Engineering Aspects of Food Processing - P.P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minnesota FACS Frameworks for Food Science
FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs. -
Food Science and Technology (FDST) 1
Food Science and Technology (FDST) 1 FDST 812 Cereal Technology FOOD SCIENCE AND Crosslisted with: FDST 412 Prerequisites: FDST 205. TECHNOLOGY (FDST) Description: Chemistry and technology of the cereal grains. Post-harvest processing and utilization for food and feed. Current industrial processes FDST 801 Teaching Applications of Food Science and practices, and the theoretical basis for these operations. Crosslisted with: FDST 401 Credit Hours: 3 Prerequisites: BIOS 101 and CHEM 109 Max credits per semester: 3 Notes: Will not count toward a FDST major or minor. Max credits per degree: 3 Description: Overview of the science of food and how food can be used in Format: LEC the classroom to enhance science education. FDST 815 Molds and Mycotoxins in Food, Feed, and the Human Credit Hours: 3 Environment Max credits per semester: 3 Crosslisted with: FDST 415 Max credits per degree: 3 Prerequisites: FDST 405/805/BIOS 445/845 and FDST 406/806/ Format: LEC BIOS 446/846. FDST 803 Food Quality Assurance Description: Occurrence, growth, and mycotoxin production of molds Crosslisted with: FDST 403 in human foods, animal feeds, and the human environment. Spoilage, Prerequisites: FDST 205; STAT 218. mycotoxin production conditions, toxicity, and pathological effects. Description: Quality related issues as they pertain to manufacturing, Culture media, methods and techniques for enumerating and identifying processing, and/or testing of foods, with a major emphasis on food molds, analytical methods for mycotoxins, and effects of food and feed regulations, statistical process control and Hazard Analysis of Critical processing on mycotoxin stability. Control Points (HACCP). Credit Hours: 3 Credit Hours: 3 Max credits per semester: 3 Max credits per semester: 3 Max credits per degree: 3 Max credits per degree: 3 Format: LEC Format: LEC FDST 819 Meat Investigations FDST 805 Food Microbiology Crosslisted with: ASCI 419, ASCI 819, FDST 419 Crosslisted with: BIOS 445, BIOS 845, FDST 405 Prerequisites: ASCI 210 Prerequisites: BIOS 312; CHEM 251; BIOC 321. -
Consumer Perceptions and Knowledge of Genetically Modified
University of Arkansas, Fayetteville ScholarWorks@UARK Agricultural Education, Communications and Agricultural Education, Communications and Technology Undergraduate Honors Theses Technology 8-2014 Consumer perceptions and knowledge of genetically modified organisms in Belgium: a case study of the potato event Maggie Jo Pruitt University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/aectuht Part of the Agricultural Education Commons, Health Communication Commons, and the Mass Communication Commons Recommended Citation Pruitt, Maggie Jo, "Consumer perceptions and knowledge of genetically modified organisms in Belgium: a case study of the potato event" (2014). Agricultural Education, Communications and Technology Undergraduate Honors Theses. 3. http://scholarworks.uark.edu/aectuht/3 This Thesis is brought to you for free and open access by the Agricultural Education, Communications and Technology at ScholarWorks@UARK. It has been accepted for inclusion in Agricultural Education, Communications and Technology Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Consumer Perceptions and Knowledge of Genetically ModifiOO Organisms in Belgium: A Case Study of the Potato Event An Undergraduate Honors Thesis in the Agrieuhuml Education, Communications and Technology Department Submitted in partial fulfillment of the requirements for the University of Arkansas Dale Bumpers College of Agricultural, Food and Life Sciences Honors Program by MaggieJo Pruitt April2014 < ~~ CasandrnCo:'l I XRKANTSAS DALE BUMPERS COLLEGE OF AGRICULTURAL FOOD & LIFE SCIENCES H onors Candidate P roject / Thesis Oral Defense and Examination Maggie Jo Pruitt 010476610 [email protected] 4/11/14 350 W Maple Street Local Address Fayetteville AR 72701 ----~~C~,.~. -
Introduction to the Microbiology of Food Processing.Pdf
United States Department of Agriculture Food Safety and Inspection Service Introduction TO THE Microbiology OF Food Processing August 2012 Small Plant News Guidebook Series Small Plant News is a four-page, four-color newsletter published by the U.S. Department of Agriculture’s (USDA) Food Safety and Inspection Service (FSIS). It is targeted to small and very small Federal- and State-inspected establishment owners and operators who produce meat, poultry, and processed egg products. Small Plant News’s mission is to support the “FSIS’ Strategic Implementation Plan for Strengthening Small and Very Small Plant Outreach” by providing pertinent information for plant owners and operators so they can produce safe food and, ultimately, ensure the success of their livelihoods. The newsletter strives to do this through: ✔ Informing and educating small and very small plant owners and operators on FSIS news with current and meaningful information in an easy-to-read format. ✔ Assisting plant owners and operators in incorporating FSIS rules and regulations into their daily operational practices with “plain language” information. ✔ Fostering small and very small plants’ ability to stay in business and produce the safest food by providing essential tips that will encourage the highest sanitation standards, paperwork compliance, and cost-saving measures. ✔ Honoring FSIS’ obligations to small and very small plants by providing a mechanism that increases two-way dialogue between plants and the Agency. Back issues of Small Plant News are available on FSIS’ Web site at www.fsis.usda.gov. Or you may call the Small Plant Help Desk at (877) 374-7435 to order back copies. -
