Lesson 3 Predicting Weather

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 3 Predicting Weather LESSON 3 PREDICTING WEATHER Chapter 7, Weather and Climate OBJECTIVES • Describe high- and low- pressure systems and the weather associated with each. • Explain how technology is used to study weather. MAIN IDEA • To predict weather, scientists study air’s properties and movement. VOCABULARY • isobar - lines that connect places with equal air pressure • air mass - a large region of the atmosphere in which the air has similar properties throughout • front - the boundary between two air masses • cold front - cold air moves in under a warm air mass • warm front - warm air moves in over a cold air mass • occluded front - a weather front where a cold front catches up with a warm front and then moves underneath the warm front producing a wedge of warm air between two masses of cold air WHAT ARE HIGHS AND LOWS? • Scientists predict weather by studying how wind moves, from areas of high pressure to areas of low pressure. • A region’s air pressure is shown on weather maps which include isobars, measured in millibars, to show places with equal air pressure. • A low pressure system is illustrated by an (L) and has isobar readings that decrease towards the center. • A high pressure system (H) has, at its center, higher air pressure than its surroundings. • Wind speed is fastest where air pressure differences are greatest. • Closely spaced isobars show a large change over a small area, which indicates high wind speeds. • Gentle winds are shown by widely spaced isobars. AIR MOVEMENT AROUND HIGHS AND LOWS • Air flows outward from the center of a high pressure system. • The air leaving rotates clockwise in the Northern Hemisphere because of the Coriolis effect. • In a low pressure system, the opposite occurs; air flows in and rotates counterclockwise. • In the Southern Hemisphere the opposite occurs; the Coriolis effect bends moving air to the left. AIR PRESSURE AND WEATHER • Fair weather is usually found in areas of high pressure. • Clouds and precipitation are found in low- pressure areas. • A drop in air pressure is usually followed by storms and rain; this can be predicted by a drop in barometer readings. QUICK CHECK Cause and Effect What kind of weather would be caused by a drop in air pressure? The types of weather caused by a drop in air pressure includes: clouds, rainfall (precipitation), and storms. Critical Thinking In what direction would air move around a low in the Southern Hemisphere? Explain. In the Southern Hemisphere air moves clockwise around a low pressure system. Air would move in toward the low and curve to the right. This is the opposite of the type of motion in the Northern Hemisphere. WHAT ARE WEATHER FRONTS? • Weather conditions vary due to different air masses. • Each air mass has its own characteristics. • Air masses that form over • land tend to be dry, • water – humid, • tropics – hot, • poles – cold. • Global winds such as westerlies, west to east, move air masses. • Air masses meet at a front. • One of the three basic types of moving fronts is a cold front. Cold fronts usually have quick, heavy storms, followed by clear, cool, and dry weather. • Warm fronts usually have light, steady precipitation, followed by warm and humid weather. • In an occluded front the storm is usually brief. INTERPRETING WEATHER MAPS • Factors that influence weather are air pressure, humidity, and temperature. • Scientists compile this and other information and use computers to analyze the information which is then summarized on weather maps. • On a weather map look at the high and low air pressure systems. • High means fair weather and lows mean precipitation. • Then look at the fronts. • Fronts always come out of lows. • In the Northern Hemisphere, fronts rotate counterclockwise around a low. • If you are northeast of an approaching front, the winds will blow from the southeast. QUICK CHECK Cause and Effect Suppose the temperature dropped and a storm brought heavy rains. Which type of front might have caused this? Cold fronts bring heavy storms. Critical Thinking Why does weather change along a front? Weather changes along a front because one type of air mass is replaced by another air mass. HOW IS TECHNOLOGY USED TO STUDY WEATHER? • Weather stations record temperature, wind direction, wind speed, and humidity. • Weather balloons rise up 22 miles (35 km) into the stratosphere collecting data. • Replacing balloons is expensive, so satellites are used. • Satellites take pictures of earth and weather conditions. • Radar, using radio signals, pulses of energy, detects precipitation. • Doppler radar measures wind speed. • Using all these instruments and data, scientists form detailed pictures of weather conditions. QUICK CHECK Cause and Effect What effect has technology had on weather prediction? Technology allows us to be more accurate in predicting the weather. Satellites and radar provide data for large areas. Computers can process it, so scientists can predict weather more quickly and accurately. Critical Thinking Why is it better to obtain weather information from more than one source? Additional sources provide a “backup” to ensure accuracy. .
