New Species of Nanocladius Kieffer, 1913 \(Diptera: Chironomidae

Total Page:16

File Type:pdf, Size:1020Kb

New Species of Nanocladius Kieffer, 1913 \(Diptera: Chironomidae Ann. Limnol. - Int. J. Lim. 49 (2013) 255–264 Available online at: Ó EDP Sciences, 2013 www.limnology-journal.org DOI: 10.1051/limn/2013057 New species of Nanocladius Kieffer, 1913 (Diptera: Chironomidae: Orthocladiinae) from Neotropical region Sofia Wiedenbrug1* and Fabio Laurindo da Silva2 1 Museum of Zoology, University of Sa˜ o Paulo, Av. Nazare´ , 481, 04263-000, Sa˜ o Paulo, SP, Brazil 2 Laboratory of Aquatic Entomology, Department of Hydrobiology, Federal University of Sa˜ o Carlos, P.O. Box 676, 13565-905, Sa˜ o Carlos, SP, Brazil Received 5 June 2013; Accepted 11 September 2013 Abstract – The genus Nanocladius Kieffer, 1913 (Diptera: Chironomidae: Orthocladiinae) has been frequently found in aquatic habitats of the Neotropical region. However, until now only one species was described living symphoretically on Ephemeroptera and no free-living species has been cited or formally described from the region. In the present study, two new species of Nanocladius are described and figured as male, pupa and larva: N. communis and N. longispicula. The specimens were collected from different streams in Brazil and are the first recorded species of the genus to the country. Key words: Brazil / Chironomidae / Nanocladius / immature stages / taxonomy Introduction The Holarctic species of the genus were described and revised by several authors (e.g., Sæther, 1977; Non-biting midges of the genus Nanocladius are Niitsuma, 1991; Harrison, 1994; Fu and Wang, 2009), minute dipterans with worldwide distribution. Sæther but a comprehensive revision of the genus is still not (1977) first revised the genus and defined two subgenus: available. In the present study, two new species of Nanocladius str. usually with free-living larvae in lotic Nanocladius from Brazil are described and figured as and lentic habitats (Cranston et al., 1983), and N. Pleco- adult, pupa and larva. pteracoluthus, whose immatures are found living symphor- etically on the larvae of Plecoptera, Megaloptera and Ephemeroptera (e.g., Steffan, 1965; Epler, 1986; Hayashi, 1998). Prior to the present study Nanocladius comprised Materials and Methods 34 species, of which only N. (Plecopteracoluthus) bubra- chiatus Epler occurs in the Neotropical region (Ashe Adults, pharate adults and pupal exuviae were col- and O’Connor, 2012). No species was formally described lected with drift nets. Living larvae were collected from the Australian region, although several morphotypes with hand nets and isolated in small boxes (1 cmr1 cm) are known (e.g., Cranston, 1996). half filled with stream water. Neither substratum nor food In Brazil, numerous ecological studies have recorded was given, except for some detritus carried over with the the larvae of Nanocladius, living symphoretically on water. The boxes were checked twice a day for the emerged other insects (Callisto and Goulart, 2000; Dorville´ et al., specimens. Larval skins, pupal exuviae and adults were 2000) or free-living on stones, litter, sediments and aquatic preserved in 96% ethanol. The specimens examined were macrophytes in reservoirs and rivers (e.g., Sanseverino and slide-mounted in Euparal. Nessimian, 1998, 2001; Callisto et al., 2002; Henriques- Morphological terminology and abbreviations follow Oliveira et al., 2003; Suriano and Fonseca-Gessner, Sæther (1980). Data on larvae represent the 4th instar. 2004; Janke and Trivinho-Strixino, 2007). In addition, Measurement methods followed Epler (1988). Mensural several morphotypes were described (Ospina-Torres, 1992; data are given as ranges, followed by the number of Wiedenbrug, 2000). Although the larvae of Nanocladius observed specimens in parenthesis if different from the are common in the benthos fauna, until the present study number (n) stated at the beginning of the description. no species was described or cited from Brazil. Seta counts are given as the ranges only. The holotypes and paratypes are deposited in the Museum of Zoology *Corresponding author: sofi[email protected] of the University of Sa˜ o Paulo (MZUSP), Brazil. Article published by EDP Sciences 256 S. Wiedenbrug and F.L. da Silva: Ann. Limnol. - Int. J. Lim. 49 (2013) 255–264 Fig. 1–4. Nanocladius (N.) communis sp. n., male. 1 head, 2 wing, 3 hypopygium (dorsal view), 4 hypopygium (ventral view). Taxonomy Diagnostic characters. The male of N. N. communis can be separated from other species of the genus by the Nanocladius (N.) communis sp. n. (Figs. 1–15) following character combination: apical setae on antenna Nanocladius (N.) spec. 1 Wiedenbrug (2000) brown, straight and much shorter than apical flagellomere, Type material. Holotype male with pupal and AR 0.6, tergites with four to six setae uniserial distri- larval exuviae, Brazil, Sa˜ o Paulo, Sa˜ o Carlos, Fazenda buted, phallapodeme without oral projections, inferior Canchin, 21x57.996'S, 47x50.604'W, 858 m a.s.l., volsella triangular, anal point narrow, short, basally with 19.v.2011, S. Wiedenbrug. Paratypes: one male with pupal microtrichia. The pupa can be distinguished due to the exuviae same data as holotype except for Ubatuba, stream digitiform thoracic horn with spines, pedes spurii B con- near Ruı´ nas da Lagoinha, 23x30.468'S, 45x11.923'W, 0 m spicuous, hook row on protuberance, posterior lateral seta a.s.l., xii.2000. Four pupal exuviae as previous except taeniate on segment VI and usually on V, tergites IV–VI for Serta˜ o da Quina, Cachoeira da Renata, bridge, with median spine-patches and posterior row of spines, 23x31.231'S, 45x14.625'W, 33 m a.s.l., 2.v.2007, two on male pupa posterior ventral surface of anal lobe with of them in the same slide as the paratypes of N. (N.) shagreen points. The following characters are diagnostic longispicula sp. n. One pharate male same data as before for the larva: AR 1.14, ventromental plates very long but 23x30.789'S, 45x14.442'W, 61 m a.s.l., 29.xii.2010. rounded at caudal apex, with a ridge parallel to the anterior Additional material examined. Five pupal exuviae, margin, premandible faint bifid, mentum with lateral teeth Brazil, Rio Grande do Sul, Taquara, Arroio do Mineiro, well defined, claws of anterior parapods serrated. 15.xi.1994, S. Wiedenbrug. One pupal exuviae, same Etymology. Derived from the Latin communis, meaning data as before but, Sa˜ o Francisco de Paula, Arroio dos common, and refers to a customary occurrence of this Carros. species in the benthic fauna of the sampled streams. S. Wiedenbrug and F.L. da Silva: Ann. Limnol. - Int. J. Lim. 49 (2013) 255–264 257 Fig. 5–11. Nanocladius (N.) communis sp. n., pupa. 5 frontal apotome, 6 thorax, 7 detail of thoracic horn and precorneals, 8 abdomen segments I–VIII (dorsal view) and anal lobe (left, dorsal view right, ventral view), 9 abdomen segments III–VIII (ventral view), 10 detail of hook row and 11 detail of anal lobe (ventral view, male). Description at largest part, bearing six to seven setae. Cibarial pump with anterior margin straight, 88–113 mm long. Palpomere Adult male (n=2 unless otherwise stated) lengths 1–5 (in mm): 23–25; 33; 53–58; 63–70; 120 (1). Size. Total length 1.10–1.18 mm. Wing length 0.89– Antenna with 13 flagellomeres, flagellum 570–580 mm 0.90 mm. Total length/wing length 1.57–1.70. Wing long, apex slightly expanded, with short sensilla chaetica, length/length of profemur 2.31 (1). setae on apex much shorter than last flagellomere, straight Coloration. Head brown; maxillary palp pale brown. and light brown. Diameter of pedicel 80–100 (2) mm. AR Thorax brown with mesonotum dorsally dark brown; 0.63–0.66. antepronotum pale brown. Wing membrane transparent Thorax. Antepronotum with one lateral seta. Mid without spots and veins pale brown. Legs pale brown. scutum with a scar, acrostichals not visible. Dorsocentrals Posterior margin of TIV–TV, anterior margin of TVI, 4–5, regularly uniserial. Prealars 1. Anapleural suture ratio TVIII and TIX brown, other tergites light brown. 0.71. Scutellum with two setae. Anepisternals, preepister- Gonocoxite and gonostylus light brown (1). nals and postnotals absent. Head (Fig. 1). Eyes hairy. Temporal setae 1. Tentorium Wing (Fig. 2). Width 0.31–0.32 mm. Costa 0.82–0.85 mm 120–125 mm long, stipes not measurable. Small frontal long, produced beyond R4 + 5, ending very slightly be- tubercles present. Clypeus 38–40 mm long, 68 mm wide yond the tip of M3 + 4.R2 + 3 not observed. VR 1.14–1.18. 