Cold Fronts Cold Air Is Dense and Tends to Sink

Total Page:16

File Type:pdf, Size:1020Kb

Cold Fronts Cold Air Is Dense and Tends to Sink Synoptic meteorology Lecture 9 Sahraei Physics Department Razi University https://sci.razi.ac.ir/~sahraei Fronts The boundary between two different air masses is called a front It is a region of significant horizontal gradients in temperature or humidity (almost discontinuous) 2 Fronts When air masses meet is a front, the collision often causes storms and weather changes. A front may be 15 to 200 kilometers wide and extend as much as 10 kilometers up to the troposphere. The kind of front that develops depends on the characteristics of the air masses and how they move. Fronts The movement of fronts is responsible for much of the day-to-day variability in weather conditions. Northwest Europe receives many different air mass types, with frequent frontal passages – results in very variable weather. Commonly associated with: Moisture gradient, Temperature gradient, Wind shift 4 Frontolysis the weakening or dissipation of a front Decreased temperature contrast between two air masses Frontogenesis a formation, strengthening or generation of a front Increased contrast of temperature conditions between two air masses 5 A front is the transition zone between two air masses of different densities. Since density differences are most often caused by temperature differences, fronts usually separate air masses with contrasting temperatures. Often, they separate air masses with different humidities as well. Remember that air masses have both horizontal and vertical extent; consequently, the upward extension of a front is referred to as a frontal surface, or a frontal zone. Figure illustrates the vertical extent of two frontal zones — the polar front and the arctic front. The polar front boundary, which extends upward to over 5 km, separates warm, humid air to the south from cold polar air to the north. The arctic front, which separates cold air from extremely cold arctic air, is much more shallow than the polar front and only extends upward to an altitude of about one or two kilometers. 6 Classification of fronts Meteorologists classify fronts based on: a) the thermal and moisture characteristics of the airmasses b) the direction of movement of the airmasses c) whether the boundary between the airmasses is in contact with the ground (a surface front), or can only be found aloft (an “upper level front”). There are four types of fronts that will be described: 7 Cold Fronts Cold air is dense and tends to sink. Warm air is less dense and tends to rise. When a moving cold air mass runs into a slowly moving warm air mass, the denser cold air slides under the warmer air. Warm air can hold more water vapor than cool air. If there is a lot of water vapor in the warm air heavy rain or snow may fall. Cold fronts move quickly so they can cause weather changes. After a cold front passes, cool, dry air moves in. Cold Front - cold air is advancing & displacing wm air. Triangles point to where air is moving toward.(steep slope) Cold, dry stable polar air (cP) is replacing warm, moist, conditionally unstable subtropical air (mT) cold air warm air Movement of front On weather maps, cold fronts are indicated by blue lines with triangles pointing in the direction of frontal motion (towards warmer air) 9 10 MAP TAP 2002-2003 Weather Fronts 11 Steep vertical boundary due to surface friction slowing down the surface front Cold, dry stable polar air (cP) is replacing warm, moist, conditionally unstable subtropical air (mT) Has strong vertical ascent along the surface front Strong upper level westerlies push ice crystals far ahead of the front, creating Ci and Cs in advance of the front. Associated with cumulus & cumulonimbus clouds ahead of the front in the warm air, producing showers and thunderstorms 12 usually bring cooler weather, clearing skies, and a sharp change in wind direction On a surface pressure map, frontal location can be seen by “kinks” in the isobars, changes in wind direction from a southwesterly to a northwesterly wind, and decreases in temperature. 13 ~70 km 14 General weather characteristics of a cold front Variable Before passage After passage Temperature warm steady cooling Dew point high decreases steadily Pressure falling steadily steady rise Visibility fair to poor good Clouds Ci, Cs, Cb Cu Precipitation showers clearing 15 Cold Front Thunderstorm Development over Great Plains 16 17 The cold front between points B and C on the surface weather map represents a zone where cold, dry stable polar air is replacing warm, moist, conditionally unstable subtropical air. The front is drawn as a solid blue line with the triangles along the front showing its direction of movement. 