patterson (Ret.) Bethany Showell Meena Somanchi Robin Thomas Denise Trainer Shirley Wasswa-Kintu Juhi Williams Research Leader Pamela R. Pehrsson IT Support Kim Klingenstein Cevon McLean Administrative Support Jenny Jung Amanda Moran Acknowledgements: The authors gratefully acknowledge the constructive contributions of the peer reviewers: Carrie Martin, Food Surveys Research Group, ARS-USDA; Judith Spungen, Food and Drug Administration, DHHS; and Angela Scheett, Grand Forks Human Nutrition Research Center, ARS-USDA. ii Contents Introduction ..................................................................................................................... 1 Specific Changes for SR27 ............................................................................................. 2 Database Reports ........................................................................................................... 4 Database Content ........................................................................................................... 5 Food Descriptions ....................................................................................................... 5 Food Group .............................................................................................................. 6 LanguaL ................................................................................................................... 6 Nutrients ...................................................................................................................... 7 Nutrient Retention and Food Yield .......................................................................... 11 Proximates .............................................................................................................. 12 Minerals .................................................................................................................. 14 Vitamins .................................................................................................................. 15 Lipid Components ................................................................................................... 21 Amino Acids ............................................................................................................ 25 Weights and Measures .............................................................................................. 26 Sources of Data ........................................................................................................ 27 Explanation of File Formats ........................................................................................... 27 Relational Files .......................................................................................................... 27 Food Description File .............................................................................................. 29 Food Group Description File ................................................................................... 31 LanguaL Factor ...................................................................................................... 31 LanguaL Factors Description File ........................................................................... 31 Nutrient Data File .................................................................................................... 32 Nutrient Definition File ............................................................................................ 34 Source Code File .................................................................................................... 34 Data Derivation Code Description File .................................................................... 35 Weight File .............................................................................................................. 36 Footnote File ........................................................................................................... 36 Sources of Data Link File ....................................................................................... 37 Sources of Data File ............................................................................................... 37 Abbreviated File ........................................................................................................ 38 Update Files .............................................................................................................. 41 Summary ....................................................................................................................... 43 References Cited in the Documentation ........................................................................ 43 iii Notes on Foods ............................................................................................................. 51 Introduction ............................................................................................................... 51 National Food and Nutrient Analysis Program .......................................................... 53 Identify Key Foods and critical nutrients for sampling and analysis ........................ 53 Evaluate existing data for scientific quality ............................................................. 54 Devise and implement a probability-based sampling survey of US foods .............. 54 Analyze sampled foods under USDA-supervised laboratory contracts ................... 56 Compile newly generated data to update the National Nutrient Databank ............. 59 Beef Products (Food Group 13) ................................................................................ 64 Breakfast Cereals (Food Group 08) .......................................................................... 76 Cereal Grains and Pasta (Food Group 20) ................................................................ 80 Eggs (Food Group 01)............................................................................................... 85 Lamb, Veal, and Game Products (Food Group 17) ................................................... 87 Legumes and Legume Products (Food Group 16) .................................................... 89 Pork Products (Food Group 10) .............................................................................. 106 Poultry Products (Food Group 05) .......................................................................... 115 Vegetable and Vegetable Products (Food Group 11) ............................................. 125 Appendix A. Abbreviations Used in Short Descriptions ................................................A-1 Appendix B. Other Abbreviations .................................................................................B-1 Appendix C. Cooking Glossary for Meat and Poultry Items ......................................... C-1 Appendix D. Imputing Less Than Measurements ........................................................ D-1 Appendix E. Imputing Values for Trace and Not Detected Measurements. .................. E-1 May 2015 Revision The food items in this revision have been updated in the online web search program as well as in the Microsoft Access database. An update file is available to users who wish to
Recommended publications
  • Minimum Dietary Diversity for Women a Guide to Measurement
    FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S.
    [Show full text]
  • The Safety Evaluation of Food Flavouring Substances
    Toxicology Research View Article Online REVIEW View Journal The safety evaluation of food flavouring substances: the role of metabolic studies Cite this: DOI: 10.1039/c7tx00254h Robert L. Smith,a Samuel M. Cohen, b Shoji Fukushima,c Nigel J. Gooderham,d Stephen S. Hecht,e F. Peter Guengerich, f Ivonne M. C. M. Rietjens,g Maria Bastaki,h Christie L. Harman,h Margaret M. McGowenh and Sean V. Taylor *h The safety assessment of a flavour substance examines several factors, including metabolic and physio- logical disposition data. The present article provides an overview of the metabolism and disposition of flavour substances by identifying general applicable principles of metabolism to illustrate how information on metabolic fate is taken into account in their safety evaluation. The metabolism of the majority of flavour substances involves a series both of enzymatic and non-enzymatic biotransformation that often results in products that are more hydrophilic and more readily excretable than their precursors. Flavours can undergo metabolic reactions, such as oxidation, reduction, or hydrolysis that alter a functional group relative to the parent compound. The altered functional group may serve as a reaction site for a sub- sequent metabolic transformation. Metabolic intermediates undergo conjugation with an endogenous agent such as glucuronic acid, sulphate, glutathione, amino acids, or acetate. Such conjugates are typi- Received 25th September 2017, cally readily excreted through the kidneys and liver. This paper summarizes the types of metabolic reac- Accepted 21st March 2018 tions that have been documented for flavour substances that are added to the human food chain, the DOI: 10.1039/c7tx00254h methodologies available for metabolic studies, and the factors that affect the metabolic fate of a flavour rsc.li/toxicology-research substance.