258 S. Wiedenbrug and F.L. da Silva: Ann. Limnol. - Int. J. Lim. 49 (2013) 255–264 Table 1. Lengths (in mm) and proportions of leg segments in Nanocladius communis n. sp., adult male. Fe Ti ta1 ta2 ta3 p1 300 (1) 380 (1) 250 (1) 210 (1) 140 (1) p2 290–310 290–300 150 (1) 90 (1) 60 (1) p3 310–340 390 200–210 120 80 ta4 ta5 LR BV SV p1 70 (1) 50 (1) 0.66 (1) 1.98 (1) 2.72 (1) p2 20 (1) 20 (1) 0.52 (1) 3.95 (1) 4.00 (1) p3 50 40 0.51–0.54 3.14–3.21 3.33–3.65 Pupa (n=6 unless otherwise stated) Size. Abdomen 0.85–0.98 (5) mm long Coloration. Exuviae and thoracic horn light brown. Cephalothorax (Figs. 5–7). Frontal apotome granulose, frontal setae 207 mm long (1), on the small tubercles on the frontal apotome. Thorax smooth, slightly granulated on circular area ventral to the thoracic horn. Ocular field with two postorbital setae. Antepronotum with two median setae and one lateral seta. Three precorneal setae, the longest 0.56 (1). Four dorsocentrals, Dc2 and Dc3 near each other. Prealar absent. Wing sheath smooth, 350– 620 mm long. Thoracic horn digitiform with scattered, pale spinules, 85–125 mm long and 10 mm (3) wide.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Spatial and Temporal Distribution of Aquatic Insects in the Dicle (Tigris) River Basin, Turkey, with New Records
    Turkish Journal of Zoology Turk J Zool (2017) 41: 102-112 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1512-56 Spatial and temporal distribution of aquatic insects in the Dicle (Tigris) River Basin, Turkey, with new records Fatma ÇETİNKAYA, Aysel BEKLEYEN* Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey Received: 21.12.2015 Accepted/Published Online: 01.06.2016 Final Version: 25.01.2017 Abstract: We investigated insects of the Dicle (Tigris) River Basin in terms of their composition and spatiotemporal distribution. Larvae, pupae, pupal exuviae, and nymphs of insects were obtained from samples collected by a plankton net monthly during a 1-year period in 2008 and 2009 at seven different sites of the Dicle (Tigris) River Basin. A total of 35 taxa from the orders Trichoptera (1 taxon), Ephemeroptera (3 taxa), and Diptera (31 taxa) were identified. Chironomidae (Diptera) was the most diverse group and was represented by three major subfamilies, namely Tanypodinae (2 taxa), Orthocladiinae (19 taxa), and Chironominae (7 taxa). Among these species, Nanocladius (Nanocladius) spiniplenus Saether, 1977 is a new record for Turkey as well as for western Asia. In addition, the Psychomyia larvae found for the first time in the Dicle (Tigris) River Basin (Turkey) were described. Both taxa have been illustrated to warrant validation. Taxa number varied spatially from 6 to 14 and temporally from 2 to 12 during the sampling period. Along the river, Cricotopus bicinctus and Orthocladius (S.) holsatus were the most common taxa. Key words: Diptera, Ephemeroptera, Trichoptera, Insecta, Dicle (Tigris) River 1.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Aquatic Insects: Holometabola – Diptera, Suborder Nematocera
    Glime, J. M. 2017. Aquatic Insects: Holometabola – Diptera, Suborder Nematocera. Chapt. 11-13b. In: Glime, J. M. Bryophyte 11-13b-1 Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 15 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-13b AQUATIC INSECTS: HOLOMETABOLA – DIPTERA, SUBORDER NEMATOCERA TABLE OF CONTENTS Suborder Nematocera, continued ........................................................................................................... 11-13b-2 Chironomidae – Midges .................................................................................................................. 11-13b-2 Emergence ............................................................................................................................... 11-13b-4 Seasons .................................................................................................................................... 11-13b-5 Cold-water Species .................................................................................................................. 11-13b-6 Overwintering .......................................................................................................................... 11-13b-7 Current Velocity ...................................................................................................................... 11-13b-7 Diversity .................................................................................................................................
