Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimum Dietary Diversity for Women a Guide to Measurement
FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S. -
Nghiên Cứu Thành Phần Mọt Hại Ngô Sau
VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA LUẬN ÁN TIẾN SĨ SINH HỌC Hà Nội – 2021 VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA Chuyên ngành: Sinh thái học Mã số: 9 42 01 20 Người hướng dẫn khoa học: 1. PGS.TS. Khuất Đăng Long 2. PGS.TS. Lê Xuân Quế Hà Nội – 2021 LỜI CAM ĐOAN Để đảm bảo tính trung thực của luận án, tôi xin cam đoan: Luận án “Nghiên cứu thành phần mọt hại ngô sau thu hoạch và ảnh hưởng của một số yếu tố sinh thái đến sự phát triển loài mọt Sitophilus zeamais Motschulsky trong kho bảo quản ở Sơn La”. Là công trình nghiên cứu của cá nhân tôi, dưới sự hướng dẫn khoa học của PGS.TS. Khuất Đăng Long và PGS.TS. Lê Xuân Quế, các tài liệu tham khảo đều được trích nguồn. Các kết quả trình bày trong luận án là trung thực và chưa từng được công bố ở bất kì công trình nào trước đây./. -
Callosobruchus Spp.) in Vigna Crops: a Review
NU Science Journal 2007; 4(1): 01 - 17 Genetics and Breeding of Resistance to Bruchids (Callosobruchus spp.) in Vigna Crops: A Review Peerasak Srinives1*, Prakit Somta1 and Chanida Somta2 1Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Parham, 73140 Thailand 2Asian Regional Center, AVRDC-The World Vegetable Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Vigna crops include mungbean (V. radiata), blackgram (V. mungo), azuki bean (V. angularis) and cowpea (V. unguiculata) are agriculturally and economically important crops in tropical and subtropical Asia and/or Africa. Bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) are the most serious insect pests of Vigna crops during storage. Use of resistant cultivars is the best way to manage the bruchids. Bruchid resistant cowpea and mungbean have been developed and comercially used, each with single resistance source. However, considering that enough time and evolutionary pressure may lead bruchids to overcome the resistance, new resistance sources are neccessary. Genetics and mechanism of the resistance should be clarified and understood to develop multiple resistance cultivars. Gene technology may be a choice to develop bruchid resistance in Vigna. In this paper we review sources, mechanism, genetics and breeding of resistance to C. chinensis and C. maculatus in Vigna crops with the emphasis on mungbean, blackgram, azuki bean and cowpea. Keywords: Bruchid resistance, Callosobruchus spp., Legumes, Vigna spp. INTRODUCTION The genus Vigna falls within the tribe Phaseoleae and family Fabaceae. Species in this taxon mainly distribute in pan-tropical Asia and Africa. Seven Vigna species are widely cultivated and known as food legume crops. -
Identification of Lentil Genotypes Resistant to Bruchid (Callosobruchus Chinensis L.) and Selection of Diverse Parental Pair A
Journal of Crop and Weed, 14(3): 136-143 (2018) Identification of lentil genotypes resistant to bruchid (Callosobruchus chinensis L.) and selection of diverse parental pair A. K. SAHA, S. SARKAR AND S. BHATTACHARYYA Department of Genetics and Plant Breeding, Crop Research Unit Bidhan Chandra Krishi Viswavidyalaya, Mohanpur-741252, Nadia, West Bengal Received : 27-08-18 ; Revised : 28-11-18 ; Accepted : 02-12-18 ABSTRACT Bruchid (Callosobruchus chinensis L.) is the most devastating storage pest of the pulses in storage condition. Lentil is one of the important pulse cropsand scanty of literature is available regarding the bruchid resistance in this crop. Climatic condition of West Bengal favours the pulse beetle infestation during storage of pulses. Therefore, we investigated the potential resistant sources among 94 lentil cultivated genotypes by feeding assay against this pest in laboratory condition. Ten high yielding genotypes were screened based on their resistance. Diversity analysis was performed by utilizing 12 phenotypic markers and 12 SSR markers to decipher the best possible parental pair. Based on this study it was found that WBL-77 and Precoz is the best parental pair. Keywords: Bruchid, diversity, lentil, resistance and SSR Lentil is the most preferred pulse in West Bengal as pod wall and feed within the seeds (Southgate, 1979). the Bengali people consume it as dal, almost daily, along Male has a longer life span than the female beetle. with their vaat i.e. rice. Although lentil productivity in Longevity of adults for males ranged from 9 to 14 days West Bengal (963 kg ha-1) is higher than that of national with average of 11.0±1.87 days and for females was average (705 kg ha-1), astonishingly it is produced very ranged 9 to 12 days with an average of 9.6±1.14 days. -
Effect of Hot and Cold Treatments for the Management of Pulse Beetle Callosobruchus Maculatus (Fab) in Pulses
IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 3, Issue 3 (May. - Jun. 2013), PP 29-33 www.iosrjournals.org Effect of hot and cold treatments for the management of Pulse beetle Callosobruchus maculatus (Fab) in pulses J.Alice R.P.Sujeetha1 and N.Srikanth2 1Department of Food Microbiology,Indian Institute of Crop ProcessingTechnology,Thanjavur, 613 005,Tamil Nadu,India 2Department of Entomology,Pandit Jawaharlal Nehru College of Agriculture & Research Institute,Karaikal, Puducherry , 609 603 -India Abstract: The pulse beetle C. maculatus (Fab.) is a major pest of economically important leguminous grains, such as cow peas, lentils, green gram, and black gram. Effect of sun drying on oviposition of pulse beetle, C. maculatus showed 100 per cent egg mortality during the second, third and fourth months. It was observed that there is no significant difference among the exposure periods .Effect of sun drying on adult emergence of pulse beetle, C. maculatus, indicated that 100 per cent adult mortality was recorded during the second, third and fourth months and significant difference was not observed among the exposure periods.Effect of cold treatment on oviposition of the pulse beetle, C. maculatus recorded with 100 per cent mortality and no significant difference was noticed among the exposure periods in which was observed. Effect of cold treatment on adult emergence of the pulse beetle, C. maculatus revealed 100 per cent adult mortality was observed in all the exposure period during the second, third and fourth months. Key words: Adult beetles,Bruchids,Black Gram,Cold treatment ,Oviposition,Sun drying I. -
Bacterial Sequences in an Invertebrate Genome
The genomes of many nematodes and arthropods contain bacterial Bacterial sequences. How did they get there? Julie sequences in C. Dunning Hotopp and Jason Rasgon an invertebrate explain. Wolbachia infect the most abundant animal phyla including nematodes and arthropods. This includes some bees and butterflies like genome those shown here. J.C. Dunning Hotopp olbachia pipientis is the most prolific into reproductively capable females, and (4) cytoplasmic Unlike infections in arthropods, that Wolbachia provide the host with the obligate symbioses between these intracellular endosymbiont on earth. incompatibility, the most common phenotype, whereby the treatment of nematodes with anti- necessary nucleotides, cofactors and bacteria and their hosts. These bacteria infect not only 70% of offspring of uninfected females and infected males fail to biotics that are targeted at elimin- vitamins. insects, but also the most abundant develop. Wolbachia are maternally inherited, being transferred ating the Wolbachia infection also Despite maternal inheritance in Interdomain lateral gene animal phyla, including nematodes and through the egg cytoplasm. Therefore, these reproductive kills the host. This suggests that Wol- arthropods, arthropod-borne Wolbachia transfer arthropods. phenotypes favouring Wolbachia-infected females increase bachia form an obligate mutualistic do not evolve with the host. Instead, the In 2001, Natsuko Kondo and W The arthropod-infecting Wolbachia exert unusual effects on the proliferation of Wolbachia-infected arthropods. Wolbachia symbiosis with filarial nematodes, bacteria are transmitted horizontally colleagues described a variant of a host reproduction, including: (1) parthenogenesis, whereby are parasitic endosymbionts, since the interaction benefits since neither organism can survive and infections are lost, although the bean beetle, Callosobruchus chinensis, infected virgin females produce infected female offspring, Wolbachia while exerting a negative effect on the host by without the other. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 24
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 24 September 2011 U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory 10300 Baltimore Avenue Building 005, Room 107, BARC-West Beltsville, Maryland 20705 U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory. 2011. USDA National Nutrient Database for Standard Reference, Release 24. USDA Nutrient Data Laboratory web site: http://www.ars.usda.gov/nutrientdata Mention of trade names, commercial products, or companies in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Issued September 2011 i Contents Introduction .................................................................................................................................... -
The Seed Coat of Phaseolus Vulgaris Interferes with the Development Of
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Silva, Luciana B.; Sales, Maurício P.; Oliveira, Antônia E. A.; Machado, Olga L. T.; Fernandes, Kátia V. S.; Xavier-Filho, José The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)] Anais da Academia Brasileira de Ciências, vol. 76, núm. 1, março, 2004, pp. 57-65 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32776106 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2004) 76(1): 57-65 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)] LUCIANA B. SILVA1, MAURÍCIO P. SALES2, ANTÔNIA E.A. OLIVEIRA1, OLGA L.T. MACHADO1, KÁTIA V.S. FERNANDES1 and JOSÉ XAVIER-FILHO1 1Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28015-620 Campos dos Goytacazes, RJ, Brasil 2Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brasil Manuscript received on August 21, 2003; accepted for publication on October 1, 2003; contributed by José Xavier-Filho* ABSTRACT We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L.) do not support develop- ment of the bruchid Callosobruchus maculatus (F.), a pest of cowpea [Vigna unguiculata (L.) Walp] seeds. -