18 How did the meteorologist know to draw the front at that location? A closer look at the front will give us the answer. The data plotted on the map represent the current weather at selected cities. The station model used to represent the data at each reporting station is a simplified one that shows temperature, dew point, present weather, cloud cover, sea level pressure, wind direction and speed. Fig. 11.15 19 Since surface winds normally blow across the isobars toward lower pressure, we find winds with a southerly component ahead of the front and winds with a northerly component behind it. The following criteria are used to locate a front on a surface weather map: 1. sharp temperature changes over a relatively short distance 2. changes in the air’s moisture content (as shown by marked changes in the dew point) 3. shifts in wind direction 4. pressure and pressure changes 5. clouds and precipitation patterns 20 Notice that light-to-moderate rain (color green) occurs over a wide area along the front, while the heavier precipitation (color yellow) tends to occur in a narrow band along the front itself. Thunderstorms (color red) do not occur everywhere, but only in certain areas along the front. A Doppler radar image showing precipitation patterns along a cold front similar to the cold front in pervious Fig. Green represents light-to-moderate precipitation; yellow represents heavier precipitation; and red the most likely areas for thunderstorms. 21 A vertical view of the weather across the cold front in Fig. 11.15 along the line X–X'. We can see from Fig. that, at the front, the cold, dense air wedges under the warm air, forcing the warm air upward, much like a snow shovel forces snow upward as the shovel glides through the snow. As the moist, conditionally unstable air rises, it condenses into a series of cumuliform clouds. 22 WARM FRONTS Transition zone between a retreating cold air mass and advancing warm air mass Designation – red semi-circles pointing in the direction where the warm air is advancing Warm and moist mT replacing dry cold mP 23 Occurs at the leading edge of an advancing warm, moist, subtropical air mass (mT) from the Gulf replacing a retreating cold, maritime, polar air mass from the North Atlantic (mP) warm air cool air movement of front Warm air behind the front overlies cold air 24 25 MAP TAP 2002-2003 Weather Fronts 26 Warmer, less-dense air rides up and over the colder, more-dense surface air Produces clouds and precipitation well in advance of the front Move slower than cold fronts Gradual warming and veering of the wind from the S to SW when the front passes. Convection depends on stability and humidity of the warm air behind of the front. If below freezing, snow or freezing rain may occur 27 WARM FRONTS Frontal changes are less abrupt than cold air frontal passages Long spells of cold weather do not come to a rapid end Weather at the warm front portion of a frontal system is more extensive than at the cold front portion. Cloud system & precipitation cover extensive areas. 28 WARM FRONTS Cold air lies as a wedge under warm air As warm front approaches depth of cold air decreases Advancing warm air overruns the retreating wedge Forces air to rise – creates frontal inversion Air expands and cools Extensive cloud on top of cold air 29 WARM FRONTS Warm fronts are slow About half that of average cold front Average slope of 1:300 More gentle than cold front 30 WARM FRONTS Weather associated with warm Fronts Weather patterns associated with warm fronts depend on: Moisture content of warm air mass precipitation Stability of the warm air mass uplift Degree of overrunning Uplift and precipitation 31 WARM FRONTS Weather associated with warm fronts If overrunning air is dry and stable, only high and middle clouds will form no precipitation If overrunning air is moist and unstable, heavy showers can develop as thunderstorms become embedded in the cloud mass Arrival of warm front produces wind shifts, warmer temperatures and overall improvement of weather conditions 32 Warm stable air Stable: clouds will be layered 33 Warm conditionally unstable air Unstable: Thunderstorms 34 warm front is associated with a broad cloud and precipitation shield that may extent hundred of kilometers ahead of the surface front although they can trigger thunderstorms, warm fronts are more likely to be associated with large regions of gentle ascent (stratiform clouds and light to moderate continuous rain). ~300 km ~500 km are usually preceded by cirrus first (1000 km ahead), then altostratus or altocumulus (500 km ahead), then stratus and possibly fog. behind the warm front, skies are relatively clear (but change gradually) 35 General weather characteristics of a warm front Variable Before passage Region of front After passage Temperature cool, slowly steady rise warmer warming Dew point steady rise steady increases, then steady Pressure usually falling levels off slight rise, followed by fall Visibility poor improving fair Clouds Ci, Cs, As, Ns, stratus Clearing with St, fog scattered Sc Precip light to moderate, drizzle or usually none can be SN or RA nothing 36 Comparing Warm and Cold Fronts Cold Front Warm Front -Brings cooler air -Both bring -Brings warmer air -Brings heavy showers masses of air -Brings slow drizzle rain -Can develop into a tornado -Bring --Could last for several days precipitation -Afterwards…becomes cool -Moves slower than cold front - can form and dry above land or -Moves in from south water -moves in & out quickly -comes from north Light rain, warm front 38.