Recommended publications
  • A Comparison of Precipitation from Maritime and Continental Air
    254 BULLETIN AMERICAN METEOROLOGICAL SOCIETY A Comparison of Precipitation from Maritime and Continental Air GEORGE S. BENTON 1 and ROBERT T. BLACKBURN 2 OR many decades, knowledge of atmospheric These 123 periods of precipitation for 1946 were F movements of water vapor has lagged behind grouped as indicated below. Classifications for other phases of meteorological information. In which precipitation was necessarily from maritime recent years, however, the accumulation of upper- air are marked with an asterisk; classifications for air data has stimulated hydrometeorological re- which precipitation was necessarily from contin- search. One interesting problem considered has ental air are marked with a double asterisk. For been the source of precipitation classified accord- all other classifications, precipitation may have ing to air mass. occurred either from maritime or continental air, In 1937 Holzman [2] advanced the hypothesis depending upon the individual circumstances. that the great majority of precipitation comes from maritime air masses. Although meteorologists I. Cold front have generally been willing to accept this hypothe- A. Pre-frontal precipitation sis on the basis of their qualitative familiarity with *1. MT present throughout tropo- atmospheric phenomena, little has been done to sphere determine quantitatively the percentage of pre- **2. cP present throughout tropo- cipitation which can actually be traced to maritime sphere air. Certainly the precipitation from continental 3. MT overriding cP in warm sec- air masses must be measurable and must vary in tor importance from region to region. B. Post-frontal precipitation In the course of an analysis of the role of the 1. MT overriding cP atmosphere in the hydrologic cycle [1], the au- *a.
    [Show full text]
  • Air Masses and Fronts
    CHAPTER 4 AIR MASSES AND FRONTS Temperature, in the form of heating and cooling, contrasts and produces a homogeneous mass of air. The plays a key roll in our atmosphere’s circulation. energy supplied to Earth’s surface from the Sun is Heating and cooling is also the key in the formation of distributed to the air mass by convection, radiation, and various air masses. These air masses, because of conduction. temperature contrast, ultimately result in the formation Another condition necessary for air mass formation of frontal systems. The air masses and frontal systems, is equilibrium between ground and air. This is however, could not move significantly without the established by a combination of the following interplay of low-pressure systems (cyclones). processes: (1) turbulent-convective transport of heat Some regions of Earth have weak pressure upward into the higher levels of the air; (2) cooling of gradients at times that allow for little air movement. air by radiation loss of heat; and (3) transport of heat by Therefore, the air lying over these regions eventually evaporation and condensation processes. takes on the certain characteristics of temperature and The fastest and most effective process involved in moisture normal to that region. Ultimately, air masses establishing equilibrium is the turbulent-convective with these specific characteristics (warm, cold, moist, transport of heat upwards. The slowest and least or dry) develop. Because of the existence of cyclones effective process is radiation. and other factors aloft, these air masses are eventually subject to some movement that forces them together. During radiation and turbulent-convective When these air masses are forced together, fronts processes, evaporation and condensation contribute in develop between them.
    [Show full text]
  • The Fujita Scale F‐Scale Intensity Wind Type of Damage Done Number Phrase Speed
    Weather‐Wind Worksheet 2 L2 MiSP Weather-Wind Speed and Direction Worksheet #2 L2 Name _____________________________ Date_____________ Tornados – Pressure and Wind Speed Introduction (excerpts from http://www.srh.noaa.gov/jetstream/tstorms/tornado.htm ) A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground. The United States experiences more tornadoes by far than any other country. In a typical year about 1000 tornadoes will strike the United States. The peak of the tornado season is April through June and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley." Most tornadoes are spawned from thunderstorms. Tornadoes can last from several seconds to more than an hour but most last less than 10 minutes. The size and/or shape of a tornado are no measure of its strength. Occasionally, small tornadoes do major damage and some very large tornadoes, over a quarter-mile wide, have produced only light damage. The Fujita Scale F‐Scale Intensity Wind Type of Damage Done Number Phrase Speed 40‐72 Some damage to chimneys; breaks branches off trees; F0 Gale tornado mph pushes over shallow‐rooted trees; damages sign boards. The lower limit is the beginning of hurricane wind speed; Moderate 73‐112 peels surface off roofs; mobile homes pushed off F1 tornado mph foundations or overturned; moving autos pushed off the roads; attached garages may be destroyed. Considerable damage. Roofs torn off frame houses; Significant 113‐157 mobile homes demolished; boxcars pushed over; large F2 tornado mph trees snapped or uprooted; light object missiles generated.