Genetically Modified Food and Informed Consumer Choice: Comparing U.S
Brooklyn Journal of International Law Volume 35 | Issue 2 Article 6 2010 Genetically Modified oF od and Informed Consumer Choice: Comparing U.S. and E.U. Labeling Laws Valery Federici Follow this and additional works at: https://brooklynworks.brooklaw.edu/bjil Recommended Citation Valery Federici, Genetically Modified Food and Informed Consumer Choice: Comparing U.S. and E.U. Labeling Laws, 35 Brook. J. Int'l L. (2010). Available at: https://brooklynworks.brooklaw.edu/bjil/vol35/iss2/6 This Note is brought to you for free and open access by the Law Journals at BrooklynWorks. It has been accepted for inclusion in Brooklyn Journal of International Law by an authorized editor of BrooklynWorks. GENETICALLY MODIFIED FOOD AND INFORMED CONSUMER CHOICE: COMPARING U.S. AND E.U. LABELING LAWS INTRODUCTION lthough you might not know it, chances are that the salad you Ahave for lunch or the crackers you eat as an afternoon snack con- tain some amount of genetically modified (“GM”) plants.1 Those ingre- dients almost certainly do not bear labels disclosing their genetic modifi- cations. Even if they did, would you understand what the labels mean enough to make an informed decision whether to purchase and consume GM or non-GM food? The labeling of genetically modified foods is an extremely complicated subject—one that falls at the intersection of a complex scientific field and deeply held religious, moral, and personal beliefs about what one puts into one’s body. It is possible that there is no right answer to the question whether foods should be labeled to indicate genetic modifica- tion. -
Food Processing in Sub-Saharan Africa Solutions for African Food Enterprises Final Report 2 SAFE FINAL REPORT I Introduction: Solutions for African Food Enterprises
Food Processing in Sub-Saharan Africa Solutions for African Food Enterprises Final Report 2 SAFE FINAL REPORT I Introduction: Solutions for African Food Enterprises Food processing is a significant driver of local economies, creating supplier linkages for millions of small-scale farmers and helping elevate rural incomes across East and Southern Africa. As population and urbanization rates rapidly 127 increase across the region while hundreds of millions of people continue to face processors trained food insecurity, the demand for food has never been greater. Yet, small and growing local processors often have difficulties producing high-quality affordable and nutritious products that meet food safety standards and regulatory requirements due to a lack of technical and business knowledge and investment. Africa’s food processing industry holds huge Partners in Food Solutions and the United States 1,709 potential for growth: by 2040, it is anticipated that Agency for International Development (USAID) that participants the value of food purchased in East And Southern aimed to increase the competitiveness of the African 1 received training Africa will grow seven-fold. When equipped with food processing sector and expand the availability of via sector-wide the technical and business skills in food processing affordable and nutritious foods. SAFE was launched trainings best practices, such as manufacturing, food safety, in 2012 in Kenya, Malawi and Zambia with a $6.3 packaging, marketing, budgeting and planning, as million grant from USAID. In 2016, SAFE expanded to well as increased access to inputs, new markets and Ethiopia and Tanzania and extended the timeframe finance, growing processors can play a significant in the other countries with an additional $4.1 million role in providing for the region’s food needs. -
Food Microbiology - Radomir Lasztity
FOOD QUALITY AND STANDARDS – Vol. III - Food Microbiology - Radomir Lasztity FOOD MICROBIOLOGY Radomir Lasztity Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Hungary Keywords: aerobic, anaerobic, antibiotic, ascus, ascomycetes, ascospora, bacteria, botulism, budding, coccus, colony, facultative aerobic, filament, filamentous fungi, film yeasts, food-borne diseses, food-borne pathogens, food microbiology, fungi imperfecti, HACCP, heterofermentative, homofermentative, hypha, industrial use of microorganisms (molds, yeasts, bacteria), lactic acid bacteria, mesophilic, methods in food microbiology, microaerobic, microorganism, molds, morphological characteristics, mycelium, pasteurization, preservation of foods, psychrophilic, single cell protein, spoilage of foods, spore, sterilization, thermophilic, true yeast, water activity, yeasts. Contents 1. Introduction 2. Microorganisms Important in Food 2.1. Molds 2.1.1. General 2.1.2. Molds Occurring in Foods 2.2. Yeasts 2.2.1. General 2.2.2. Classification,Important Genera of Yeasts and Their Industrial Use. 2.3. Bacteria 2.3.1. General 2.3.2. Classification. Bacteria Important in Food Microbiology. 