    [Show full text]
  • Nanocladius (Plecopteracoluthus) Shigaensis Sp
    Zootaxa 3931 (4): 551–567 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3931.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:5F962756-8817-45CA-800E-AFDD4F8EBBE2 Nanocladius (Plecopteracoluthus) shigaensis sp. nov. (Chironomidae: Orthocladiinae) whose larvae are phoretic on nymphs of stoneflies (Plecoptera) from Japan YASUE INOUE1, CHIHARU KOMORI2, TADASHI KOBAYASHI3,5, NATSUKO KONDO4, RYUHEI UENO4 & KENZI TAKAMURA4 1Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto-fu 610-0300, Japan. E-mail: [email protected] 2Faculty of Applied Biological Sciences, Course of Agricultural and Environmental Sciences, Environmental Science and Ecology Sub-Course Gifu University, 1-1 Yanagido, Gifu City 501-1112, Japan. E-mail: [email protected] 33-2-4-303 Ikuta, Kawasaki, Kanagawa 214-0034, Japan. E-mail: [email protected] 4Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki 305-8506, Japan. E-mail: [email protected],jp, [email protected], [email protected] 5Corresponding author Abstract We identified a new species, Nanocladius (Plecopteracoluthus) shigaensis, from Shiga and Gifu Prefectures, Japan, whose larvae are phoretic on nymphs of Plecoptera. Although this new species is morphologically similar to Nanocladius (Plecopteracoluthus) asiaticus Hayashi (1998), which is phoretic on Megaloptera larvae, it differs from N. (P.) asiaticus: the color of the larval head capsule is light brown in N. (P.) shigaensis and dark brown in N. (P.) asiaticus and the larval capsule index of the former is significantly larger than that of the latter.
    [Show full text]
  • National Park Service
    Communities in Freshwater Coastal Rock Pools of Lake Superior, with a Focus on Chironomidae (Diptera) A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Alexander Taurus Egan IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Leonard C. Ferrington, Jr. May 2014 © Alexander Taurus Egan 2014 Acknowledgements Projects of this size are rarely accomplished without the assistance and support of many people. Primarily, my advisor, Len Ferrington, has been a great source of guidance and enthusiasm. My committee, Jacques Finlay, Ralph Holzenthal, and Roger Moon, have raised the bar considerably by pushing, pulling and steering me toward being a better scientist. Friends and colleagues in the Chironomidae Research Group have made my graduate experience a time I will remember fondly, with Alyssa Anderson, Will Bouchard and Jessica Miller sharing in the successes, misfortunes, and minor but important goals that come with the territory. In particular, Petra Kranzfelder often filled the roles of peer advisor and sounding board for ideas both brilliant and ridiculous. The National Park service has been very generous in many ways, and specific thanks go to Brenda Moraska Lafrançois and Jay Glase, who provided early development and direction for this project. My colleagues Mark Edlund from the Science Museum of Minnesota and Toben Lafrançois from the Science Museum and Northland College have consistently offered excellent ecological advice on what the data mean, often acting as de facto advisors. Without support from Isle Royale National Park this project would not have been possible. In particular, the technical advice, equipment loans, and logistical assistance from Paul Brown, Rick Damstra, Joan Elias, and Mark Romanski were invaluable.
    [Show full text]
  • Chironomidae of the Southeastern United States: a Checklist of Species and Notes on Biology, Distribution, and Habitat
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Fish & Wildlife Publications US Fish & Wildlife Service 1990 Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat Patrick L. Hudson U.S. Fish and Wildlife Service David R. Lenat North Carolina Department of Natural Resources Broughton A. Caldwell David Smith U.S. Evironmental Protection Agency Follow this and additional works at: https://digitalcommons.unl.edu/usfwspubs Part of the Aquaculture and Fisheries Commons Hudson, Patrick L.; Lenat, David R.; Caldwell, Broughton A.; and Smith, David, "Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat" (1990). US Fish & Wildlife Publications. 173. https://digitalcommons.unl.edu/usfwspubs/173 This Article is brought to you for free and open access by the US Fish & Wildlife Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Fish & Wildlife Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Fish and Wildlife Research 7 Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat NWRC Library I7 49.99:- -------------UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE Fish and Wildlife Research This series comprises scientific and technical reports based on original scholarly research, interpretive reviews, or theoretical presentations. Publications in this series generally relate to fish or wildlife and their ecology. The Service distributes these publications to natural resource agencies, libraries and bibliographic collection facilities, scientists, and resource managers. Copies of this publication may be obtained from the Publications Unit, U.S.