Recommended publications
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • December 2013
    Oklahoma Monthly Climate Summary DECEMBER 2013 A frigid and sometimes icy December seemed a fitting way to 1.53 inches, about a half-inch below normal, to rank as the close out the boisterous weather of 2013. Preliminary data from 59th wettest December on record. That total is possibly an the Oklahoma Mesonet ranked the month as the 17th coolest underestimate due to the frozen precipitation, although the December on record at nearly 4 degrees below normal. Records moisture pattern across various parts of the state was quite of this type for Oklahoma date back to 1895. The statewide clear. Far southeastern Oklahoma received from 3-5 inches average temperature as recorded by the Mesonet was 35.2 during the month while western areas of the state received degrees. As chilly as it seemed, however, that mark provided less than a half-inch, in general. little threat to 1983’s record cold of 25.8 degrees, but also far cooler than 2012’s 42.1 degrees. There were two significant The cold December propelled 2013’s statewide average winter storms during December, each creating headaches for annual temperature to a mark of 58.9 degrees, 0.8 degrees travelers and power utility companies. The first storm struck on below normal and the 27th coolest calendar year on record for December 5-6 in two separate waves and brought freezing rain, the state. That mark stands in stark contrast to 2012’s record sleet and snow across the state. Significant snow totals of 5-6 warm year of 63.1 degrees.
    [Show full text]
  • Types of Fronts Stationary Front a Front That Is Not Moving
    Types of Fronts Stationary front A front that is not moving. Types of Fronts Cold front is a leading edge of colder air that is replacing warmer air. Types of Fronts Warm front is a leading edge of warmer air that is replacing cooler air. Types of Fronts Occluded front: When a cold front catches up to a warm front. Types of Fronts Dry Line Separates a moist air mass from a dry air mass. A.Cold Front is a transition zone from warm air to cold air. A cold front is defined as the transition zone where a cold air mass is replacing a warmer air mass. Cold fronts generally move from northwest to southeast. The air behind a cold front is noticeably colder and drier than the air ahead of it. When a cold front passes through, temperatures can drop more than 15 degrees within the first hour. The station east of the front reported a temperature of 55 degrees Fahrenheit while a short distance behind the front, the temperature decreased to 38 degrees. An abrupt temperature change over a short distance is a good indicator that a front is located somewhere in between. B. Warm Front. • A transition zone from cold air to warm air. • A warm front is defined as the transition zone where a warm air mass is replacing a cold air mass. Warm fronts generally move from southwest to northeast . The air behind a warm front is warmer and more moist than the air ahead of it. When a warm front passes through, the air becomes noticeably warmer and more humid than it was before.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Surface Station Model (U.S.)
    Surface Station Model (U.S.) Notes: Pressure Leading 10 or 9 is not plotted for surface pressure Greater than 500 = 950 to 999 mb Less than 500 = 1000 to 1050 mb 988 Æ 998.8 mb 200 Æ 1020.0 mb Sky Cover, Weather Symbols on a Surface Station Model Wind Speed How to read: Half barb = 5 knots Full barb = 10 knots Flag = 50 knots 1 knot = 1 nautical mile per hour = 1.15 mph = 65 knots The direction of the Wind direction barb reflects which way the wind is coming from NORTHERLY From the north 360° 270° 90° 180° WESTERLY EASTERLY From the west From the east SOUTHERLY From the south Four types of fronts COLD FRONT: Cold air overtakes warm air. B to C WARM FRONT: Warm air overtakes cold air. C to D OCCLUDED FRONT: Cold air catches up to the warm front. C to Low pressure center STATIONARY FRONT: No movement of air masses. A to B Fronts and Extratropical Cyclones Feb. 24, 2007 Case In mid-latitudes, fronts are part of the structure of extratropical cyclones. Extratropical cyclones form because of the horizontal temperature gradient and are part of the general circulation—helping to transport energy from equator to pole. Type of weather and air masses in relation to fronts: Feb. 24, 2007 case mPmP cPcP mTmT Characteristics of a front 1. Sharp temperature changes over a short distance 2. Changes in moisture content 3. Wind shifts 4. A lowering of surface pressure, or pressure trough 5. Clouds and precipitation We’ll see how these characteristics manifest themselves for fronts in North America using the example from Feb.
    [Show full text]
  • You Are a Meterologist!