    [Show full text]
  • Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
    G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping.
    [Show full text]
  • Minnesota FACS Frameworks for Food Science
    FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs.
    [Show full text]
  • Brenners-Park-Hotel-Spa-Wintergarten
    WELCOME! Overlooking world-famous Lichtentaler Allee, the sun-drenched Wintergarten restaurant and its park terrace are offering contemporary international cuisine and Brenners culinary classics alike. In the best tradition of a gourmet destination, Chef Alexander Mayer and his team meticulously create grande cuisine with the finest local ingredients and a modern twist. Alexander Mayer Max Gabriel Abolnik Chef de Cuisine Wintergarten Restaurantmanager Wintergarten STARTER Dublin Bay Prawn with lettuce, mushroom, Piedmont hazelnut and egg yolk €34.00 Veal filet and Blue Fin Tuna with capers, smoked olive oil, focaccia and rocket salad €36.00 Foie Gras with liquorice, plum and brioche €37.00 Burratina di Andria with passion fruit, Brazil nut, curly endive and Provençal olive oil €28.00 SOUP Velouté of roasted cherry tomato with Ricotta, green tomato chutney and turmeric oil €24.00 Riesling Velouté with purée of leek, quail egg and imperial caviar €27.00 VEGETARIAN | VEGAN Tagliolini with truffle sauce, chanterelle, lima beans and pumpkin pesto sauce We are delighted to serve you truffle. (According to market price) €27.00 Sousvide cooked aubergine with Teriyaki sauce, pickled kohlrabi, green apple and Amaranth €26.00 FISH Cobia confit in nut butter with Kombu stock, Black Forest ham, myoga, radish and soba €36.00 Atlantic Sapphire salmon with snail butter, spring onions, passepierre, potato foam and mushrooms €35.00 MEAT Milk-fed lamb’s saddle and tongue with purple curry sauce, artichoke, pepper, couscous and apricot €38.00 Jean-Claude
    [Show full text]
  • Shelf-Stable Food Safety
    United States Department of Agriculture Food Safety and Inspection Service Food Safety Information PhotoDisc Shelf-Stable Food Safety ver since man was a hunter-gatherer, he has sought ways to preserve food safely. People living in cold climates Elearned to freeze food for future use, and after electricity was invented, freezers and refrigerators kept food safe. But except for drying, packing in sugar syrup, or salting, keeping perishable food safe without refrigeration is a truly modern invention. What does “shelf stable” Foods that can be safely stored at room temperature, or “on the shelf,” mean? are called “shelf stable.” These non-perishable products include jerky, country hams, canned and bottled foods, rice, pasta, flour, sugar, spices, oils, and foods processed in aseptic or retort packages and other products that do not require refrigeration until after opening. Not all canned goods are shelf stable. Some canned food, such as some canned ham and seafood, are not safe at room temperature. These will be labeled “Keep Refrigerated.” How are foods made In order to be shelf stable, perishable food must be treated by heat and/ shelf stable? or dried to destroy foodborne microorganisms that can cause illness or spoil food. Food can be packaged in sterile, airtight containers. All foods eventually spoil if not preserved. CANNED FOODS What is the history of Napoleon is considered “the father” of canning. He offered 12,000 French canning? francs to anyone who could find a way to prevent military food supplies from spoiling. Napoleon himself presented the prize in 1795 to chef Nicholas Appert, who invented the process of packing meat and poultry in glass bottles, corking them, and submerging them in boiling water.