    [Show full text]
  • The Biodiversity Benefit of Native Forest Over Grain-For-Green Plantations
    bioRxiv preprint doi: https://doi.org/10.1101/437418; this version posted October 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: The biodiversity benefit of native forest over 2 Grain-for-Green plantations 3 1,2 3,4 1 5,6 4 Authors: Xiaoyang Wang , Fangyuan Hua , Lin Wang , David S. Wilcove , 1,7,8* 5 Douglas W Yu 6 7 Author affiliations: 8 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy 9 of Sciences, Kunming, Yunnan 650223, China 10 2 Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, 11 China 12 3 Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge CB2 3QZ, U.K. 13 4 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese 14 Academy of Sciences, Kunming, Yunnan 650201, China 15 5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States 16 6 Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and 17 International Affairs, Princeton University, Princeton, NJ 08544, United States 18 7 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan, 19 650223 China 20 8 School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 21 7TJ, UK 22 23 *Correspondence to: Email: [email protected] 24 Author declaration: XW, FH, and DY conceived the research and designed the experiments.
    [Show full text]
  • Diptera) from Lake Sediments in Central America: a Preliminary Inventory
    Zootaxa 4497 (4): 559–572 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:00292B85-305D-44FF-B9D6-DE2D7A72D220 Sub-fossil Chironomidae (Diptera) from lake sediments in Central America: a preliminary inventory LADISLAV HAMERLIK1,2,5, FABIO LAURINDO DA SILVA3,4 & MARTA WOJEWÓDKA1 1Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland 2Department of Biology and Ecology, Matej Bel University, Banská Bystrica, Slovakia 3Laboratory of Systematic and Biogeography of Insecta, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil. 4Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway. 5Corresponding author. E-mail: [email protected] Abstract The chironomid diversity of Central America is virtually underestimated and there is almost no knowledge on the chirono- mid remains accumulated in surface sediments of lakes. Thus, in the present study we provide information on the larval sub-fossil chironomid fauna from surface sediments in Central American lakes for the first time. Samples from 27 lakes analysed from Guatemala, El Salvador and Honduras yielded a total of 1,109 remains of four subfamilies. Fifty genera have been identified, containing at least 85 morphospecies. With 45 taxa, Chironominae were the most specious and also most abundant subfamily. Tanypodinae with 14 taxa dominated in about one third of the sites. Orthocladiinae were pre- sented by 24 taxa, but were recorded in 9 sites, being dominant in only one site.
    [Show full text]
  • An Updated List of Chironomid Species from Italy with Biogeographic Considerations (Diptera, Chironomidae)
    Biogeographia – The Journal of Integrative Biogeography 34 (2019): 59–85 An updated list of chironomid species from Italy with biogeographic considerations (Diptera, Chironomidae) BRUNO ROSSARO1, NICCOLÒ PIROLA1, LAURA MARZIALI2, GIULIA MAGOGA1, ANGELA BOGGERO3, MATTEO MONTAGNA1 1 Dipartimento di Scienze Agrarie e Ambientali (DiSAA), University of Milano, Via Celoria 2, 20133 Milano (Italy) 2 Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio (MB) (Italy) 3 Water Research Institute - National Research Council (IRSA-CNR), Corso Tonolli 50, 28922 Verbania Pallanza (Italy) * corresponding author: [email protected] Keywords: biodiversity, checklist, faunistics, freshwaters, non-biting midges, species list. SUMMARY In a first list of chironomid species from Italy from 1988, 359 species were recognized. The subfamilies represented were Tanypodinae, Diamesinae, Prodiamesinae, Orthocladiinae and Chironominae. Most of the species were cited as widely distributed in the Palearctic region with few Mediterranean (6), Afrotropical (19) or Panpaleotropical (3) species. The list also included five species previously considered Nearctic. An updated list was thereafter prepared and the number of species raised to 391. Species new to science were added in the following years further raising the number of known species. The list of species known to occur in Italy is now updated to 580, and supported by voucher specimens. Most species have a Palearctic distribution, but many species are distributed in other biogeographical regions; 366 species are in common with the East Palaearctic region, 281 with the Near East, 248 with North Africa, 213 with the Nearctic, 104 with the Oriental, 23 species with the Neotropical, 23 with the Afrotropical, 16 with the Australian region, and 46 species at present are known to occur only in Italy.
