PHAK Chapter 12 Weather Theory

Total Page:16

File Type:pdf, Size:1020Kb

PHAK Chapter 12 Weather Theory Chapter 12 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place with respect to variables, such as temperature (heat or cold), moisture (wetness or dryness), wind velocity (calm or storm), visibility (clearness or cloudiness), and barometric pressure (high or low). The term “weather” can also apply to adverse or destructive atmospheric conditions, such as high winds. This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on the reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. 12-1 Atmosphere The atmosphere is a blanket of air made up of a mixture of 1% gases that surrounds the Earth and reaches almost 350 miles from the surface of the Earth. This mixture is in constant motion. If the atmosphere were visible, it might look like 2211%% an ocean with swirls and eddies, rising and falling air, and Oxygen waves that travel for great distances. Life on Earth is supported by the atmosphere, solar energy, 77 and the planet’s magnetic fields. The atmosphere absorbs 88%% energy from the sun, recycles water and other chemicals, and Nitrogen works with the electrical and magnetic forces to provide a moderate climate. The atmosphere also protects life on Earth from high energy radiation and the frigid vacuum of space. Figure 12-1. Composition of the atmosphere. Composition of the Atmosphere In any given volume of air, nitrogen accounts for 78 percent atmosphere have been identified using thermal characteristics of the gases that comprise the atmosphere, while oxygen (temperature changes), chemical composition, movement, makes up 21 percent. Argon, carbon dioxide, and traces and density. [Figure 12-2] of other gases make up the remaining one percent. This volume of air also contains some water vapor, varying from The first layer, known as the troposphere, extends from 6 zero to about five percent by volume. This small amount of to 20 kilometers (km) (4 to 12 miles) over the northern and water vapor is responsible for major changes in the weather. southern poles and up to 48,000 feet (14.5 km) over the [Figure 12-1] equatorial regions. The vast majority of weather, clouds, storms, and temperature variances occur within this first The envelope of gases surrounding the Earth changes layer of the atmosphere. Inside the troposphere, the average from the ground up. Four distinct layers or spheres of the temperature decreases at a rate of about 2 °Celsius (C) every e her ,000 feet osp 280 erm Th re 0 feet he 160,00 osp es M ere 00 feet ph 20,0 os rat St ere ph os op Tr Figure 12-2. Layers of the atmosphere. 12-2 1,000 feet of altitude gain, and the pressure decreases at a rate of about one inch per 1,000 feet of altitude gain. At the top of the troposphere is a boundary known as the tropopause, which traps moisture and the associated weather in the troposphere. The altitude of the tropopause varies with latitude and with the season of the year; therefore, it takes on an elliptical shape as opposed to round. Location of the tropopause is important because it is commonly associated with the location of the jet stream and possible clear air turbulence. Above the tropopause are three more atmospheric levels. The first is the stratosphere, which extends from the tropopause to a height of about 160,000 feet (50 km). Little weather exists in this layer and the air remains stable, although certain types of clouds occasionally extend in it. Above the stratosphere are the mesosphere and thermosphere, which have little influence over weather. Figure 12-3. Circulation pattern in a static environment. Atmospheric Circulation Atmospheric Pressure As noted earlier, the atmosphere is in constant motion. The unequal heating of the Earth’s surface not only modifies Certain factors combine to set the atmosphere in motion, but a air density and creates circulation patterns; it also causes major factor is the uneven heating of the Earth’s surface. This changes in air pressure or the force exerted by the weight heating upsets the equilibrium of the atmosphere, creating of air molecules. Although air molecules are invisible, they changes in air movement and atmospheric pressure. The still have weight and take up space. movement of air around the surface of the Earth is called atmospheric circulation. Imagine a sealed column of air that has a footprint of one square inch and is 350 miles high. It would take 14.7 pounds Heating of the Earth’s surface is accomplished by several of effort to lift that column. This represents the air’s weight; processes, but in the simple convection-only model used for if the column is shortened, the pressure exerted at the bottom this discussion, the Earth is warmed by energy radiating from (and its weight) would be less. the sun. The process causes a circular motion that results when warm air rises and is replaced by cooler air. The weight of the shortened column of air at 18,000 feet is approximately 7.4 pounds; almost 50 percent that at sea level. Warm air rises because heat causes air molecules to spread For instance, if a bathroom scale (calibrated for sea level) apart. As the air expands, it becomes less dense and lighter were raised to 18,000 feet, the