    [Show full text]
  • Plants for Tropical Subsistence Farms
    SELECTING THE BEST PLANTS FOR THE TROPICAL SUBSISTENCE FARM By Dr. F. W. Martin. Published in parts, 1989 and 1994; Revised 1998 and 2007 by ECHO Staff Dedication: This document is dedicated to the memory of Scott Sherman who worked as ECHO's Assistant Director until his death in January 1996. He spent countless hours corresponding with hundreds of missionaries and national workers around the world, answering technical questions and helping them select new and useful plants to evaluate. Scott took special joy in this work because he Photo by ECHO Staff knew the God who had created these plants--to be a blessing to all the nations. WHAT’S INSIDE: TABLE OF CONTENTS HOW TO FIND THE BEST PLANTS… Plants for Feeding Animals Grasses DESCRIPTIONS OF USEFUL PLANTS Legumes Plants for Food Other Feed Plants Staple Food Crops Plants for Supplemental Human Needs Cereal and Non-Leguminous Grain Fibers Pulses (Leguminous Grains) Thatching/Weaving and Clothes Roots and Tubers Timber and Fuel Woods Vegetable Crops Plants for the Farm Itself Leguminous Vegetables Crops to Conserve or Improve the Soil Non-Leguminous Fruit Vegetables Nitrogen-Fixing Trees Leafy Vegetables Miners of Deep (in Soil) Minerals Miscellaneous Vegetables Manure Crops Fruits and Nut Crops Borders Against Erosion Basic Survival Fruits Mulch High Value Fruits Cover Crops Outstanding Nuts Crops to Modify the Climate Specialty Food Crops Windbreaks Sugar, Starch, and Oil Plants for Shade Beverages, Spices and Condiment Herbs Other Special-Purpose Plants Plants for Medicinal Purposes Living Fences Copyright © ECHO 2007. All rights reserved. This document may be reproduced for training purposes if Plants for Alley Cropping distributed free of charge or at cost and credit is given to ECHO.
    [Show full text]
  • 16354 Hutch-MSD Oct03.Qxd
    METABOLISM OFF-FLAVOR IN MAPLE SYRUP Part II: Remediation of metabolism off-flavor in maple syrup Abby K. van den Berg1, Timothy D. Perkins1, Mark L. Isselhardt1, Mary An Godshall2 and Steven W. Lloyd3 INTRODUCTION 'Metabolism' is an off-flavor described as 'earthy to bitter' which significantly reduces the economic value of maple syrup (Perkins et al. 2006). It periodically occurs in syrup simultaneously over a wide geographic range, and in some years can affect up to 25% of the total annual maple syrup crop (Perkins and van den Berg in press). Research on metabolism at the University of Vermont Proctor Maple Research Center (PMRC) had two main objectives: 1) to identify the primary compound or compounds responsi- ble for metabolism off-flavor in maple syrup, and 2) to develop a technique maple pro- ducers and packers could use to effectively remediate the flavor of metabolized maple syrup. The primary compound associated with metabolism off-flavor was identified as 2,5- dimethylpyrazine (2,5-DMP) (van den Berg et al. 2009a). 2,5-dimethylpyrazine is a nat- urally-occurring volatile flavor compound found in a variety of heat-processed foods, including roasted beef, cocoa, bacon, and coffee (Maga 1992), as well as maple syrup (Alli et al. 1992, Akochi-K. et al. 1997). In maple syrup with metabolism off-flavor, how- ever, 2,5-DMP occurs in much greater concentrations (up to 40 times greater) than in syrup without the off-flavor (van den Berg et al. 2009a). In practice, producers and packers attempt to blend out the off-flavor by mixing metabolized syrup in with good-tasting syrup.
    [Show full text]
  • Engineering Aspects of Food Processing - P.P
    CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY – Vol. V - Engineering Aspects of Food Processing - P.P. Lewicki ENGINEERING ASPECTS OF FOOD PROCESSING P.P. Lewicki Warsaw University of Life Sciences (SGGW), Warsaw, Poland The State College of Computer Science and Business Administration in Lomza, Poland Keywords: Metabolic energy requirement, food production, wet cleaning, dry cleaning, homogenization, membrane filtration, cyclones, clarifixator, coating, extrusion, agglomeration, fluidization, battering, uperisation, pasteurization, sterilization, baking, chilling, freezing, hydrocooling, cryoconcentration, glazing, extrusion-cooking, roasting, frying, thermoplasticity, logistics. Contents 1. Introduction 2. Food industry 3. Food processing 3.1. Mechanical Processes 3.2. Heat Transfer Processes 3.3. Mass Transfer Processes 3.4. Materials Handling 3.5. Hygiene of Processing 3.6. Food Engineering 4. Concluding remarks Glossary Bibliography Biographical Sketch Summary The main aim of this chapter is to show the impact of chemical and process engineering on the development of nowadays food industry. The contribution presents food as a substance needed to keep a man alive, which is consumed every day and must be produced in enormous amounts. Food industry is a manufacturer of food, employs hundred of UNESCOthousands of employees and uses– considerableEOLSS quantities of energy and water. Basic processes used in food processing are briefly described. They are divided into three groups of unit operations that are mechanical processes and heat and mass transfer processes. In each group of unit operations specificity of the process is emphasized. AtSAMPLE the same time, it is shown howCHAPTERS theories of momentum, heat and mass transfer developed by chemical engineering are applied in designing food-processing equipment. The question of hygienic design and processing of safe food is explicitly stressed.
