MEA 443 Synoptic Weather Analysis and Forecasting Fronts and Frontogenesis Monday, 23 November 2009 Gary Lackmann

Total Page:16

File Type:pdf, Size:1020Kb

MEA 443 Synoptic Weather Analysis and Forecasting Fronts and Frontogenesis Monday, 23 November 2009 Gary Lackmann MEA 443 Synoptic Weather Analysis and Forecasting Fronts and Frontogenesis Monday, 23 November 2009 Gary Lackmann IV. Fronts and Jets A. Frontogenesis 1.) General frontal properties 2.) Review of kinematic frontogenesis mechanisms 3.) QG frontogenesis 4.) Transverse circulations: The Sawyer-Eliassen Equation 5.) Frontal collapse and frontal dynamics B. Types of fronts 1.) Cold frontal structures a.) Katafront b.) Anafront c.) Arctic fronts and other variations 2.) Warm fronts 3.) Occluded fronts (Bluestein Vol. II, 273-277) 4.) The coastal front (Bluestein Vol II, 277-282) C. Upper Fronts and Jets 1. Cold Frontal Structures Fronts of the same “type” are not always accompanied by similar weather conditions. We have seen numerous examples of this already this semester in forecasting—some cold fronts are accompanied by heavy precipitation, other frontal passages are completely dry. Also, stronger fronts are not necessarily accompanied by more “weather” than weak ones. Last week, we discussed some of the factors that dictate the extent of clouds and precipitation along a front, and today we will explore some of these factors a bit more. For example, cold-frontal weather is sensitive to the pattern of air flow in its vicinity. The storm (front) relative isentropic flow framework is a good one to use in understanding how airflow in a frontal system and weather are related. Cold-frontal characteristics: • By definition, cold air is advancing • Usually located within low-pressure trough, accompanied by wind shift, cyclonic vorticity • In some cases, a trough may precede surface front (“pre-frontal trough”) • Front is often most intense at surface, weakens with height • Frontal zone is marked by large static stability • Frontal zone accompanied by strong vertical wind shear In addition to the basic characteristics listed on the previous page, there are different types of front- relative precipitation. These depend on the front-relative orientation of the cold front and the “warm conveyor belt” (the main flow of warm, moist air that is typically located in the warm sector of a cyclone ahead of the cold front). The two basic structures are the katafront and the anafront. “Narrow cold-frontal “Split front” rainband (NCFR)” a.) Katafront b.) Anafront a.) Katafront structure: • The warm conveyor belt is oriented such that the primary lift is ahead of the surface cold front • Often, a push of dryer, cooler air aloft has advanced ahead of the surface cold front • The leading edge of this low-θe or θw air is known as a “cold front aloft”, or CFA • These are also known as a type of “split front” • Precipitation is heaviest at or ahead of surface cold front, can be well ahead of it. • The surface cold front may pass with only light precipitation, or none at all. • There is forward-sloping ascent; see Browning and Monk (1982) for details b.) Anafront: • Rearward-sloping ascent with warm conveyor belt overrunning cold air • Heaviest precipitation at or behind surface front • Obvious implications for precipitation-type forecasting in winter • Low-level jet (LLJ) often intense immediately ahead of cold front • Often a narrow cold-frontal rainband (NCFR) is located right at the front with lighter precipitation behind Idealized cross section of clouds and precipitation in an anafront. Vertical lines represent precipitation, and arrows represent airflow relative to front. IPC stands for ice-particle concentrations in # per liter, and liquid water content (lwc) is given in g/m3. Figure from Matejka et al. 1980. New England c.) Arctic fronts, “back-door” cold fronts, and other structures back-door cold • Very shallow, may not be accompanied by precipitation front • Movement may be consistent with that of a density current • What the heck is a density current? 2.) Warm Fronts • By definition, warm air is advancing • Because warm air less dense, mixing at frontal interface contributes to frontal advance • Warm air is advancing, sometimes discontinuously, veering wind with height • Shallow nature of frontal zone makes for weaker pressure trough there • Often more subtle than cold fronts, and may not be present for some cyclones. • In some cases, trough may precede surface front to mark location of warm front aloft • With anticyclone to N or NE, front will be most pronounced • “Easterlies north of warm front” - a good analysis rule for locating the cold front 850-mb level Surface a.) “Back-door warm front”: Warm maritime polar wraps around north side of cyclone, WAA NW of cyclone center: The diagram above was included on a past quiz… see point “B” northerly warm advection?? 