column of air weighing 14.7 than the surrounding air. As air cools, the molecules pack pounds at sea level would be 18,000 feet shorter and would together more closely, becoming denser and heavier than weigh approximately 7.3 pounds (50 percent) less than at warm air. As a result, cool, heavy air tends to sink and replace sea level. [Figure 12-4] warmer, rising air. The actual pressure at a given place and time differs with Because the Earth has a curved surface that rotates on a tilted altitude, temperature, and density of the air. These conditions axis while orbiting the sun, the equatorial regions of the Earth also affect aircraft performance, especially with regard to receive a greater amount of heat from the sun than the polar takeoff, rate of climb, and landings. regions. The amount of solar energy that heats the Earth depends on the time of year and the latitude of the specific Coriolis Force region. All of these factors affect the length of time and the In general atmospheric circulation theory, areas of low angle at which sunlight strikes the surface. pressure exist over the equatorial regions and areas of high pressure exist over the polar regions due to a difference in Solar heating causes higher temperatures in equatorial areas, temperature. The resulting low pressure allows the high- which causes the air to be less dense and rise. As the warm pressure air at the poles to flow along the planet’s surface air flows toward the poles, it cools, becoming denser and toward the equator. While this pattern of air circulation is sinks back toward the surface. [Figure 12-3] 12-3 1 Suare Inch 1 Suare Inch 1 1 Suare Inch 1 Suare Inch 7.4 lb 1800018000 feetfeet 1 14.7 Sea level lb Figure 12-5. Three-cell circulation pattern due to the rotation of the Earth. Figure 12-4. Atmosphere weights. the surface. Then, it flows southward along the surface back toward the equator. Coriolis force bends the flow to the right, correct in theory, the circulation of air is modified by several thus creating the northeasterly trade winds that prevail from forces, the most important of which is the rotation of the Earth. 30° latitude to the equator. Similar forces create circulation cells that encircle the Earth between 30° and 60° latitude and The force created by the rotation of the Earth is known as between 60° and the poles. This circulation pattern results in the Coriolis force. This force is not perceptible to humans as the prevailing upper level westerly winds in the conterminous they walk around because humans move slowly and travel United States. relatively short distances compared to the size and rotation rate of the Earth. However, the Coriolis force significantly Circulation patterns are further complicated by seasonal affects motion over large distances, such as an air mass or changes, differences between the surfaces of continents and body of water. oceans, and other factors such as frictional forces caused by the topography of the Earth’s surface that modify the The Coriolis force deflects air to the right in the Northern movement of the air in the atmosphere. For example, within Hemisphere, causing it to follow a curved path instead of a 2,000 feet of the ground, the friction between the surface and straight line. The amount of deflection differs depending on the atmosphere slows the moving air. The wind is diverted the latitude. It is greatest at the poles and diminishes to zero from its path because of the frictional force. Thus, the wind at the equator. The magnitude of Coriolis force also differs direction at the surface varies somewhat from the wind with the speed of the moving body—the greater the speed, direction just a few thousand feet above the Earth.
Recommended publications
  • How to Read a METAR
    How to read a METAR A METAR will look something like this: PHNY 202124Z AUTO 27009KT 1 1/4SM BR BKN016 BKN038 22/21 A3018 RMK AO2 Let’s decipher what each bit of the METAR means. PHNY The first part of the METAR is the airport identifier for the facility which produced the METAR. In this case, this is Lanai Airport in Hawaii. 202124Z Next comes the time and date of issue. The first two digits correspond to the date of the month, and the last 4 digits correspond to the time of issue (in Zulu time). In the example, the METAR was issued on the 20th of the month at 21:24 Zulu time. AUTO This part indicates that the METAR was generated automatically. 27009KT Next comes the wind information. The first 3 digits represent the heading from which the wind is blowing, and the next digits indicate speed in knots. In this case, the wind is coming from a heading of 270 relative to magnetic north, and the speed is 9 knots. Some other wind-related notation you might see: • 27009G15KT – the G indicates gusting. In this case, the wind comes from 270 at 9 knots, and gusts to 15 knots. • VRB09KT – the VRB indicates the wind direction is variable; the wind speed is 9 knots. 1 1/4SM This section of the METAR indicates visibility in statute miles. In this case, visibility is 1 ¼ statute miles. Note that the range is typically limited to 10 statute miles, so a report with 10 statute mile visibility could well indicate a situation with more than 10 statute miles of visibility.