    YOU ARE A METEROLOGIST! ★A meteorologist is a scientist who studies the atmosphere to forecast weather in a given area. ASSIGNMENT: You have been hired by the Weather Channel as a meteorologist to forecast weather in the United States. Since the Weather Channel provides forecasts for all over the country, your first assignment with them is to forecast four different areas of the United States using your knowledge about air masses and fronts. TASK: 1.) Examine the map of the United States and locate the four cities named on your data table. (Use an atlas to help you find these places.) 2.) After locating the cities, identify and describe the fronts heading towards each city and the air mass that follows it. (Use your reference sheet to help recall types of air mass: continental polar, continental tropical, maritime polar, or maritime tropical.) Record this information in the data table. 3.) For each city, predict how the incoming front will change the weather (temperature, air pressure, storms in that area.) Record your thinking in the data table. 4.) Select one city and write a paragraph about the anticipated weather for that area. Be sure to include data from the table to explain your thinking and forecast. DATA TABLE-FORECASTING WEATHER IN THE UNITED STATES INCOMING INCOMING CITY, STATE FRONT AIR MASS EXPLAIN HOW THIS FRONT MIGHT CHANGE THE IN THE UNITED (Warm Front How do you know? WEATHER AT THIS AREA? STATES or Cold Front) (What’s your evidence from the map?) TEMPERATURE POSSIBLE WEATHER St. Louis, Missouri El Paso, Texas Atlanta, Georgia Minneapolis Minnesota ★MAKE AN INFERENCE: Locate Boston, Massachusetts.
    [Show full text]
  • Chapter 4: Fog
    CHAPTER 4: FOG Fog is a double threat to boaters. It not only reduces visibility but also distorts sound, making collisions with obstacles – including other boats – a serious hazard. 1. Introduction Fog is a low-lying cloud that forms at or near the surface of the Earth. It is made up of tiny water droplets or ice crystals suspended in the air and usually gets its moisture from a nearby body of water or the wet ground. Fog is distinguished from mist or haze only by its density. In marine forecasts, the term “fog” is used when visibility is less than one nautical mile – or approximately two kilometres. If visibility is greater than that, but is still reduced, it is considered mist or haze. It is important to note that foggy conditions are reported on land only if visibility is less than half a nautical mile (about one kilometre). So boaters may encounter fog near coastal areas even if it is not mentioned in land-based forecasts – or particularly heavy fog, if it is. Fog Caused Worst Maritime Disaster in Canadian History The worst maritime accident in Canadian history took place in dense fog in the early hours of the morning on May 29, 1914, when the Norwegian coal ship Storstadt collided with the Canadian Pacific ocean liner Empress of Ireland. More than 1,000 people died after the Liverpool-bound liner was struck in the side and sank less than 15 minutes later in the frigid waters of the St. Lawrence River near Rimouski, Quebec. The Captain of the Empress told an inquest that he had brought his ship to a halt and was waiting for the weather to clear when, to his horror, a ship emerged from the fog, bearing directly upon him from less than a ship’s length away.
    [Show full text]
  • NATS 101 Section 13: Lecture 22 Fronts
    NATS 101 Section 13: Lecture 22 Fronts Last time we talked about how air masses are created. When air masses meet, or clash, the transition zone is called a front. The concept of “fronts” in weather developed from the idea of the front line of battle, specifically in Europe during World War I How are weather fronts analogous to battle fronts in a war? Which air mass “wins” depends on what type of front it is. Four types of fronts COLD FRONT: Cold air overtakes warm air. B to C WARM FRONT: Warm air overtakes cold air. C to D OCCLUDED FRONT: Cold air catches up to the warm front. C to Low pressure center STATIONARY FRONT: No movement of air masses. A to B Fronts and Extratropical Cyclones Feb. 24, 2007 Case In mid-latitudes, fronts are part of the structure of extratropical cyclones. Extratropical cyclones form because of the horizontal temperature gradient. How are they a part of the general circulation? Type of weather and air masses in relation to fronts: Feb. 24, 2007 case mPmP cPcP mTmT Characteristics of a front 1. Sharp temperature changes over a short distance 2. Changes in moisture content 3. Wind shifts 4. A lowering of surface pressure, or pressure trough 5. Clouds and precipitation We’ll see how these characteristics manifest themselves for fronts in North America using the example from Feb. 2007… COLDCOLD FRONTFRONT Horizontal extent: About 50 km AHEAD OF FRONT: Warm and southerly winds. Cirrus or cirrostratus clouds. Called the warm sector. AT FRONT: Pressure trough and wind shift.