    [Show full text]
  • WHAT IS METEOROLOGY? Meteorology Is the Science of Weather
    WHAT IS METEOROLOGY? Meteorology is the science of weather. It is essentially an inter-disciplinary science because the atmosphere, land and ocean constitute an integrated system. The three basic aspects of meteorology are observation, understanding and prediction of weather. There are many kinds of routine meteorological observations. Some of them are made with simple instruments like the thermometer for measuring temperature or the anemometer for recording wind speed. The observing techniques have become increasingly complex in recent years and satellites have now made it possible to monitor the weather globally. Countries around the world exchange the weather observations through fast telecommunications channels. These are plotted on weather charts and analysed by professional meteorologists at forecasting centres. Weather forecasts are then made with the help of modern computers and supercomputers. Weather information and forecasts are of vital importance to many activities like agriculture, aviation, shipping, fisheries, tourism, defence, industrial projects, water management and disaster mitigation. Recent advances in satellite and computer technology have led to significant progress in meteorology. Our knowledge of the weather is, however, still incomplete. WHAT IS SYNOPTIC METEOROLOGY? Weather observations, taken on the ground or on ships, and in the upper atmosphere with the help of balloon soundings, represent the state of the atmosphere at a given time. When the data are plotted on a weather map, we get a synoptic view of the worlds weather. Hence day-to-day analysis and forecasting of weather has come to be known as synoptic meteorology. It is the study of the movement of low pressure areas, air masses, fronts, and other weather systems like depressions and tropical cyclones.
    [Show full text]
  • Weather Forecasting and to the Measuring Weather Data, Instruments, and Science That Make Forecasting Accurate
    Delta Science Reader WWeathereather ForecastingForecasting Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. VERVIEW Students will O understand the main factors that cause The Delta Science Reader Weather weather and produce weather changes Forecasting introduces students to the learn about the various instruments for world of weather forecasting and to the measuring weather data, instruments, and science that make forecasting accurate. Students will explore identify some of the elements of severe the six main weather factors—temperature, weather, and distinguish between weather air pressure, wind, humidity, precipitation, and climate and cloudiness—as well as discover the discuss the function of nonfiction text difference between weather and climate. elements such as the table of contents, The book also contains a biographical headings, tables, captions, and glossary sketch of tornado expert Tetsuya Theodore Fujita and information about two other kinds interpret photographs and graphics— of weather scientists: climatologists and diagrams, illustrations, weather maps— hurricane hunters. Students will find out to answer questions how a weather satellite works and how complete a KWL chart to track new different types of winds get their names.