    [Show full text]
  • A Local Large Hail Probability Equation for Columbia, Sc
    EASTERN REGION TECHNICAL ATTACHMENT NO. 98-6 AUGUST, 1998 A LOCAL LARGE HAIL PROBABILITY EQUATION FOR COLUMBIA, SC Mark DeLisi NOAA/National Weather Service Forecast Office West Columbia, SC Editor’s Note: The author’s current affiliation is NWSFO Mt. Holly, NJ. 1. INTRODUCTION Skew-T/Hodograph Analysis and Research Program, or SHARP (Hart and Korotky Billet et al. (1997) derived a successful 1991). The dependent variable, hail diameter probability of large hail (diameter greater than or the absence of hail, was derived from or equal to 0.75 inch) equation as an aid in spotter reports for the CAE warning area from National Weather Service (NWS) severe May, 1995 through September, 1996. There thunderstorm warning operations. Hail of that were 136 cases used to develop the regression diameter or larger requires a severe equation. thunderstorm warning be issued by NWS offices. Shortly thereafter, a Weather The LPLH was verified using 69 spotter Surveillance Radar-1988 Doppler (WSR- reports from the period September, 1996 88D) radar probability of severe hail (POSH) through September, 1997. The POSH was became available for warning operations (Witt verified as well. Verification statistics et al. 1998). This study recreates the steps included the Brier score and the chi-square taken in Billet et al. (1997) to derive a local (32) statistic. probability of large hail equation (LPLH) for the Columbia, SC National Weather Service The goal of this study was to develop an Forecast Office (CAE) warning area, and it objective method to estimate the probability assesses the utility of the LPLH relative to the of large hail for use in forecast operations.
    [Show full text]
  • A Comparison of Precipitation from Maritime and Continental Air
    254 BULLETIN AMERICAN METEOROLOGICAL SOCIETY A Comparison of Precipitation from Maritime and Continental Air GEORGE S. BENTON 1 and ROBERT T. BLACKBURN 2 OR many decades, knowledge of atmospheric These 123 periods of precipitation for 1946 were F movements of water vapor has lagged behind grouped as indicated below. Classifications for other phases of meteorological information. In which precipitation was necessarily from maritime recent years, however, the accumulation of upper- air are marked with an asterisk; classifications for air data has stimulated hydrometeorological re- which precipitation was necessarily from contin- search. One interesting problem considered has ental air are marked with a double asterisk. For been the source of precipitation classified accord- all other classifications, precipitation may have ing to air mass. occurred either from maritime or continental air, In 1937 Holzman [2] advanced the hypothesis depending upon the individual circumstances. that the great majority of precipitation comes from maritime air masses. Although meteorologists I. Cold front have generally been willing to accept this hypothe- A. Pre-frontal precipitation sis on the basis of their qualitative familiarity with *1. MT present throughout tropo- atmospheric phenomena, little has been done to sphere determine quantitatively the percentage of pre- **2. cP present throughout tropo- cipitation which can actually be traced to maritime sphere air. Certainly the precipitation from continental 3. MT overriding cP in warm sec- air masses must be measurable and must vary in tor importance from region to region. B. Post-frontal precipitation In the course of an analysis of the role of the 1. MT overriding cP atmosphere in the hydrologic cycle [1], the au- *a.
    [Show full text]
  • Fog and Low Clouds As Troublemakers During Wildfi Res
    When Our Heads Are in the Clouds Sometimes water droplets do not freeze in below- Detecting fog from space Up to 60,000 ft (18,000m) freezing temperatures. This happens if they do not have Weather satellites operated by the National Oceanic The fog comes a surface (like a dust particle or an ice crystal) upon and Atmospheric Administration (NOAA) collect data on on little cat feet. which to freeze. This below-freezing liquid water becomes clouds and storms. Cirrus Commercial Jetliner “supercooled.” Then when it touches a surface whose It sits looking (36,000 ft / 11,000m) temperature is below freezing, such as a road or sidewalk, NOAA operates two different types of satellites. over harbor and city Geostationary satellites orbit at about 22,236 miles Breitling Orbiter 3 the water will freeze instantly, making a super-slick icy on silent haunches (34,000 ft / 10,400m) Cirrocumulus coating on whatever it touches. This condition is called (35,786 kilometers) above sea level at the equator. At this and then moves on. Mount Everest (29,035 ft / 8,850m) freezing fog. altitude, the satellite makes one Earth orbit per day, just Carl Sandburg Cirrostratus as Earth rotates once per day. Thus, the satellite seems to 20,000 feet (6,000 m) Cumulonimbus hover over one spot below and keeps its “birds’-eye view” of nearly half the Earth at once. Altocumulus The other type of NOAA satellites are polar satellites. Their orbits pass over, or nearly over, the North and South Clear and cloudy regions over the U.S.