2.3.3. Industrial Use of Bacteria. 2.3.4. Food-borne Pathogens 3. Microbiology of Spoilage and Preservation of Food 3.1. General 3.2. Spoilage of Foods. 3.3. Preservation of Foods 3.3.1. Reduction of Moisture Content 3.3.2. Preservation by Use of High Temperatures. 3.3.3.PresevationUNESCO at low temperatures – EOLSS 3.3.4. Preservation of Foods by Preservatives. 3.3.5. Other MethodsSAMPLE of Food Preservation CHAPTERS 4. Food-borne Diseases 4.1. General 4.2. Microorganisms Causing Food Infection and Food Poisoning. 4.2.1. Botulism 4.2.2. Staphylococcal Food Poisoning 4.2.3. -
Cooking Nutrition and Food Technology
LIBRARY OF CONGRESS COLLECTIONS POLICY STATEMENTS Cooking, Nutrition and Food Technology Contents I. Scope II. Research Strengths III. Best Editions IV. Collecting Policy V. Acquisition Sources VI. Collecting overlap with other National Libraries VII. Collecting Levels I. Scope Materials on cooking, food technology and nutrition are covered in this statement. These works are primarily found in subclasses of the Library of Congress classification T. Due to the interdisciplinary nature of the subject, however, there is frequent overlap with other subject areas within the Library of Congress Classification System. Works on home economics, cooking, food chemistry, food safety testing, food supply safety issues, food contamination, Hazard Analysis Critical Control Points (HACCP), nutritional components of foods, food analysis methods and analytical tables, food additives, food design and production, and careers in the food industry, as well as the history of food and food preparation, preservation, and consumption are covered here. Also included are works on food processing and manufacture, technology, and all types of food engineering, and preservation, including refrigeration and fermentation, food additives and compounds, flavor technology, beverage technology, and fats and oils. II. Research Strengths This interdisciplinary subject area brings together materials from a variety of fields. Subject areas of interest include food safety, food chemistry and analysis, food adulteration and contamination, human nutrition, physiology, biochemistry, food production and sustainability, food technology and manufacture, food preservation and processing, the history of food and society, the history of human nutrition, gastronomy, and cooking. The strength of the Library of Congress collections in these areas lies in their breadth and depth, reflecting the Library’s long history of collecting to support research by Congress and the U. -
Applications of Artificial Intelligence in Food Engineering Research and in Industry
Journal of Agricultural Engineering and Food Technology Print ISSN: 2350-0085; Online ISSN: 2350-0263; Volume 2, Number 2; April-June, 2015 pp. 112-115 © Krishi Sanskriti Publications http://www.krishisanskriti.org/jaeft.html Applications of Artificial Intelligence in Food Engineering Research and in Industry Sujata Saini Department of Computer Science and Application, Govt. College for Women, Rohtak E-mail: [email protected] Abstract—This paper explores the various applications of artificial Advanced monitoring and control systems are developed to intelligence in food engineering research and in industry. Usually, facilitate the automation and flexible food manufacturing. Food engineering encompasses a wide range of activities. Food Furthermore, energy saving and minimization of engineers are employed in various fields like food processing, food environmental problems continue to be important food machinery, packaging, ingredient manufacturing, instrumentation, engineering issues, significant progress is being made in waste and control. Firms that design and build food consulting firms, processing plants, government agencies, pharmaceutical companies, management, efficient utilization of energy and reduction of and health-care firms also employ food engineers. Specific food effluents and emissions in food production. engineering activities include the discipline in which the engineering, biological, and physical sciences are used to study the nature of 2. APPLICATIONS OF AI IN FOOD ENGINEERING foods, the causes of deterioration and the principles underlying food AND INDUSTRY processing. Food engineering research deals with the production processes that make food. Nowadays the food chain is long and 2.1 Agriculture complicated, where foods and food technologies are diverse. However, in these days acceptance of food products are often Agriculture is the process of feeding products, producing food, depends on potential benefits and risks associated with the food. -
Genetically Engineered Food to Be Genetically Engineered Food in Europe