    [Show full text]
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • Wind Energy Forecasting: a Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy
    Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy Keith Parks Xcel Energy Denver, Colorado Yih-Huei Wan National Renewable Energy Laboratory Golden, Colorado Gerry Wiener and Yubao Liu University Corporation for Atmospheric Research (UCAR) Boulder, Colorado NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. S ubcontract Report NREL/SR-5500-52233 October 2011 Contract No. DE-AC36-08GO28308 Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy Keith Parks Xcel Energy Denver, Colorado Yih-Huei Wan National Renewable Energy Laboratory Golden, Colorado Gerry Wiener and Yubao Liu University Corporation for Atmospheric Research (UCAR) Boulder, Colorado NREL Technical Monitor: Erik Ela Prepared under Subcontract No. AFW-0-99427-01 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 1617 Cole Boulevard NREL/SR-5500-52233 Golden, Colorado 80401 October 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Wind Characteristics 1 Meteorology of Wind
    Chapter 2—Wind Characteristics 2–1 WIND CHARACTERISTICS The wind blows to the south and goes round to the north:, round and round goes the wind, and on its circuits the wind returns. Ecclesiastes 1:6 The earth’s atmosphere can be modeled as a gigantic heat engine. It extracts energy from one reservoir (the sun) and delivers heat to another reservoir at a lower temperature (space). In the process, work is done on the gases in the atmosphere and upon the earth-atmosphere boundary. There will be regions where the air pressure is temporarily higher or lower than average. This difference in air pressure causes atmospheric gases or wind to flow from the region of higher pressure to that of lower pressure. These regions are typically hundreds of kilometers in diameter. Solar radiation, evaporation of water, cloud cover, and surface roughness all play important roles in determining the conditions of the atmosphere. The study of the interactions between these effects is a complex subject called meteorology, which is covered by many excellent textbooks.[4, 8, 20] Therefore only a brief introduction to that part of meteorology concerning the flow of wind will be given in this text. 1 METEOROLOGY OF WIND The basic driving force of air movement is a difference in air pressure between two regions. This air pressure is described by several physical laws. One of these is Boyle’s law, which states that the product of pressure and volume of a gas at a constant temperature must be a constant, or p1V1 = p2V2 (1) Another law is Charles’ law, which states that, for constant pressure, the volume of a gas varies directly with absolute temperature.
    [Show full text]
  • Weather Maps
    Name: ______________________________________ Date: ________________________ Student Exploration: Weather Maps Vocabulary: air mass, air pressure, cold front, high-pressure system, knot, low-pressure system, precipitation, warm front Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. How would you describe your weather today? ____________________________________ _________________________________________________________________________ 2. What information is important to include when you are describing the weather? __________ _________________________________________________________________________ Gizmo Warm-up Data on weather conditions is gathered from weather stations all over the world. This information is combined with satellite and radar images to create weather maps that show current conditions. With the Weather Maps Gizmo, you will use this information to interpret a variety of common weather patterns. A weather station symbol, shown at right, summarizes the weather conditions at a location. 1. The amount of cloud cover is shown by filling in the circle. A black circle indicates completely overcast conditions, while a white circle indicates a clear sky. What percentage of cloud cover is indicated on the symbol above? ____________________ 2. Look at the “tail” that is sticking out from the circle. The tail points to where the wind is coming from. If the tail points north, a north wind is moving from north to south. What direction is the wind coming from on the symbol above? ________________________ 3. The “feathers” that stick out from the tail indicate the wind speed in knots. (1 knot = 1.151 miles per hour.) A short feather represents 5 knots (5.75 mph), a long feather represents 10 knots (11.51 mph), and a triangular feather stands for 50 knots (57.54 mph).
    [Show full text]
  • Weather Observations
    Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • December 2013
    Oklahoma Monthly Climate Summary DECEMBER 2013 A frigid and sometimes icy December seemed a fitting way to 1.53 inches, about a half-inch below normal, to rank as the close out the boisterous weather of 2013. Preliminary data from 59th wettest December on record. That total is possibly an the Oklahoma Mesonet ranked the month as the 17th coolest underestimate due to the frozen precipitation, although the December on record at nearly 4 degrees below normal. Records moisture pattern across various parts of the state was quite of this type for Oklahoma date back to 1895. The statewide clear. Far southeastern Oklahoma received from 3-5 inches average temperature as recorded by the Mesonet was 35.2 during the month while western areas of the state received degrees. As chilly as it seemed, however, that mark provided less than a half-inch, in general. little threat to 1983’s record cold of 25.8 degrees, but also far cooler than 2012’s 42.1 degrees. There were two significant The cold December propelled 2013’s statewide average winter storms during December, each creating headaches for annual temperature to a mark of 58.9 degrees, 0.8 degrees travelers and power utility companies. The first storm struck on below normal and the 27th coolest calendar year on record for December 5-6 in two separate waves and brought freezing rain, the state. That mark stands in stark contrast to 2012’s record sleet and snow across the state. Significant snow totals of 5-6 warm year of 63.1 degrees.
    [Show full text]