    [Show full text]
  • Air Masses and Fronts
    CHAPTER 4 AIR MASSES AND FRONTS Temperature, in the form of heating and cooling, contrasts and produces a homogeneous mass of air. The plays a key roll in our atmosphere’s circulation. energy supplied to Earth’s surface from the Sun is Heating and cooling is also the key in the formation of distributed to the air mass by convection, radiation, and various air masses. These air masses, because of conduction. temperature contrast, ultimately result in the formation Another condition necessary for air mass formation of frontal systems. The air masses and frontal systems, is equilibrium between ground and air. This is however, could not move significantly without the established by a combination of the following interplay of low-pressure systems (cyclones). processes: (1) turbulent-convective transport of heat Some regions of Earth have weak pressure upward into the higher levels of the air; (2) cooling of gradients at times that allow for little air movement. air by radiation loss of heat; and (3) transport of heat by Therefore, the air lying over these regions eventually evaporation and condensation processes. takes on the certain characteristics of temperature and The fastest and most effective process involved in moisture normal to that region. Ultimately, air masses establishing equilibrium is the turbulent-convective with these specific characteristics (warm, cold, moist, transport of heat upwards. The slowest and least or dry) develop. Because of the existence of cyclones effective process is radiation. and other factors aloft, these air masses are eventually subject to some movement that forces them together. During radiation and turbulent-convective When these air masses are forced together, fronts processes, evaporation and condensation contribute in develop between them.
    [Show full text]
  • Heat Advection Processes Leading to El Niño Events As
    1 2 Title: 3 Heat advection processes leading to El Niño events as depicted by an ensemble of ocean 4 assimilation products 5 6 Authors: 7 Joan Ballester (1,2), Simona Bordoni (1), Desislava Petrova (2), Xavier Rodó (2,3) 8 9 Affiliations: 10 (1) California Institute of Technology (Caltech), Pasadena, California, United States 11 (2) Institut Català de Ciències del Clima (IC3), Barcelona, Catalonia, Spain 12 (3) Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 13 14 Corresponding author: 15 Joan Ballester 16 California Institute of Technology (Caltech) 17 1200 E California Blvd, Pasadena, CA 91125, US 18 Mail Code: 131-24 19 Tel.: +1-626-395-8703 20 Email: [email protected] 21 22 Manuscript 23 Submitted to Journal of Climate 24 1 25 26 Abstract 27 28 The oscillatory nature of El Niño-Southern Oscillation results from an intricate 29 superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the 30 ocean and the atmosphere. Several authors have shown that the heat content stored in the equatorial 31 subsurface is key to provide memory to the system. Here we use an ensemble of ocean assimilation 32 products to describe how heat advection is maintained in each dataset during the different stages of 33 the oscillation. 34 Our analyses show that vertical advection due to surface horizontal convergence and 35 downwelling motion is the only process contributing significantly to the initial subsurface warming 36 in the western equatorial Pacific. This initial warming is found to be advected to the central Pacific 37 by the equatorial undercurrent, which, together with the equatorward advection associated with 38 anomalies in both the meridional temperature gradient and circulation at the level of the 39 thermocline, explains the heat buildup in the central Pacific during the recharge phase.
    [Show full text]
  • Wildland Fire Incident Management Field Guide
    A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable.
    [Show full text]
  • Imet-4 Radiosonde 403 Mhz GPS Synoptic
    iMet-4 Radiosonde 403 MHz GPS Synoptic Technical Data Sheet Temperature and Humidity Radiosonde Data Transmission The iMet-4 measures air temperature with a The iMet-4 radiosonde can transmit to an small glass bead thermistor. Its small size effective range of over 250 km*. minimizes effects caused by long and short- wave radiation and ensures fast response times. A 6 kHz peak-to-peak FM transmission maximizes efficiency and makes more channels The humidity sensor is a thin-film capacitive available for operational use. Seven frequency polymer that responds directly to relative selections are pre-programmed - with custom humidity. The sensor incorporates a temperature programming available. sensor to minimize errors caused by solar heating. Calibration Pressure and Height The iMet-4’s temperature and humidity sensors are calibrated using NIST traceable references to As recommended by GRUAN3, the iMet-4 is yield the highest data quality. equipped with a pressure sensor to calculate height at lower levels in the atmosphere. Once Benefits the radiosonde reaches the optimal height, pressure is derived using GPS altitude combined • Superior PTU performance with temperature and humidity data. • Lightweight, compact design • No assembly or recalibration required The pressure sensor facilitates the use of the • GRUAN3 qualified (pending) sonde in field campaigns where a calibrated • Status LED indicates transmit frequency barometer is not available to establish an selection and 3-D GPS solution accurate ground observation for GPS-derived • Simple one-button user interface pressure. For synoptic use, the sensor is bias adjusted at ground level. Winds Data from the radiosonde's GPS receiver is used to calculate wind speed and direction.