3.) Occluded fronts a.) The occlusion process We discussed the frontal evolution accompanying a typical midlatitude cyclone earlier in the semester. Two different evolutions were presented: 1.) The “Norwegian cyclone model”, and 2.) The more recent “Shapiro-Keyser” model. Here are the key points from the comparison: • In both models, initial development takes place along a stationary front • As the frontal wave amplifies, cold air retreats to the east & pushes southward to the west • At the point when the occluded front develops, the cyclone is near peak intensity • Local topographic features & other influences can cause departures from the idealized case The nature of the occlusion process continues to be debated. The original Norwegian cyclone model explained occlusion as a faster-moving cold front overtaking a warm front. However, the Wallace & Hobbs textbook states “…there are few, if any, well-documented examples of cold fronts overtaking warm fronts to form occlusions. Rather, it appears that most occluded fronts are essentially new fronts which form as surface lows separate themselves from the junctions of their respective warm and cold fronts and deepen progressively further back into the cold air.” More recently, Schultz and Mass (1993) and Schultz et al. (1998) undertook a careful analysis of the occlusion process, and found that frontal catch-up was observed. We can conclude that in at least some cases, the catch-up process appears to be important, but that the front lengthens due to the known tendency of the surface cyclone to deepen back towards the cold air. What phenomenon might be influencing the frontal evolution in the images above? b.) Warm and cold type occlusions Wallace and Hobbs, along with other texts and articles, point out that if the air behind an occluded front is colder than the air ahead of the boundary, then a “cold-type” occlusion structure will result. The counterpart to this would be a warm-type occlusion structure. Cold and warm-type occlusion structures (from Schultz and Mass 1993 at left, and Wallace and Hobbs 1997 below). Schultz and Mass also scoured the literature to find examples of warm and cold-type occlusions, and could find no clear examples of cold-type occlusion structures. c.) Instant occlusions Another non-classical frontal evolution is referred to as “instant occlusion”. This process is described by the schematic below, taken from McGinnigle et al. 1988: Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev. 126, 1767–1791. .
Recommended publications
  • Air Masses and Fronts
    CHAPTER 4 AIR MASSES AND FRONTS Temperature, in the form of heating and cooling, contrasts and produces a homogeneous mass of air. The plays a key roll in our atmosphere’s circulation. energy supplied to Earth’s surface from the Sun is Heating and cooling is also the key in the formation of distributed to the air mass by convection, radiation, and various air masses. These air masses, because of conduction. temperature contrast, ultimately result in the formation Another condition necessary for air mass formation of frontal systems. The air masses and frontal systems, is equilibrium between ground and air. This is however, could not move significantly without the established by a combination of the following interplay of low-pressure systems (cyclones). processes: (1) turbulent-convective transport of heat Some regions of Earth have weak pressure upward into the higher levels of the air; (2) cooling of gradients at times that allow for little air movement. air by radiation loss of heat; and (3) transport of heat by Therefore, the air lying over these regions eventually evaporation and condensation processes. takes on the certain characteristics of temperature and The fastest and most effective process involved in moisture normal to that region. Ultimately, air masses establishing equilibrium is the turbulent-convective with these specific characteristics (warm, cold, moist, transport of heat upwards. The slowest and least or dry) develop. Because of the existence of cyclones effective process is radiation. and other factors aloft, these air masses are eventually subject to some movement that forces them together. During radiation and turbulent-convective When these air masses are forced together, fronts processes, evaporation and condensation contribute in develop between them.