    [Show full text]
  • Part 1 Nematocera Premième Partie Nématocères
    Agriculture Canada Diptera types in the Types de Diptères de la Canadian National Collection nationale Collection of Insects des insectes du Canada Part 1 Premième partie Nematocera Nématocères Diptera types in the Types de Diptères de Canadian National la Collection nationale Collection of Insects des insectes du Canada Part 1 Première partie Nematocera Nématocères Bruce E. Cooper Bruce E. Cooper Biosystematics Research Centre Centre de recherches biosystématiques Ottawa, Ontario Ottawa (Ontario) K1A 0C6 K1A 0C6 Research Branch Direction générale de la recherche Agriculture Canada Agriculture Canada Publication 1845/B Publication 1845/B 1991 1991 ©Minister of Supply and Services Canada 1990 ©Approvisionnements et Services Canada 1990 Cat. No. A53-1845/1990 No de cat. A53-1845/1990 ISBN 0-660-55684-7 ISBN 0-660-55684-7 Printed 1991 Imprimé en 1991 Available in Canada through authorized En vente au Canada par l’entremise de nos bookstore agents and other bookstores or by mail agents libraires agréés et autres libraires from ou par la poste au Canadian Government Publishing Centre Centre d’édition du gouvernement du Canada Supply and Services Canada Approvisionnements et Services Canada Ottawa, Ontario K1A 0S9 Ottawa (Ontario) K1A 0S9 Price is subject to change without notice Prix sujet à changement sans préavis Canadian Cataloguing in Publication Data Données de catalogage avant publication (Canada) Canadian National Collection of Insects Collection nationale du Canada d’insectes Diptera types in the Canadian National Diptera types in the Canadian National Collection. Part 1: Nematocera = Types de Collection. Part 1: Nematocera = Types dediptères diptères de la Collection nationale du Canada. de la Collection nationale du Canada.Première Première partie: Nematocères partie: Nematocères (Publication ; 1845B) (Publication ; 1845B) Text in English and French in parallel columns.
    [Show full text]
  • Regional Diversity, Ecology and Palaeoecology of Aquatic Invertebrate Communities in East African Lakes
    Academic year 2009-2010 Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science: Biology Regional diversity, ecology and palaeoecology of aquatic invertebrate communities in East African lakes Regionale diversiteit, ecologie en paleo-ecologie van aquatische invertebraten- gemeenschappen in Oost-Afrikaanse meren BOB RUMES Promotor: Prof. Dr. D. Verschuren Co-promotor: Dr. H. Eggermont Faculty of Sciences, Biology Department Research group Limnology Members of the examination committee Members of the reading committee Promotor: Prof. Dr. D. Verschuren (Universiteit Gent) Co-promotor: Dr. H. Eggermont (Universiteit Gent) Prof. Dr. K. Martens (Koninklijk Belgisch Instituut voor Natuurwetenschappen) Prof. Em. Dr. H. Dumont (Universiteit Gent) Dr. O. Heiri (Universiteit Utrecht) Other members of the examination committee Prof. Dr. D. Adriaens (Universiteit Gent) (chairman) Prof. Dr. W. Vyverman (Universiteit Gent) Public thesis defence Thursday, March 11th, 2010 at 4 p.m. Ghent University, campus Ledeganck, Auditorium 4, K.L. Ledeganckstraat 35, 9000 Gent This thesis was realised within the framework of CLANIMAE (Climatic and Anthropogenic Impacts on African Ecosystems) funded by the Belgian Science Policy (BelSPO). Dankwoord Dit doktoraat zou er niet zijn zonder de hulp van een hele hoop mensen die (hoofdzakelijk) vrijwillig hun tijd in mij hebben geïnvesteerd. Een kort woordje van dank is dan ook niet ongepast. In de eerste plaats wil ik Dirk Verschuren bedanken. Dirk, bedankt voor het vertrouwen en het geduld. Het is niet altijd vlot verlopen en soms leek het alsof elke keer dat we samenzaten de structuur van mijn doktoraat veranderde, maar in het uiteindelijke resultaat kunnen we ons beiden terugvinden.
    [Show full text]