Mol. Nutr. Food Res. 2007, 51, 1063 MNF Books 1063 MNF Books in the test tube, and the power to return based on more than twelve-hundred altered genes to the organism to test citations. The application of recombi- their function have revolutionized the nant technology to food engineering, way genetics is done in higher organ- the legal implications resulting from isms”; “There is no field of experimen- such manipulations and the detection tal biology that is untouched by the methods to enforce the legal require- power we now have to isolate, analyze, ments are covered by this textbook. In and manipulate genes”. It was quite particular, part I presents applications obvious that these technologies have and perspectives of genetic engineering the potential to be used for food or feed in terms of using bacteria, fungi, plants production and that genetic engineer- or animals as food or as tools for the ing might replace classical breeding production of food additives or in food technologies in the future. The Flavr fermentation processes. The second Savr tomato, a GMO with delayed cell chapter, written by Rudolf Streinz and wall softening during fruit ripening, Jan Kalbheim, provides a thorough was the first commercially grown insight into the legal situation for genetically engineered food to be genetically engineered food in Europe. granted a license for human consump- The third part of the book describes tion by the U.S. Food and Drug Admin- methods used for the detection of Genetically Engineered Food istration in the early 1990s. – Methods and Detection genetic modifications. After a general The development of recombinant DNA introduction to DNA-based detection Second, Revised and Enlarged Edition technology and its application for food methods, the reader gets insight into Knut J. -
Food Engineering/Physics How Different Methods of Heat Transfer Change Starch Behavior
Food Engineering/Physics How different methods of heat transfer change starch behavior Background: Starches are used as thickeners in many foods. Depending on the desired characteristics, this may be a raw starch (e.g. cornstarch) or a more complex thickener such as roux (a mixture of starch, protein and fat). Some recipes, especially when using roux, call for cooking or browning the thickener before adding to liquid. But browning a starch not only affects the flavor and color, it decreases its thickening power. This experiment is designed to familiarize high and junior high school students with two major methods of heat transfer, and to provide insight into how heat transfer can affect the nature of foods. This lesson gives students the opportunity to conduct hands-on physics experiments; make visual observations based on how different methods of heat transfer (conduction and convection) change the appearance of raw starch; make visual observations on the differences between starch gels/sols; and take numerical measurements of the flow (rheology) of starch gels/sols. Students should be divided into groups of 2-4. Each group will receive raw cornstarch and a line spread template. Students will brown 1 Tbsp of cornstarch in a dry pan and allow it to cool. Students will add 1 cup of water to 1) the browned cornstarch and 2) 1 Tbsp raw cornstarch then boil to put the starch through gelatinization. After cooling, students will place a measured volume of each gel/sol onto a line spread template to determine the flow properties. For a longer experiment, each group can prepare a third sample using a different amount of raw cornstarch (e.g. -
Nutrition, Food Science and Technology April 08-09, 2019 Abu Dhabi, UAE
conferenceseries.com E K Mukhamejanov, J Nutr Food Sci 2019, Volume 9 DOI: 10.4172/2155-9600-C5-101 2nd International Conference on Nutrition, Food Science and Technology April 08-09, 2019 Abu Dhabi, UAE Fucoidan is the nutraceutical for support of homeostasis of metabolic indicators and systems of their regulation E K Mukhamejanov JSC National Medical University, Kazakhstan ustentation of homeostatic processes is the basic principle of vital activity of organism. Even small swings Sof concentration of some metabolites in the blood, especially glucose, lead to a violation of course of metabolic processes and pose a threat to vital activity of organism. Neuro-hormonal system, cytokine system and number of cell signaling systems participate in regulation of rate of metabolic processes. The influence of pharmaceutical preparations on these regulation systems can promote the development of serious complications, so there is an active search of natural food compounds with high bioactivity. The greatest interest in this situation is fucoidan, which is sulfated polysaccharide of brown seaweed. It is shown that it supports the work of the central nervous system by moderately reducing the death of cholinergic neurons and maintaining the level of dopamine, interferes with the development of hormonal imbalance, promotes a decrease in the level of inflammatory cytokines in the blood and maintenance of the concentration of pro- inflammatory, improves the functioning of the insulin cascade signaling systems at the mTOR kinase level by activating the translation process, leads to a decrease in free radicals (antioxidant) and the restoration of their level prooxidant, supports the homeostasis of the coagulation system due to anticoagulant and procoagulant properties.