    [Show full text]
  • Surface Cyclolysis in the North Pacific Ocean. Part I
    748 MONTHLY WEATHER REVIEW VOLUME 129 Surface Cyclolysis in the North Paci®c Ocean. Part I: A Synoptic Climatology JONATHAN E. MARTIN,RHETT D. GRAUMAN, AND NATHAN MARSILI Department of Atmospheric and Oceanic Sciences, University of WisconsinÐMadison, Madison, Wisconsin (Manuscript received 20 January 2000, in ®nal form 16 August 2000) ABSTRACT A continuous 11-yr sample of extratropical cyclones in the North Paci®c Ocean is used to construct a synoptic climatology of surface cyclolysis in the region. The analysis concentrates on the small population of all decaying cyclones that experience at least one 12-h period in which the sea level pressure increases by 9 hPa or more. Such periods are de®ned as threshold ®lling periods (TFPs). A subset of TFPs, referred to as rapid cyclolysis periods (RCPs), characterized by sea level pressure increases of at least 12 hPa in 12 h, is also considered. The geographical distribution, spectrum of decay rates, and the interannual variability in the number of TFP and RCP cyclones are presented. The Gulf of Alaska and Paci®c Northwest are found to be primary regions for moderate to rapid cyclolysis with a secondary frequency maximum in the Bering Sea. Moderate to rapid cyclolysis is found to be predominantly a cold season phenomena most likely to occur in a cyclone with an initially low sea level pressure minimum. The number of TFP±RCP cyclones in the North Paci®c basin in a given year is fairly well correlated with the phase of the El NinÄo±Southern Oscillation (ENSO) as measured by the multivariate ENSO index.
    [Show full text]
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • Extratropical Cyclones and Anticyclones
    © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • December 2013
    Oklahoma Monthly Climate Summary DECEMBER 2013 A frigid and sometimes icy December seemed a fitting way to 1.53 inches, about a half-inch below normal, to rank as the close out the boisterous weather of 2013. Preliminary data from 59th wettest December on record. That total is possibly an the Oklahoma Mesonet ranked the month as the 17th coolest underestimate due to the frozen precipitation, although the December on record at nearly 4 degrees below normal. Records moisture pattern across various parts of the state was quite of this type for Oklahoma date back to 1895. The statewide clear. Far southeastern Oklahoma received from 3-5 inches average temperature as recorded by the Mesonet was 35.2 during the month while western areas of the state received degrees. As chilly as it seemed, however, that mark provided less than a half-inch, in general. little threat to 1983’s record cold of 25.8 degrees, but also far cooler than 2012’s 42.1 degrees. There were two significant The cold December propelled 2013’s statewide average winter storms during December, each creating headaches for annual temperature to a mark of 58.9 degrees, 0.8 degrees travelers and power utility companies. The first storm struck on below normal and the 27th coolest calendar year on record for December 5-6 in two separate waves and brought freezing rain, the state. That mark stands in stark contrast to 2012’s record sleet and snow across the state. Significant snow totals of 5-6 warm year of 63.1 degrees.
    [Show full text]
  • Types of Fronts Stationary Front a Front That Is Not Moving
    Types of Fronts Stationary front A front that is not moving. Types of Fronts Cold front is a leading edge of colder air that is replacing warmer air. Types of Fronts Warm front is a leading edge of warmer air that is replacing cooler air. Types of Fronts Occluded front: When a cold front catches up to a warm front. Types of Fronts Dry Line Separates a moist air mass from a dry air mass. A.Cold Front is a transition zone from warm air to cold air. A cold front is defined as the transition zone where a cold air mass is replacing a warmer air mass. Cold fronts generally move from northwest to southeast. The air behind a cold front is noticeably colder and drier than the air ahead of it. When a cold front passes through, temperatures can drop more than 15 degrees within the first hour. The station east of the front reported a temperature of 55 degrees Fahrenheit while a short distance behind the front, the temperature decreased to 38 degrees. An abrupt temperature change over a short distance is a good indicator that a front is located somewhere in between. B. Warm Front. • A transition zone from cold air to warm air. • A warm front is defined as the transition zone where a warm air mass is replacing a cold air mass. Warm fronts generally move from southwest to northeast . The air behind a warm front is warmer and more moist than the air ahead of it. When a warm front passes through, the air becomes noticeably warmer and more humid than it was before.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Surface Station Model (U.S.)