    [Show full text]
  • Lecture 14. Extratropical Cyclones • in Mid-Latitudes, Much of Our Weather
    Lecture 14. Extratropical Cyclones • In mid-latitudes, much of our weather is associated with a particular kind of storm, the extratropical cyclone Cyclone: circulation around low pressure center Some midwesterners call tornadoes cyclones Tropical cyclone = hurricane • Extratropical cyclones derive their energy from horizontal temperature con- trasts. • They typically form on a boundary between a warm and a cold air mass associated with an upper tropospheric jet stream • Their circulations affect the entire troposphere over a region 1000 km or more across. • Extratropical cyclones tend to develop with a particular lifecycle . • The low pressure center moves roughly with the speed of the 500 mb wind above it. • An extratropical cyclone tends to focus the temperature contrasts into ‘fron- tal zones’ of particularly rapid horizontal temperature change. The Norwegian Cyclone Model In 1922, well before routine upper air observations began, Bjerknes and Sol- berg in Bergen, Norway, codified experience from analyzing surface weather maps over Europe into the Norwegian Cyclone Model, a conceptual picture of the evolution of an ET cyclone and associated frontal zones at ground They noted that the strongest temperature gradients usually occur at the warm edge of the frontal zone, which they called the front. They classified fronts into four types, each with its own symbol: Cold front - Cold air advancing into warm air Warm front - Warm air advancing into cold air Stationary front - Neither airmass advances Occluded front - Looks like a cold front
    [Show full text]
  • Weather Elements (Air Masses, Fronts & Storms)
    Weather Elements (air masses, fronts & storms) S6E4. Obtain, evaluate and communicate information about how the sun, land, and water affect climate and weather. A. Analyze and interpret data to compare and contrast the composition of Earth’s atmospheric layers (including the ozone layer) and greenhouse gases. B. Plan and carry out an investigation to demonstrate how energy from the sun transfers heat to air, land, and water at different rates. C. Develop a model demonstrating the interaction between unequal heating and the rotation of the Earth that causes local and global wind systems. D. Construct an explanation of the relationship between air pressure, fronts, and air masses and meteorological events such as tornados of thunderstorms. E. Analyze and interpret weather data to explain the effects of moisture evaporating from the ocean on weather patterns weather events such as hurricanes. Term Info Picture air mass A body of air that is made of air that has the same temperature, humidity and pressure. tropical air mass A mass of warm air. If it forms over the continent it will be warm and dry. If it forms over the oceans it will be warm and moist/humid. polar air mass A mass of cold air. If it forms over the land it will be cold and dry. If it forms over the oceans it will be cold and wet. weather front Where two different air masses meet. It is often the location of weather events. warm front An advancing mass of warm air. It is a low pressure system. The warm air is replacing a cold air mass and causes rain, sleet or snow.
    [Show full text]
  • ATOC 3050 Homework 11 Air Masses and Fronts Instructions
    Name:______________________________ ATOC 3050 Homework 11 Air Masses and Fronts Instructions: Make sure that you answer all of the questions completely. Use appropriate units on all numerical answers and answer non-numerical questions with complete sentences. Please write neatly when completing this assignment – if we can’t read your answer you will not get credit for it. Part 1: Surface Weather Map Analysis - Air Masses 1a. Draw and label contour lines (isobars) every 4 mb on the map of sea level pressure from 12Z 24 Oct 2015 given below. Name:______________________________ 1b. Draw and label contour lines (isotherms) every 10°F on the map of temperature from 12Z 24 Oct 2015 given below. Name:______________________________ 1c. Draw and label contour lines (isodrosotherms) every 10°F on the map of dew point temperature from 12Z 24 Oct 2015 given below. 2a. What type of air mass is present in Louisiana? How did you determine what type of air mass was present at this location? 2b. What is the likely source region for the air mass identified in problem 2a? Name:______________________________ 2c. What type of air mass is present in Nebraska? How did you determine what type of air mass was present at this location? 2d. What is the likely source region for the air mass identified in problem 2c? 2e. What type of air mass is present in western Washington? How did you determine what type of air mass was present at this location? 2f. What is the likely source region for the air mass identified in problem 2e? Name:______________________________ Part 2: Surface Weather Map Analysis - Fronts 3.
    [Show full text]