    [Show full text]
  • Use Style: Paper Title
    Environmental Conditions Producing Thunderstorms with Anomalous Vertical Polarity of Charge Structure Donald R. MacGorman Alexander J. Eddy NOAA/Nat’l Severe Storms Laboratory & Cooperative Cooperative Institute for Mesoscale Meteorological Institute for Mesoscale Meteorological Studies Studies Affiliation/ Univ. of Oklahoma and NOAA/OAR Norman, Oklahoma, USA Norman, Oklahoma, USA [email protected] Earle Williams Cameron R. Homeyer Massachusetts Insitute of Technology School of Meteorology, Univ. of Oklhaoma Cambridge, Massachusetts, USA Norman, Oklahoma, USA Abstract—+CG flashes typically comprise an unusually large Tessendorf et al. 2007, Weiss et al. 2008, Fleenor et al. 2009, fraction of CG activity in thunderstorms with anomalous vertical Emersic et al. 2011; DiGangi et al. 2016). Furthermore, charge structure. We analyzed more than a decade of NLDN previous studies have suggested that CG activity tends to be data on a 15 km x 15 km x 15 min grid spanning the contiguous delayed tens of minutes longer in these anomalous storms than United States, to identify storm cells in which +CG flashes in most storms elsewhere (MacGorman et al. 2011). constituted a large fraction of CG activity, as a proxy for thunderstorms with anomalous vertical charge structure, and For this study, we analyzed more than a decade of CG data storm cells with very low percentages of +CG lightning, as a from the National Lightning Detection Network throughout the proxy for thunderstorms with normal-polarity distributions. In contiguous United States to identify storm cells in which +CG each of seven regions, we used North American Regional flashes constituted a large fraction of CG activity, as a proxy Reanalysis data to compare the environments of anomalous for storms with anomalous vertical charge structure.
    [Show full text]
  • Aviation Glossary
    AVIATION GLOSSARY 100-hour inspection – A complete inspection of an aircraft operated for hire required after every 100 hours of operation. It is identical to an annual inspection but may be performed by any certified Airframe and Powerplant mechanic. Absolute altitude – The vertical distance of an aircraft above the terrain. AD - See Airworthiness Directive. ADC – See Air Data Computer. ADF - See Automatic Direction Finder. Adverse yaw - A flight condition in which the nose of an aircraft tends to turn away from the intended direction of turn. Aeronautical Information Manual (AIM) – A primary FAA publication whose purpose is to instruct airmen about operating in the National Airspace System of the U.S. A/FD – See Airport/Facility Directory. AHRS – See Attitude Heading Reference System. Ailerons – A primary flight control surface mounted on the trailing edge of an airplane wing, near the tip. AIM – See Aeronautical Information Manual. Air data computer (ADC) – The system that receives and processes pitot pressure, static pressure, and temperature to present precise information in the cockpit such as altitude, indicated airspeed, true airspeed, vertical speed, wind direction and velocity, and air temperature. Airfoil – Any surface designed to obtain a useful reaction, or lift, from air passing over it. Airmen’s Meteorological Information (AIRMET) - Issued to advise pilots of significant weather, but describes conditions with lower intensities than SIGMETs. AIRMET – See Airmen’s Meteorological Information. Airport/Facility Directory (A/FD) – An FAA publication containing information on all airports, seaplane bases and heliports open to the public as well as communications data, navigational facilities and some procedures and special notices.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable.
    [Show full text]
  • GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41
    GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41 WHITE PAPER Table of Contents CHAPTER 1 Introduction ................................................................................................................................................. 4 Executive Summary of Measurement Performance ............................................................................. 5 CHAPTER 2 GPS Technology in the Vaisala Radiosonde RS41 ........................................................................................... 6 Radiosonde GPS Receiver .................................................................................................................. 6 Local GPS Receiver .......................................................................................................................... 6 Calculation Algorithms ..................................................................................................................... 6 CHAPTER 3 GPS-Based Measurement Methods ............................................................................................................... 7 Height Measurement ......................................................................................................................... 7 Pressure Measurement ..................................................................................................................... 7 Measurement Accuracy..................................................................................................................... 8 CHAPTER
    [Show full text]