    Surface Station Model (U.S.) Notes: Pressure Leading 10 or 9 is not plotted for surface pressure Greater than 500 = 950 to 999 mb Less than 500 = 1000 to 1050 mb 988 Æ 998.8 mb 200 Æ 1020.0 mb Sky Cover, Weather Symbols on a Surface Station Model Wind Speed How to read: Half barb = 5 knots Full barb = 10 knots Flag = 50 knots 1 knot = 1 nautical mile per hour = 1.15 mph = 65 knots The direction of the Wind direction barb reflects which way the wind is coming from NORTHERLY From the north 360° 270° 90° 180° WESTERLY EASTERLY From the west From the east SOUTHERLY From the south Four types of fronts COLD FRONT: Cold air overtakes warm air. B to C WARM FRONT: Warm air overtakes cold air. C to D OCCLUDED FRONT: Cold air catches up to the warm front. C to Low pressure center STATIONARY FRONT: No movement of air masses. A to B Fronts and Extratropical Cyclones Feb. 24, 2007 Case In mid-latitudes, fronts are part of the structure of extratropical cyclones. Extratropical cyclones form because of the horizontal temperature gradient and are part of the general circulation—helping to transport energy from equator to pole. Type of weather and air masses in relation to fronts: Feb. 24, 2007 case mPmP cPcP mTmT Characteristics of a front 1. Sharp temperature changes over a short distance 2. Changes in moisture content 3. Wind shifts 4. A lowering of surface pressure, or pressure trough 5. Clouds and precipitation We’ll see how these characteristics manifest themselves for fronts in North America using the example from Feb.
    [Show full text]
  • You Are a Meterologist!
    YOU ARE A METEROLOGIST! ★A meteorologist is a scientist who studies the atmosphere to forecast weather in a given area. ASSIGNMENT: You have been hired by the Weather Channel as a meteorologist to forecast weather in the United States. Since the Weather Channel provides forecasts for all over the country, your first assignment with them is to forecast four different areas of the United States using your knowledge about air masses and fronts. TASK: 1.) Examine the map of the United States and locate the four cities named on your data table. (Use an atlas to help you find these places.) 2.) After locating the cities, identify and describe the fronts heading towards each city and the air mass that follows it. (Use your reference sheet to help recall types of air mass: continental polar, continental tropical, maritime polar, or maritime tropical.) Record this information in the data table. 3.) For each city, predict how the incoming front will change the weather (temperature, air pressure, storms in that area.) Record your thinking in the data table. 4.) Select one city and write a paragraph about the anticipated weather for that area. Be sure to include data from the table to explain your thinking and forecast. DATA TABLE-FORECASTING WEATHER IN THE UNITED STATES INCOMING INCOMING CITY, STATE FRONT AIR MASS EXPLAIN HOW THIS FRONT MIGHT CHANGE THE IN THE UNITED (Warm Front How do you know? WEATHER AT THIS AREA? STATES or Cold Front) (What’s your evidence from the map?) TEMPERATURE POSSIBLE WEATHER St. Louis, Missouri El Paso, Texas Atlanta, Georgia Minneapolis Minnesota ★MAKE AN INFERENCE: Locate Boston, Massachusetts.
    [Show full text]
  • Weather Fronts
    Weather Fronts Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Dana Desonie, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • NATS 101 Section 13: Lecture 22 Fronts
    NATS 101 Section 13: Lecture 22 Fronts Last time we talked about how air masses are created. When air masses meet, or clash, the transition zone is called a front. The concept of “fronts” in weather developed from the idea of the front line of battle, specifically in Europe during World War I How are weather fronts analogous to battle fronts in a war? Which air mass “wins” depends on what type of front it is. Four types of fronts COLD FRONT: Cold air overtakes warm air. B to C WARM FRONT: Warm air overtakes cold air. C to D OCCLUDED FRONT: Cold air catches up to the warm front. C to Low pressure center STATIONARY FRONT: No movement of air masses. A to B Fronts and Extratropical Cyclones Feb. 24, 2007 Case In mid-latitudes, fronts are part of the structure of extratropical cyclones. Extratropical cyclones form because of the horizontal temperature gradient. How are they a part of the general circulation? Type of weather and air masses in relation to fronts: Feb. 24, 2007 case mPmP cPcP mTmT Characteristics of a front 1. Sharp temperature changes over a short distance 2. Changes in moisture content 3. Wind shifts 4. A lowering of surface pressure, or pressure trough 5. Clouds and precipitation We’ll see how these characteristics manifest themselves for fronts in North America using the example from Feb. 2007… COLDCOLD FRONTFRONT Horizontal extent: About 50 km AHEAD OF FRONT: Warm and southerly winds. Cirrus or cirrostratus clouds. Called the warm sector. AT FRONT: Pressure trough and wind shift.
    [Show full text]