    [Show full text]
  • Canarium Ovatum) Shells
    International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-04, Issue-09, September 2017 Physical and Mechanical Properties of Particleboard Utilizing Pili Nut (Canarium Ovatum) Shells Ariel B. Morales are widely used for various purposes. It is a lightweight and Abstract— This study aims to make a 200 mm x 200 mm strong kind of plastic that can be easily remolded into particleboard with nine millimeter thickness using Crushed Pili different shapes [5]. This study also helps in lessening Nut Shells (CPNS) and sawdust as raw materials with the ratios non-biodegradable wastes and be useful as a resin. This study (CPNS: sawdust) 100:0, 75:25, and 50:50 by weight and determine their physical and mechanical properties. Also, the specifically aims the following objectives: results were compared to the standard properties of commercial • To determine its physical property such as density, unit particleboard set classified by the Philippine Standard weight and thickness swelling, Association (PHILSA). The raw materials were mixed with • To determine the mechanical property, specifically High-Density Polyethylene (HDPE) as an adhesive. All Modulus of Rupture (MOR). particleboards have passed and exceeded the PHILSA standard • To compare the results to the standard properties for for particle board where 100:0 mixtures with density of 1204.09 kg/m3 has the highest MOR of 110 MPa and lowest thickness commercial particleboard from Philippine Standard swelling of 1.11%. Therefore, particleboard made from Pili nut Association (PHILSA) if it will pass or exceed the given shells has an outstanding property compared to commercial standards. particleboards that depends on its application.
    [Show full text]
  • R09 SI: Thermal Properties of Foods
    Related Commercial Resources CHAPTER 9 THERMAL PROPERTIES OF FOODS Thermal Properties of Food Constituents ................................. 9.1 Enthalpy .................................................................................... 9.7 Thermal Properties of Foods ..................................................... 9.1 Thermal Conductivity ................................................................ 9.9 Water Content ........................................................................... 9.2 Thermal Diffusivity .................................................................. 9.17 Initial Freezing Point ................................................................. 9.2 Heat of Respiration ................................................................. 9.18 Ice Fraction ............................................................................... 9.2 Transpiration of Fresh Fruits and Vegetables ......................... 9.19 Density ...................................................................................... 9.6 Surface Heat Transfer Coefficient ........................................... 9.25 Specific Heat ............................................................................. 9.6 Symbols ................................................................................... 9.28 HERMAL properties of foods and beverages must be known rizes prediction methods for estimating these thermophysical proper- Tto perform the various heat transfer calculations involved in de- ties and includes examples on the
    [Show full text]
  • Marcoot Jersey Creamery Mozzarella Bruschetta
    FARMHAUS 9.14.2018 Bread & Butter Farmhaus country loaf, whipped local honey butter -4- Cocktail Fingers Chef Kevin’s cocktail sauce ¼# -16- ½# -30- Ginger Scented Corn and Tomato Bisque Corn and baby tomato salsa, tomato powder, toasted crunchies -9- Summer Vegetable Salad Fournie Farm’s zucchini, cucumber, yellow squash, baby heirloom tomato, grilled okra, heirloom peppers, sweet corn, lemon cucumber, garden herbs, Baetje Farms chevre, red wine vinaigrette, lavash cracker -12- Roasted Ozark Forest Mushroom Salad Shiitake and Oyster mushrooms, lacinato kale, Baetje Farms goat’s cheese, toasted pecans, warm bacon vinaigrette -13- Butcher’s Plate Porchetta di Testa, smoked hog’s head, Tasso ham, creole mustard, Marcoot Creamery cave aged gouda & heritage cheeses, Buttonwood Farms chicken liver mousse, golden raisin mostarda, dilly beans, pickled okra, B&B pickles, smoked tomato jam, sauce gribiche, pork pie, country loaf, lavash cracker -29- Locally Foraged Wild Mushroom Farrotto Lobster and Chanterelle mushrooms, local wheatberry farrotto -25- Wild Mushroom Spaghetti Locally foraged chanterelle mushrooms, smoked bacon, Fournie Farms sweet corn, local serrano pepper soffritto, tomato & onion sugo, toasted breadcrumbs, truffle salt, Marcoot Heritage cheese -27- Spaghetti Bolognese Handmade pasta, dry aged beef, Newman pork, San Marzano tomato sauce, Marcoot Creamery Tomme cheese -28- Gulf Cobia Fournie Farms gypsy pepper, okra, sweet corn and tomato succotash, spoonbread, tomato crème -28- D&M Farms Berkshire-Red Wattle Cross Pork Loin Farro,
    [Show full text]