The Development and Use of Varieties of Beans Resistant to Certain Insect Pests of Legumes
THE DEVELOPMENT AND USE OF VARIETIES OF BEANS RESISTANT TO CERTAIN INSECT PESTS OF LEGUMES, DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By JOSE CALDERON GUEVARA, Ing. Agr., M. Sc. The Ohio State University. 1957 Approved by: CONTENTS Page INTRODUCTION ...................... 1 REVIEW OE LITERATURE ............................. 4 Insect Outbreaks .................... 4 Food Plant Selection by Insects ................ 11 The Mechanisms of Resistance .................. 14 Cause of Resistance ........................... 18 Factors that Affect the Expression or the Permanence of Resistance .................. 22 SYNOPSIS OF THE BIOLOGY OF THE APION POD WEEVIL .... 29 SELECTION OF VARIETIES RESISTANT TO THE APION POD WEEVIL, APION GODMANI WAG................... 30 Seasonal infestation of A. godmani Wagner in Susceptible Varieties .............. 31 Investigation of the Cause of Resistance on beans to Apion godmani Wagner ........... 37 Crossing Program for A. godmani Resistance ....... 42 Classification of Bean Varieties and Lines ac cording to Resistance to the ApionPod Weevil .. 49 NOTES ON THE BIOLOGY OF THE SEED CORN MAGGOT IN MEXICO .... 52 Experiments on Seed Color Preference of Hylemya cilicrura .................................. 59 Preliminary Selection of Resistant Varieties to the Seed Corn Maggot ........... 61, ii PRELIMINARY EXPERIMENTS ON THE SELECTION. OF BEAN VARIETIES RESISTANT TO THE POTATO LEAFHOPPER .... 64 Experiments at the University Farm, Columbus,Ohio. 67 Experimental Designs ........................... 67 Relationship Between the Potato Leafhopper and Bean Plants ................................. 68 Leafhopper Damage .................... ......... 69 Recuperation of the Bean Plant from Insect Attack and Seasonal Differences .............. 72 Effect of Weather on the Potato Leafhopper and the Bean Plant .............................. 76 Tolerance of Different Bean Varieties to the Potato Leafhopper ..... -
General-Poster
XXIV International Congress of Entomology General-Poster > 157 Section 1 Taxonomy August 20-22 (Mon-Wed) Presentation Title Code No. Authors_Presenting author PS1M001 Madagascar’s millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae): Taxonomy, phylogenetics and sexual dimorphism Michael Forthman, Christiane Weirauch PS1M002 Phylogenetic reconstruction of the Papilio memnon complex suggests multiple origins of mimetic colour pattern and sexual dimorphism Chia-Hsuan Wei, Matheiu Joron, Shen-HornYen PS1M003 The evolution of host utilization and shelter building behavior in the genus Parapoynx (Lepidoptera: Crambidae: Acentropinae) Ling-Ying Tsai, Chia-Hsuan Wei, Shen-Horn Yen PS1M004 Phylogenetic analysis of the spider mite family Tetranychidae Tomoko Matsuda, Norihide Hinomoto, Maiko Morishita, Yasuki Kitashima, Tetsuo Gotoh PS1M005 A pteromalid (Hymenoptera: Chalcidoidea) parasitizing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and the fi rst fi nding of the facial pit in Chalcidoidea Kazunori Matsuo, Junichiro Abe, Kanako Atomura, Junichi Yukawa PS1M006 Population genetics of common Palearctic solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae) in whole species areal and result of its recent introduction in the USA Katerina Cerna, Pavel Munclinger, Jakub Straka PS1M007 Multiple nuclear and mitochondrial DNA analyses support a cryptic species complex of the global invasive pest, - Poster General Bemisia tabaci (Gennadius) (Insecta: Hemiptera: Aleyrodidae) Chia-Hung Hsieh, Hurng-Yi Wang, Cheng-Han Chung, -
An Annotated Bibliography of Archaeoentomology
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 4-2020 An Annotated Bibliography of Archaeoentomology Diana Gallagher Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Thesis is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Diana Gallagher Master’s Project for the M.S. in Entomology An Annotated Bibliography of Archaeoentomology April 2020 Introduction For my Master’s Degree Project, I have undertaken to compile an annotated bibliography of a selection of the current literature on archaeoentomology. While not exhaustive by any means, it is designed to cover the main topics of interest to entomologists and archaeologists working in this odd, dark corner at the intersection of these two disciplines. I have found many obscure works but some publications are not available without a trip to the Royal Society’s library in London or the expenditure of far more funds than I can justify. Still, the goal is to provide in one place, a list, as comprehensive as possible, of the scholarly literature available to a researcher in this area. The main categories are broad but cover the most important subareas of the discipline. Full books are far out-numbered by book chapters and journal articles, although Harry Kenward, well represented here, will be publishing a book in June of 2020 on archaeoentomology.